DSPEx Gap Analysis: Core Teleprompter Components
Overview
This document analyzes the gaps in DSPEx’s teleprompter/optimizer implementations compared to the original DSPy Python library. The analysis focuses on core algorithmic components that are either missing or incomplete.
🎯 SIMBA Teleprompter: Critical Algorithmic Gaps
Status: 60% Complete - Major Algorithmic Components Missing
Based on analysis of dspy/teleprompt/simba.py
, DSPEx’s SIMBA implementation has excellent infrastructure but critical algorithmic gaps.
1. Program Selection Algorithm (CRITICAL BLOCKING ISSUE)
Python DSPy Implementation:
def calc_average_score(prog_idx: int) -> float:
scores = program_scores.get(prog_idx, [])
if not scores:
return 0.0
return sum(scores) / len(scores)
def softmax_sample(rng_obj: random.Random, program_idxs: list[int], temperature: float) -> int:
# Unnormalized weights
scores = [calc_average_score(idx) for idx in program_idxs] # ✅ REAL SCORES
exps = [np.exp(s / temperature) for s in scores]
sum_exps = sum(exps)
if sum_exps <= 0:
return rng_obj.choice(program_idxs)
# Weighted random choice
probs = [val / sum_exps for val in exps]
return rng_obj.choices(program_idxs, weights=probs, k=1)[0]
DSPEx Current (BROKEN):
defp softmax_sample(program_indices, _all_programs, temperature) do
if is_list(program_indices) and length(program_indices) > 0 do
scores = Enum.map(program_indices, fn _idx -> 0.5 end) # ❌ FIXED SCORES!
# This completely breaks the optimization algorithm
end
end
Required Fix:
defp calculate_average_score(program_scores, prog_idx) do
scores = Map.get(program_scores, prog_idx, [])
if Enum.empty?(scores) do
0.0
else
Enum.sum(scores) / length(scores)
end
end
defp softmax_sample(program_indices, program_scores, temperature) do
scores = Enum.map(program_indices, fn idx ->
calculate_average_score(program_scores, idx)
end)
# Calculate exponentials
exps = Enum.map(scores, fn score ->
:math.exp(score / temperature)
end)
sum_exps = Enum.sum(exps)
if sum_exps <= 0 do
Enum.random(program_indices)
else
# Weighted random selection
probs = Enum.map(exps, fn exp -> exp / sum_exps end)
weighted_random_choice(program_indices, probs)
end
end
2. Program Pool Management (CRITICAL)
Python DSPy Implementation:
def top_k_plus_baseline(k: int) -> list[int]:
# Sort all programs by descending average score
scored_programs = sorted(programs, key=lambda p: calc_average_score(p.simba_idx), reverse=True)
top_k = [p.simba_idx for p in scored_programs[:k]]
# Ensure baseline=0 is in there:
if 0 not in top_k and len(top_k) > 0:
top_k[-1] = 0
return list(dict.fromkeys(top_k))
DSPEx Status: ❌ MISSING ENTIRELY
Required Implementation:
defp select_top_programs_with_baseline(programs, program_scores, k) do
# Calculate average scores for all programs
program_avg_scores = programs
|> Enum.with_index()
|> Enum.map(fn {_program, idx} ->
avg_score = calculate_average_score(program_scores, idx)
{idx, avg_score}
end)
|> Enum.sort_by(fn {_idx, score} -> score end, :desc)
# Take top k
top_k_indices = program_avg_scores
|> Enum.take(k)
|> Enum.map(fn {idx, _score} -> idx end)
# Ensure baseline (index 0) is included
if 0 not in top_k_indices and length(top_k_indices) > 0 do
# Replace last element with baseline
List.replace_at(top_k_indices, -1, 0)
else
top_k_indices
end
|> Enum.uniq()
end
3. Main Optimization Loop Logic (INCOMPLETE)
Python DSPy Key Steps:
- Mini-batch Selection ✅ DSPEx Complete
- Model Preparation ✅ DSPEx Complete
- Program Selection ❌ DSPEx Broken (fixed scores)
- Trajectory Sampling ⚠️ DSPEx Over-complex but functional
- Bucket Analysis ✅ DSPEx Complete and Superior
- Strategy Application ⚠️ DSPEx Partial (only AppendDemo)
- Candidate Evaluation ✅ DSPEx Complete
- Program Registration ❌ DSPEx Missing logic
- Winning Program Selection ⚠️ DSPEx Simplified
Missing Integration: The DSPEx loop exists but doesn’t properly integrate these steps with real scoring and selection logic.
4. Strategy System Gaps
Python DSPy Strategies:
if self.max_demos > 0:
self.strategies = [append_a_demo(demo_input_field_maxlen), append_a_rule]
else:
self.strategies = [append_a_rule]
# Random strategy selection
strategy = rng.choice(self.strategies)
DSPEx Status:
- ✅ AppendDemo strategy complete with Poisson sampling
- ❌ AppendRule strategy missing entirely
- ❌ Strategy selection logic incomplete
Required AppendRule Implementation:
defmodule DSPEx.Teleprompter.SIMBA.Strategy.AppendRule do
@behaviour DSPEx.Teleprompter.SIMBA.Strategy
@impl true
def apply(bucket, program, _config, _context) do
# Extract high-performing trajectories
high_performance_trajectories = bucket.trajectories
|> Enum.filter(&(&1.score > bucket.avg_score))
|> Enum.take(3)
if Enum.empty?(high_performance_trajectories) do
{:ok, program}
else
# Generate rule from patterns in high-performing trajectories
rule = generate_rule_from_trajectories(high_performance_trajectories)
enhanced_program = add_rule_to_program(program, rule)
{:ok, enhanced_program}
end
end
defp generate_rule_from_trajectories(trajectories) do
# Analyze common patterns in successful trajectories
# This would use LLM to generate rules based on successful examples
"Based on successful examples, ensure you follow this pattern: ..."
end
defp add_rule_to_program(program, rule) do
# Add the generated rule to the program's instructions
# Implementation depends on program structure
program
end
end
🔧 Other Teleprompters: Missing Implementations
1. MIPRO (Multi-prompt Instruction Proposal) - MISSING
Status: ❌ Not implemented in DSPEx
Python DSPy Features:
- Multi-step instruction optimization
- Automatic prompt proposal and refinement
- Bayesian optimization for hyperparameters
- Support for multiple signature optimization
Implementation Priority: HIGH (widely used optimizer)
2. COPRO (Curriculum-based Prompt Optimizer) - MISSING
Status: ❌ Not implemented in DSPEx
Python DSPy Features:
- Curriculum learning approach
- Progressive difficulty increase
- Adaptive example selection
- Meta-learning components
Implementation Priority: MEDIUM
3. Ensemble - MISSING
Status: ❌ Not implemented in DSPEx
Python DSPy Features:
- Multiple model combination
- Voting mechanisms
- Confidence-weighted averaging
- Diversity-based selection
Implementation Priority: MEDIUM
4. BootstrapFinetune - MISSING
Status: ❌ Not implemented in DSPEx
Python DSPy Features:
- Model fine-tuning on generated data
- Bootstrap data generation
- Training pipeline integration
- Model adapter support
Implementation Priority: LOW (requires ML training infrastructure)
🧩 Core Predict Modules: Missing Advanced Patterns
1. ChainOfThought - MISSING
Status: ❌ Not implemented in DSPEx
Python DSPy Implementation:
class ChainOfThought(Module):
def __init__(self, signature, rationale_type=None, activated=True, **config):
self.signature = signature
self.activated = activated
self.predict = Predict(signature, **config)
def forward(self, **kwargs):
# Add rationale to signature
signature = self.signature.with_instructions("Let's think step by step.")
return self.predict(signature=signature, **kwargs)
Required DSPEx Implementation:
defmodule DSPEx.Predict.ChainOfThought do
@moduledoc """
Chain of Thought reasoning module that adds step-by-step thinking.
"""
use DSPEx.Program
defstruct [:signature, :predict, :activated]
def new(signature, opts \\ []) do
activated = Keyword.get(opts, :activated, true)
# Enhance signature with chain of thought instructions
enhanced_signature = add_rationale_to_signature(signature)
predict = DSPEx.Predict.new(enhanced_signature, opts)
%__MODULE__{
signature: signature,
predict: predict,
activated: activated
}
end
@impl DSPEx.Program
def forward(program, inputs, opts \\ []) do
if program.activated do
DSPEx.Program.forward(program.predict, inputs, opts)
else
# Fallback to basic predict without rationale
basic_predict = DSPEx.Predict.new(program.signature, opts)
DSPEx.Program.forward(basic_predict, inputs, opts)
end
end
defp add_rationale_to_signature(signature) do
# Add thinking/rationale field to signature
# Implementation depends on signature system
signature
end
end
2. ReAct (Reason + Act) - MISSING
Status: ❌ Not implemented in DSPEx
Features Needed:
- Thought-action-observation loops
- Tool integration
- Multi-step reasoning
- Action space definition
3. ProgramOfThought - MISSING
Status: ❌ Not implemented in DSPEx
Features Needed:
- Code generation capabilities
- Code execution environment
- Result integration
- Error handling for code execution
4. MultiChainComparison - MISSING
Status: ❌ Not implemented in DSPEx
Features Needed:
- Multiple reasoning chains
- Comparison mechanisms
- Best chain selection
- Confidence scoring
📊 Assessment and Assertions System: Completely Missing
Status: ❌ Not implemented in DSPEx
Python DSPy Features:
import dspy
def basic_qa_assertion(example, pred, trace=None):
answer_EM = dspy.evaluate.answer_exact_match(example, pred)
if answer_EM < 0.5:
dspy.Suggest(
f"The predicted answer is {pred.answer}. However, the gold answer is {example.answer}.",
target_module="generate_answer"
)
return answer_EM
# Usage in programs
with dspy.context(lm=lm):
with dspy.settings.context(assert_=basic_qa_assertion):
pred = program(question="What is the capital of France?")
Critical Missing Components:
- dspy.Assert() - Hard constraints with retry logic
- dspy.Suggest() - Soft hints for improvement
- Context management - Assertion integration
- Backtracking - Retry with constraints
- Constraint satisfaction - Runtime validation
Implementation Priority: HIGH (core to DSPy’s self-improving nature)
🔍 Retrieval Models: Major Gap
Status: ❌ Completely missing from DSPEx
Python DSPy Retrieval Ecosystem:
- ColBERTv2 integration
- Vector database connectors (Pinecone, Weaviate, ChromaDB, etc.)
- Embedding models
- Retrieval-augmented generation (RAG) support
Missing Components:
DSPEx.Retrieve
behavior and base module- Vector database integrations
- Embedding model support
- RAG pipeline components
This is the largest functional gap - DSPy is heavily used for RAG applications.
🏗️ Infrastructure Gaps
1. Parallel Execution
Python DSPy:
run_parallel = dspy.Parallel(access_examples=False, num_threads=self.num_threads)
outputs = run_parallel(exec_pairs)
DSPEx Status: ✅ Has superior Task.async_stream
implementation
2. Model/LM System
Python DSPy: Extensive LiteLLM integration with 100+ models DSPEx Status: ⚠️ Basic client system, limited providers
3. Caching and Persistence
Python DSPy: Built-in caching with various backends DSPEx Status: ⚠️ Basic caching, needs enhancement
🎯 Implementation Priority Matrix
Component | Priority | Effort | Impact | Status |
---|---|---|---|---|
SIMBA Program Selection | CRITICAL | LOW | HIGH | Blocking |
SIMBA Program Pool Mgmt | CRITICAL | MEDIUM | HIGH | Missing |
AppendRule Strategy | HIGH | MEDIUM | MEDIUM | Missing |
ChainOfThought | HIGH | MEDIUM | HIGH | Missing |
Assert/Suggest System | HIGH | HIGH | HIGH | Missing |
Retrieval Models | HIGH | HIGH | VERY HIGH | Missing |
MIPRO Optimizer | MEDIUM | HIGH | MEDIUM | Missing |
ReAct Module | MEDIUM | HIGH | MEDIUM | Missing |
Model Provider Support | MEDIUM | MEDIUM | MEDIUM | Partial |
📋 Next Steps
- Fix SIMBA critical algorithmic gaps (blocking issues)
- Implement missing core predict modules (ChainOfThought, ReAct)
- Build retrieval model system (enables RAG use cases)
- Add assertions and suggestions (core DSPy feature)
- Expand teleprompter options (MIPRO, Ensemble)
This analysis shows DSPEx has excellent infrastructure but needs significant algorithmic completion to match DSPy’s functionality.