← Back to Gap analysis

DSPEX GAP ANALYSIS CORE 03

Documentation for DSPEX_GAP_ANALYSIS_CORE_03 from the Ds ex repository.

DSPEx Gap Analysis: Retrieval, Evaluation, and Ecosystem Components

Overview

This document analyzes the gaps in DSPEx’s retrieval system, evaluation framework, and broader ecosystem components compared to DSPy. These components are critical for building production RAG systems and comprehensive AI applications.


🔍 Retrieval System: Major Missing Infrastructure

Status:COMPLETELY MISSING - This is the largest functional gap

Python DSPy Retrieval Ecosystem: DSPy has an extensive retrieval system with 20+ integrations that enable sophisticated RAG applications.

1. Core Retrieval Framework

Python DSPy Base Classes:

class Retrieve:
    """Base retrieval class."""
    def __init__(self, k=3):
        self.k = k
        
    def forward(self, query_or_queries, k=None):
        k = k if k is not None else self.k
        queries = [query_or_queries] if isinstance(query_or_queries, str) else query_or_queries
        
        # Implement retrieval logic
        passages = self._retrieve(queries, k)
        return [Passage(text=p) for p in passages]
        
    def _retrieve(self, queries, k):
        raise NotImplementedError

Required DSPEx Implementation:

defmodule DSPEx.Retrieve do
  @moduledoc """
  Base retrieval behavior for all retrieval systems.
  
  Provides a common interface for retrieving relevant documents/passages
  from various knowledge sources.
  """
  
  @type query :: String.t()
  @type passage :: %{
    text: String.t(),
    title: String.t() | nil,
    score: float() | nil,
    metadata: map()
  }
  
  @type retrieval_result :: {:ok, [passage()]} | {:error, term()}
  
  @callback retrieve(query() | [query()], opts :: keyword()) :: retrieval_result()
  @callback retrieve_batch([query()], opts :: keyword()) :: {:ok, [[passage()]]} | {:error, term()}
  
  @optional_callbacks [retrieve_batch: 2]
  
  defmacro __using__(_opts) do
    quote do
      @behaviour DSPEx.Retrieve
      
      def retrieve_batch(queries, opts \\ []) do
        # Default implementation: sequential retrieval
        results = Enum.map(queries, &retrieve(&1, opts))
        
        case Enum.find(results, &match?({:error, _}, &1)) do
          nil ->
            passages_list = Enum.map(results, fn {:ok, passages} -> passages end)
            {:ok, passages_list}
          {:error, reason} ->
            {:error, reason}
        end
      end
      
      defoverridable retrieve_batch: 2
    end
  end
  
  @doc """
  Helper function to create a passage struct.
  """
  def passage(text, opts \\ []) do
    %{
      text: text,
      title: Keyword.get(opts, :title),
      score: Keyword.get(opts, :score),
      metadata: Keyword.get(opts, :metadata, %{})
    }
  end
end

2. Vector Database Integrations - MISSING

Python DSPy Integrations:

  • ChromaDB
  • Pinecone
  • Weaviate
  • Qdrant
  • Milvus
  • FAISS
  • LanceDB
  • Deeplake
  • And 15+ more…

Required DSPEx Implementations:

ChromaDB Integration

defmodule DSPEx.Retrieve.ChromaDB do
  @moduledoc """
  ChromaDB retrieval integration.
  """
  
  use DSPEx.Retrieve
  
  defstruct [:client, :collection_name, :k, :distance_metric]
  
  def new(opts \\ []) do
    %__MODULE__{
      client: Keyword.get(opts, :client),
      collection_name: Keyword.get(opts, :collection_name, "default"),
      k: Keyword.get(opts, :k, 3),
      distance_metric: Keyword.get(opts, :distance_metric, "cosine")
    }
  end
  
  @impl DSPEx.Retrieve
  def retrieve(retriever, query, opts \\ []) do
    k = Keyword.get(opts, :k, retriever.k)
    
    request_body = %{
      query_texts: [query],
      n_results: k,
      include: ["documents", "metadatas", "distances"]
    }
    
    case make_chromadb_request(retriever, request_body) do
      {:ok, response} ->
        passages = parse_chromadb_response(response)
        {:ok, passages}
      {:error, reason} ->
        {:error, {:chromadb_error, reason}}
    end
  end
  
  defp make_chromadb_request(retriever, body) do
    # HTTP request to ChromaDB API
    # Implementation would use HTTPoison or similar
    :not_implemented
  end
  
  defp parse_chromadb_response(response) do
    # Parse ChromaDB response format
    response["documents"]
    |> List.first([])
    |> Enum.with_index()
    |> Enum.map(fn {doc, idx} ->
      metadata = get_in(response, ["metadatas", Access.at(0), Access.at(idx)]) || %{}
      distance = get_in(response, ["distances", Access.at(0), Access.at(idx)])
      score = if distance, do: 1.0 - distance, else: nil
      
      DSPEx.Retrieve.passage(doc, score: score, metadata: metadata)
    end)
  end
end

Pinecone Integration

defmodule DSPEx.Retrieve.Pinecone do
  @moduledoc """
  Pinecone vector database retrieval integration.
  """
  
  use DSPEx.Retrieve
  
  defstruct [:api_key, :environment, :index_name, :namespace, :k, :embedding_model]
  
  def new(opts \\ []) do
    %__MODULE__{
      api_key: Keyword.get(opts, :api_key) || System.get_env("PINECONE_API_KEY"),
      environment: Keyword.get(opts, :environment) || System.get_env("PINECONE_ENVIRONMENT"),
      index_name: Keyword.get(opts, :index_name),
      namespace: Keyword.get(opts, :namespace, ""),
      k: Keyword.get(opts, :k, 3),
      embedding_model: Keyword.get(opts, :embedding_model, "text-embedding-ada-002")
    }
  end
  
  @impl DSPEx.Retrieve
  def retrieve(retriever, query, opts \\ []) do
    k = Keyword.get(opts, :k, retriever.k)
    
    with {:ok, query_embedding} <- get_embedding(retriever, query),
         {:ok, search_results} <- search_pinecone(retriever, query_embedding, k) do
      passages = parse_pinecone_results(search_results)
      {:ok, passages}
    else
      {:error, reason} -> {:error, {:pinecone_error, reason}}
    end
  end
  
  defp get_embedding(retriever, text) do
    # Get embedding using OpenAI or other embedding service
    # Would integrate with DSPEx.Client for embeddings
    :not_implemented
  end
  
  defp search_pinecone(retriever, embedding, k) do
    # Make Pinecone search request
    :not_implemented
  end
  
  defp parse_pinecone_results(results) do
    results["matches"]
    |> Enum.map(fn match ->
      DSPEx.Retrieve.passage(
        match["metadata"]["text"],
        score: match["score"],
        metadata: match["metadata"]
      )
    end)
  end
end

3. Specialized Retrievers - MISSING

ColBERTv2 Integration

defmodule DSPEx.Retrieve.ColBERTv2 do
  @moduledoc """
  ColBERTv2 dense retrieval with late interaction.
  """
  
  use DSPEx.Retrieve
  
  defstruct [:checkpoint, :collection, :k, :ncells, :centroid_score_threshold]
  
  def new(opts \\ []) do
    %__MODULE__{
      checkpoint: Keyword.get(opts, :checkpoint),
      collection: Keyword.get(opts, :collection),
      k: Keyword.get(opts, :k, 3),
      ncells: Keyword.get(opts, :ncells, 1),
      centroid_score_threshold: Keyword.get(opts, :centroid_score_threshold, 0.5)
    }
  end
  
  @impl DSPEx.Retrieve
  def retrieve(retriever, query, opts \\ []) do
    # ColBERTv2 late interaction retrieval
    # Would require integration with ColBERT Python library or native implementation
    :not_implemented
  end
end

Embeddings-based Retriever

defmodule DSPEx.Retrieve.Embeddings do
  @moduledoc """
  Simple embeddings-based retrieval using in-memory search.
  """
  
  use DSPEx.Retrieve
  
  defstruct [:documents, :embeddings, :embedding_model, :k]
  
  def new(documents, opts \\ []) do
    %__MODULE__{
      documents: documents,
      embeddings: nil,  # Will be computed lazily
      embedding_model: Keyword.get(opts, :embedding_model, "text-embedding-ada-002"),
      k: Keyword.get(opts, :k, 3)
    }
  end
  
  @impl DSPEx.Retrieve
  def retrieve(retriever, query, opts \\ []) do
    k = Keyword.get(opts, :k, retriever.k)
    
    with {:ok, retriever} <- ensure_embeddings_computed(retriever),
         {:ok, query_embedding} <- get_query_embedding(retriever, query) do
      
      # Compute similarities
      similarities = compute_similarities(query_embedding, retriever.embeddings)
      
      # Get top-k documents
      top_indices = similarities
      |> Enum.with_index()
      |> Enum.sort_by(fn {sim, _idx} -> sim end, :desc)
      |> Enum.take(k)
      |> Enum.map(fn {_sim, idx} -> idx end)
      
      passages = top_indices
      |> Enum.map(fn idx ->
        doc = Enum.at(retriever.documents, idx)
        score = Enum.at(similarities, idx)
        DSPEx.Retrieve.passage(doc, score: score)
      end)
      
      {:ok, passages}
    else
      {:error, reason} -> {:error, reason}
    end
  end
  
  defp ensure_embeddings_computed(retriever) do
    if retriever.embeddings do
      {:ok, retriever}
    else
      # Compute embeddings for all documents
      case compute_document_embeddings(retriever.documents, retriever.embedding_model) do
        {:ok, embeddings} ->
          {:ok, %{retriever | embeddings: embeddings}}
        error -> error
      end
    end
  end
  
  defp compute_document_embeddings(documents, model) do
    # Batch compute embeddings using DSPEx.Client
    :not_implemented
  end
  
  defp get_query_embedding(retriever, query) do
    # Get single query embedding
    :not_implemented
  end
  
  defp compute_similarities(query_embedding, doc_embeddings) do
    # Compute cosine similarities
    Enum.map(doc_embeddings, fn doc_emb ->
      cosine_similarity(query_embedding, doc_emb)
    end)
  end
  
  defp cosine_similarity(vec1, vec2) do
    # Implement cosine similarity calculation
    :not_implemented
  end
end

📊 Evaluation Framework: Significant Gaps

Status: ⚠️ BASIC IMPLEMENTATION - Missing advanced evaluation capabilities

1. Missing Evaluation Metrics

Python DSPy Metrics:

# Built-in metrics
dspy.evaluate.answer_exact_match(example, pred)
dspy.evaluate.answer_passage_match(example, pred)
dspy.evaluate.answer_match_f1(example, pred)

# Semantic metrics
from dspy.evaluate import SemanticF1
semantic_metric = SemanticF1()
score = semantic_metric(example, prediction)

Required DSPEx Implementations:

defmodule DSPEx.Evaluate.Metrics do
  @moduledoc """
  Standard evaluation metrics for DSPEx programs.
  """
  
  @doc """
  Exact match between expected and predicted answers.
  """
  def answer_exact_match(example, prediction, opts \\ []) do
    expected = get_answer(example)
    predicted = get_answer(prediction)
    
    case_sensitive = Keyword.get(opts, :case_sensitive, false)
    
    if case_sensitive do
      if expected == predicted, do: 1.0, else: 0.0
    else
      if String.downcase(expected) == String.downcase(predicted), do: 1.0, else: 0.0
    end
  end
  
  @doc """
  F1 score between expected and predicted answers at token level.
  """
  def answer_f1(example, prediction, opts \\ []) do
    expected = get_answer(example) |> tokenize()
    predicted = get_answer(prediction) |> tokenize()
    
    calculate_f1_score(expected, predicted)
  end
  
  @doc """
  Semantic similarity using embeddings.
  """
  def semantic_similarity(example, prediction, opts \\ []) do
    model = Keyword.get(opts, :embedding_model, "text-embedding-ada-002")
    
    expected = get_answer(example)
    predicted = get_answer(prediction)
    
    case get_embeddings([expected, predicted], model) do
      {:ok, [exp_emb, pred_emb]} ->
        cosine_similarity(exp_emb, pred_emb)
      {:error, _} ->
        0.0
    end
  end
  
  @doc """
  BLEU score for text generation tasks.
  """
  def bleu_score(example, prediction, opts \\ []) do
    n_gram = Keyword.get(opts, :n_gram, 4)
    
    expected = get_answer(example) |> tokenize()
    predicted = get_answer(prediction) |> tokenize()
    
    calculate_bleu_score(expected, predicted, n_gram)
  end
  
  @doc """
  ROUGE score for summarization tasks.
  """
  def rouge_score(example, prediction, opts \\ []) do
    rouge_type = Keyword.get(opts, :rouge_type, :rouge_1)
    
    expected = get_answer(example) |> tokenize()
    predicted = get_answer(prediction) |> tokenize()
    
    calculate_rouge_score(expected, predicted, rouge_type)
  end
  
  # Helper functions
  defp get_answer(%{answer: answer}), do: answer
  defp get_answer(%{output: output}), do: output
  defp get_answer(%{"answer" => answer}), do: answer
  defp get_answer(map) when is_map(map) do
    # Try common answer keys
    map[:answer] || map[:output] || map["answer"] || map["output"] || ""
  end
  defp get_answer(string) when is_binary(string), do: string
  defp get_answer(_), do: ""
  
  defp tokenize(text) do
    text
    |> String.downcase()
    |> String.replace(~r/[^\w\s]/, "")
    |> String.split()
  end
  
  defp calculate_f1_score(expected_tokens, predicted_tokens) do
    expected_set = MapSet.new(expected_tokens)
    predicted_set = MapSet.new(predicted_tokens)
    
    intersection = MapSet.intersection(expected_set, predicted_set) |> MapSet.size()
    
    precision = if MapSet.size(predicted_set) > 0 do
      intersection / MapSet.size(predicted_set)
    else
      0.0
    end
    
    recall = if MapSet.size(expected_set) > 0 do
      intersection / MapSet.size(expected_set)
    else
      0.0
    end
    
    if precision + recall > 0 do
      2 * precision * recall / (precision + recall)
    else
      0.0
    end
  end
  
  # Additional metric implementations...
  defp calculate_bleu_score(_expected, _predicted, _n_gram), do: :not_implemented
  defp calculate_rouge_score(_expected, _predicted, _rouge_type), do: :not_implemented
  defp get_embeddings(_texts, _model), do: {:error, :not_implemented}
  defp cosine_similarity(_vec1, _vec2), do: :not_implemented
end

2. Advanced Evaluation Framework

Python DSPy Features:

from dspy.evaluate import Evaluate

evaluator = Evaluate(
    devset=dev_examples,
    metric=answer_exact_match,
    num_threads=10,
    display_progress=True,
    display_table=5
)

results = evaluator(program)

Required DSPEx Implementation:

defmodule DSPEx.Evaluate do
  @moduledoc """
  Comprehensive evaluation framework for DSPEx programs.
  """
  
  defstruct [
    :dataset,
    :metric_fn,
    :num_threads,
    :display_progress,
    :display_table,
    :return_outputs,
    :cache_results
  ]
  
  def new(dataset, metric_fn, opts \\ []) do
    %__MODULE__{
      dataset: dataset,
      metric_fn: metric_fn,
      num_threads: Keyword.get(opts, :num_threads, 10),
      display_progress: Keyword.get(opts, :display_progress, true),
      display_table: Keyword.get(opts, :display_table, 5),
      return_outputs: Keyword.get(opts, :return_outputs, false),
      cache_results: Keyword.get(opts, :cache_results, true)
    }
  end
  
  @doc """
  Evaluate a program on the configured dataset.
  """
  def evaluate(evaluator, program, opts \\ []) do
    start_time = System.monotonic_time()
    
    # Setup progress tracking
    if evaluator.display_progress do
      IO.puts("Evaluating program on #{length(evaluator.dataset)} examples...")
    end
    
    # Parallel evaluation
    results = evaluator.dataset
    |> Task.async_stream(
      fn example -> evaluate_single_example(program, example, evaluator.metric_fn) end,
      max_concurrency: evaluator.num_threads,
      timeout: 60_000,
      on_timeout: :kill_task
    )
    |> Enum.map(fn
      {:ok, result} -> result
      {:exit, reason} -> {:error, reason}
    end)
    
    # Compile evaluation statistics
    end_time = System.monotonic_time()
    duration = System.convert_time_unit(end_time - start_time, :native, :millisecond)
    
    stats = compile_evaluation_stats(results, duration)
    
    if evaluator.display_progress do
      display_evaluation_results(stats, evaluator.display_table)
    end
    
    if evaluator.return_outputs do
      %{statistics: stats, outputs: results}
    else
      stats
    end
  end
  
  defp evaluate_single_example(program, example, metric_fn) do
    inputs = DSPEx.Example.inputs(example)
    
    case DSPEx.Program.forward(program, inputs) do
      {:ok, outputs} ->
        try do
          score = metric_fn.(example, outputs)
          {:ok, %{example: example, outputs: outputs, score: score}}
        rescue
          error ->
            {:error, {:metric_error, error}}
        end
      {:error, reason} ->
        {:error, {:program_error, reason}}
    end
  end
  
  defp compile_evaluation_stats(results, duration_ms) do
    successful_results = Enum.filter(results, &match?({:ok, _}, &1))
    error_results = Enum.filter(results, &match?({:error, _}, &1))
    
    scores = Enum.map(successful_results, fn {:ok, result} -> result.score end)
    
    %{
      total_examples: length(results),
      successful_examples: length(successful_results),
      failed_examples: length(error_results),
      success_rate: length(successful_results) / length(results),
      average_score: if Enum.empty?(scores), do: 0.0, else: Enum.sum(scores) / length(scores),
      min_score: if Enum.empty?(scores), do: 0.0, else: Enum.min(scores),
      max_score: if Enum.empty?(scores), do: 0.0, else: Enum.max(scores),
      score_distribution: calculate_score_distribution(scores),
      duration_ms: duration_ms,
      examples_per_second: length(results) / (duration_ms / 1000),
      error_breakdown: compile_error_breakdown(error_results)
    }
  end
  
  defp calculate_score_distribution(scores) when length(scores) == 0, do: %{}
  defp calculate_score_distribution(scores) do
    # Create score buckets
    buckets = 0..10
    |> Enum.map(fn i ->
      lower = i / 10.0
      upper = (i + 1) / 10.0
      count = Enum.count(scores, fn score -> 
        score >= lower and (score < upper or (i == 10 and score <= upper))
      end)
      {"#{lower}-#{upper}", count}
    end)
    |> Enum.into(%{})
    
    buckets
  end
  
  defp compile_error_breakdown(error_results) do
    error_results
    |> Enum.map(fn {:error, reason} ->
      case reason do
        {:metric_error, _} -> :metric_error
        {:program_error, _} -> :program_error
        _ -> :unknown_error
      end
    end)
    |> Enum.frequencies()
  end
  
  defp display_evaluation_results(stats, display_table) do
    IO.puts("""
    
    Evaluation Results:
    ==================
    Total Examples: #{stats.total_examples}
    Successful: #{stats.successful_examples}
    Failed: #{stats.failed_examples}
    Success Rate: #{Float.round(stats.success_rate * 100, 2)}%
    
    Score Statistics:
    Average: #{Float.round(stats.average_score, 4)}
    Min: #{Float.round(stats.min_score, 4)}
    Max: #{Float.round(stats.max_score, 4)}
    
    Performance:
    Duration: #{stats.duration_ms}ms
    Examples/second: #{Float.round(stats.examples_per_second, 2)}
    """)
    
    if display_table > 0 and stats.failed_examples > 0 do
      IO.puts("\nError Breakdown:")
      Enum.each(stats.error_breakdown, fn {error_type, count} ->
        IO.puts("  #{error_type}: #{count}")
      end)
    end
  end
end

🛠️ Missing Ecosystem Components

1. Assertions and Suggestions System

Status:COMPLETELY MISSING - Critical DSPy feature

Python DSPy Features:

import dspy

def qa_assertion(example, pred, trace=None):
    if len(pred.answer) < 10:
        dspy.Suggest(
            "The answer is too short. Please provide more detail.",
            target_module="answer_generator"
        )
    
    if "sorry" in pred.answer.lower():
        dspy.Assert(
            False,
            "Don't apologize in answers",
            target_module="answer_generator"
        )
    
    return dspy.evaluate.answer_exact_match(example, pred)

# Usage with context
with dspy.context(lm=lm):
    with dspy.settings.context(assert_=qa_assertion):
        result = program(question="What is AI?")

Required DSPEx Implementation:

defmodule DSPEx.Assertions do
  @moduledoc """
  Assertion and suggestion system for runtime program validation and improvement.
  """
  
  defmodule Assert do
    @moduledoc """
    Hard assertion that causes retry when failed.
    """
    
    defexception [:message, :target_module, :context]
    
    def assert!(condition, message, opts \\ []) do
      unless condition do
        target_module = Keyword.get(opts, :target_module)
        context = Keyword.get(opts, :context, %{})
        
        raise __MODULE__, 
          message: message, 
          target_module: target_module, 
          context: context
      end
    end
  end
  
  defmodule Suggest do
    @moduledoc """
    Soft suggestion for program improvement.
    """
    
    defstruct [:message, :target_module, :context, :severity]
    
    def suggest(message, opts \\ []) do
      %__MODULE__{
        message: message,
        target_module: Keyword.get(opts, :target_module),
        context: Keyword.get(opts, :context, %{}),
        severity: Keyword.get(opts, :severity, :warning)
      }
    end
  end
  
  @doc """
  Execute a program with assertion checking.
  """
  def with_assertions(program, inputs, assertion_fn, opts \\ []) do
    max_retries = Keyword.get(opts, :max_retries, 3)
    
    execute_with_retries(program, inputs, assertion_fn, max_retries, [])
  end
  
  defp execute_with_retries(_program, _inputs, _assertion_fn, 0, suggestions) do
    {:error, {:max_retries_exceeded, suggestions}}
  end
  
  defp execute_with_retries(program, inputs, assertion_fn, retries_left, suggestions) do
    case DSPEx.Program.forward(program, inputs) do
      {:ok, outputs} ->
        try do
          # Run assertion function
          score = assertion_fn.(inputs, outputs)
          {:ok, outputs, suggestions, score}
        rescue
          %Assert{} = assertion_error ->
            # Hard assertion failed - retry
            suggestion = %Suggest{
              message: assertion_error.message,
              target_module: assertion_error.target_module,
              context: assertion_error.context,
              severity: :error
            }
            
            execute_with_retries(program, inputs, assertion_fn, retries_left - 1, 
                               [suggestion | suggestions])
        catch
          %Suggest{} = suggestion ->
            # Soft suggestion - continue but record
            case assertion_fn.(inputs, outputs) do
              score when is_number(score) ->
                {:ok, outputs, [suggestion | suggestions], score}
              _ ->
                {:ok, outputs, [suggestion | suggestions], nil}
            end
        end
      {:error, reason} ->
        {:error, reason}
    end
  end
end

2. Advanced Caching System

Status: ⚠️ BASIC - Needs sophisticated caching

Python DSPy Features:

  • LiteLLM cache integration
  • Custom cache backends
  • Cache invalidation
  • Distributed caching

3. Streaming Support

Status:MISSING - No streaming capabilities

Required Features:

  • Streaming response handling
  • Partial result processing
  • Progress callbacks
  • Stream aggregation

4. Observability and Monitoring

Status: ⚠️ BASIC - Limited observability

Missing Features:

  • Detailed tracing
  • Performance metrics
  • Error tracking
  • Usage analytics

📊 Ecosystem Gap Assessment

ComponentDSPy FeaturesDSPEx StatusPriorityEffort
Retrieval System20+ integrations❌ MissingCRITICALHIGH
Vector DBsFull ecosystem❌ MissingCRITICALHIGH
Evaluation MetricsComprehensive⚠️ BasicHIGHMEDIUM
Assertions/SuggestionsCore feature❌ MissingHIGHMEDIUM
Advanced CachingSophisticated⚠️ BasicMEDIUMMEDIUM
StreamingFull support❌ MissingMEDIUMMEDIUM
ObservabilityDetailed⚠️ BasicMEDIUMMEDIUM
Model Providers100+ models⚠️ LimitedHIGHMEDIUM

🎯 Implementation Roadmap

Phase 1: Critical Infrastructure (4-6 weeks)

  1. Retrieval System Foundation

    • Base DSPEx.Retrieve behavior
    • Basic embeddings retrieval
    • ChromaDB integration
  2. Assertions Framework

    • Assert/Suggest implementation
    • Retry logic with assertions
    • Context management

Phase 2: Vector Database Ecosystem (6-8 weeks)

  1. Major Vector DB Integrations

    • Pinecone
    • Weaviate
    • Qdrant
    • FAISS
  2. Specialized Retrievers

    • ColBERTv2 integration
    • Hybrid search
    • Reranking capabilities

Phase 3: Advanced Evaluation (3-4 weeks)

  1. Comprehensive Metrics

    • Semantic similarity
    • BLEU/ROUGE scores
    • Custom metric framework
  2. Evaluation Infrastructure

    • Parallel evaluation
    • Statistical analysis
    • Result visualization

Phase 4: Ecosystem Enhancements (4-6 weeks)

  1. Streaming Support

    • Response streaming
    • Progress tracking
    • Stream aggregation
  2. Advanced Observability

    • Distributed tracing
    • Performance monitoring
    • Error analytics

🎯 Success Criteria

  1. RAG Capability: Build end-to-end RAG applications using DSPEx
  2. Model Provider Support: Support for major embedding and LLM providers
  3. Production Readiness: Robust error handling, monitoring, and caching
  4. Performance: Competitive with DSPy for retrieval and evaluation tasks
  5. Ecosystem Integration: Easy integration with existing Elixir applications

This analysis shows DSPEx needs substantial work on retrieval and evaluation to support production RAG applications effectively.