← Back to Gap analysisDSPEX GAP ANALYSIS 01 code
Documentation for DSPEX_GAP_ANALYSIS_01_code from the Ds ex repository.
Part I: Critical Algorithm Fixes Required
1. CRITICAL: Fix Program Selection Algorithm
Current Broken Implementation:
# ❌ BROKEN: Uses fixed scores instead of real performance
defp softmax_sample(program_indices, _all_programs, temperature) do
scores = Enum.map(program_indices, fn _idx -> 0.5 end) # FIXED SCORES!
# This breaks the core SIMBA optimization logic
end
Required Fix - Complete Implementation:
defp softmax_sample(program_indices, program_scores, temperature) do
if is_list(program_indices) and length(program_indices) > 0 do
# ✅ Calculate real average scores for each program
scores = Enum.map(program_indices, fn idx ->
program_score_list = Map.get(program_scores, idx, [])
if Enum.empty?(program_score_list) do
0.0 # Default for programs with no evaluation history
else
Enum.sum(program_score_list) / length(program_score_list)
end
end)
# Apply temperature scaling and softmax
if temperature > 0 do
exp_scores = Enum.map(scores, fn score -> :math.exp(score / temperature) end)
sum_exp = Enum.sum(exp_scores)
if sum_exp > 0 do
probabilities = Enum.map(exp_scores, fn exp_score -> exp_score / sum_exp end)
weighted_random_choice(probabilities)
else
# Fallback to uniform random if all scores are zero
:rand.uniform(length(program_indices)) - 1
end
else
# Temperature = 0: always pick best scoring program
{_max_score, max_idx} =
scores
|> Enum.with_index()
|> Enum.max_by(fn {score, _} -> score end)
max_idx
end
else
0 # Default to first program if no valid indices
end
end
defp weighted_random_choice(probabilities) do
random_val = :rand.uniform()
probabilities
|> Enum.with_index()
|> Enum.reduce_while(0.0, fn {prob, idx}, acc ->
new_acc = acc + prob
if random_val <= new_acc do
{:halt, idx}
else
{:cont, new_acc}
end
end)
end