DSPEx Evolution Plan: State-of-the-Art AI Program Optimization Framework
Based on the codebase analysis and integration proposals, here’s a comprehensive plan to transform DSPEx into a state-of-the-art framework by integrating Jido’s core capabilities with BAML-inspired enhancements.
Executive Summary
DSPEx currently implements DSPy concepts well but can be elevated to state-of-the-art by:
- Adopting Jido’s robust execution foundation (replacing custom execution with battle-tested patterns)
- Adding BAML-inspired static analysis for compile-time safety
- Leveraging Jido’s signal system for decoupled, observable optimization workflows
- Enhancing BEACON with the new architecture (since DSPy devs specifically requested this!)
This creates a uniquely powerful framework: DSPy’s optimization intelligence + Jido’s BEAM-native robustness + BAML’s compile-time safety.
Phase 1: Foundation Migration (4-6 weeks)
1.1 Replace DSPEx.Program with Jido.Action
Current State:
# DSPEx.Predict implements DSPEx.Program behavior
defmodule DSPEx.Predict do
use DSPEx.Program
def forward(program, inputs, opts), do: # custom logic
end
Target State:
# DSPEx programs become specialized Jido Actions
defmodule DSPEx.Actions.Predict do
use Jido.Action,
name: "llm_predict",
description: "Execute LLM prediction with signature validation",
schema: [
signature: [type: :atom, required: true],
inputs: [type: :map, required: true],
demos: [type: :list, default: []]
]
@impl Jido.Action
def run(%{signature: sig, inputs: inputs, demos: demos}, context) do
# Existing DSPEx.Predict logic here, but now with:
# - Built-in retries, timeouts, telemetry from Jido.Action
# - Proper error handling patterns
# - Standardized context passing
end
end
Migration Strategy:
- Keep existing
DSPEx.Predict.forward/3
as a compatibility wrapper - Gradually migrate internals to use
Jido.Exec.run/4
- Maintain backward compatibility during transition
1.2 Enhance Execution with Jido.Exec
Benefits Gained:
- Robust timeouts: Critical for BEACON’s concurrent optimization
- Automatic retries: Handle LLM API flakiness gracefully
- Async execution: Enable parallel evaluation in teleprompters
- Built-in telemetry: Rich observability out of the box
# Before: Custom execution logic
{:ok, result} = DSPEx.Predict.forward(program, inputs)
# After: Robust execution with Jido
{:ok, result} = Jido.Exec.run(
DSPEx.Actions.Predict,
%{signature: QASignature, inputs: inputs},
%{client: :openai},
timeout: 30_000,
max_retries: 3
)
Phase 2: BAML-Inspired Static Analysis (6-8 weeks)
2.1 Enhanced Signature Macro with IR Generation
Current Signature:
defmodule QASignature do
use DSPEx.Signature, "question -> answer"
end
Enhanced Signature with Static IR:
defmodule QASignature do
use DSPEx.Signature, "question -> answer"
# Auto-generated by macro:
def __static_ir__ do
%DSPEx.IR.Signature{
name: __MODULE__,
input_fields: [:question],
output_fields: [:answer],
instructions: @moduledoc,
constraints: %{
question: %{type: :string, required: true},
answer: %{type: :string, required: true}
}
}
end
end
2.2 Compile-Time Validation System
New Mix Tasks:
# Validate all signatures and their relationships
mix dspex.validate
# Check compatibility between programs
mix dspex.check --program MyProgram --dataset validation.jsonl
# Generate static analysis report
mix dspex.analyze --output report.html
Validation Capabilities:
- Schema consistency: Ensure input/output contracts match between chained programs
- Signature compatibility: Validate that program compositions are type-safe
- Demo validation: Check that provided examples match signature schemas
- Optimization feasibility: Analyze if teleprompter configurations are valid
2.3 IDE Integration
Generate rich metadata for better developer experience:
# Auto-completion support
@spec validate_inputs(QASignature.input_type()) :: :ok | {:error, term()}
# Hover information
@doc """
Signature: question -> answer
Inputs: #{QASignature.__static_ir__().input_fields |> Enum.join(", ")}
Outputs: #{QASignature.__static_ir__().output_fields |> Enum.join(", ")}
"""
Phase 3: Signal-Driven Architecture (8-10 weeks)
3.1 Event-Driven Teleprompter Workflows
Current BEACON (synchronous):
def compile(student, teacher, trainset, metric_fn, opts) do
# Blocking optimization process
{:ok, demo_candidates} <- bootstrap_demonstrations(...)
{:ok, instruction_candidates} <- generate_instruction_candidates(...)
{:ok, optimization_result} <- run_bayesian_optimization(...)
end
Enhanced BEACON (event-driven):
def compile(student, teacher, trainset, metric_fn, opts) do
correlation_id = generate_correlation_id()
# Start async optimization via signals
:ok = Jido.Signal.emit(%Jido.Signal{
type: "dspex.beacon.optimization.start",
data: %{
student: student,
teacher: teacher,
trainset: trainset,
correlation_id: correlation_id
}
})
# Return handle for tracking progress
{:ok, %{correlation_id: correlation_id, status: :started}}
end
3.2 Real-Time Optimization Monitoring
Signal-Based Progress Tracking:
# Teleprompter emits progress signals
def handle_optimization_trial(trial_data, state) do
Jido.Signal.emit(%Jido.Signal{
type: "dspex.beacon.trial.complete",
data: %{
trial_number: trial_data.number,
score: trial_data.score,
best_score_so_far: state.best_score,
correlation_id: state.correlation_id
}
})
{:ok, updated_state}
end
LiveView Dashboard:
defmodule DSPExWeb.OptimizationLive do
use Phoenix.LiveView
def mount(_params, _session, socket) do
# Subscribe to optimization events
Jido.Signal.subscribe("dspex.beacon.*")
{:ok, assign(socket, trials: [], status: :idle)}
end
def handle_info({:signal, %{type: "dspex.beacon.trial.complete"} = signal}, socket) do
trial = signal.data
trials = [trial | socket.assigns.trials]
{:noreply, assign(socket, trials: trials)}
end
end
3.3 Distributed Optimization
Multi-Node BEACON:
# Coordinator node
def distribute_optimization(config) do
available_nodes = [node() | Node.list()]
chunks = chunk_work(config.trainset, length(available_nodes))
Enum.each(Enum.zip(chunks, available_nodes), fn {chunk, node} ->
Jido.Signal.emit(%Jido.Signal{
type: "dspex.beacon.worker.start",
data: %{chunk: chunk, node: node},
jido_dispatch: {:node, target: node}
})
end)
end
# Worker nodes
def handle_signal(%{type: "dspex.beacon.worker.start"} = signal) do
# Process chunk locally and emit results
results = process_chunk(signal.data.chunk)
Jido.Signal.emit(%Jido.Signal{
type: "dspex.beacon.worker.complete",
data: results
})
end
Phase 4: Advanced BEACON Enhancements (6-8 weeks)
4.1 Enhanced Bayesian Optimization
Current Implementation:
- Basic Gaussian Process approximation
- Simple acquisition functions
- Limited to instruction/demo combinations
Enhanced Implementation:
defmodule DSPEx.Teleprompter.BEACON.Enhanced do
# Multi-objective optimization
def optimize_multi_objective(objectives, constraints) do
# Optimize for accuracy, latency, and cost simultaneously
pareto_front = find_pareto_optimal_solutions(objectives)
{:ok, pareto_front}
end
# Advanced acquisition functions
def acquisition_function(:expected_improvement_per_second, candidate, model) do
ei = expected_improvement(candidate, model)
estimated_time = estimate_execution_time(candidate)
ei / estimated_time
end
# Adaptive search space
def adapt_search_space(current_results, iteration) do
# Dynamically adjust parameter ranges based on results
promising_regions = identify_promising_regions(current_results)
refine_search_space(promising_regions)
end
end
4.2 Advanced Instruction Generation
LLM-Powered Instruction Evolution:
defmodule DSPEx.InstructionEvolution do
def evolve_instruction(base_instruction, performance_data) do
evolution_prompt = """
The current instruction achieved #{performance_data.score} accuracy.
Current instruction: "#{base_instruction}"
Common failure cases:
#{format_failure_cases(performance_data.failures)}
Generate an improved instruction that addresses these issues:
"""
Jido.Exec.run(
DSPEx.Actions.Predict,
%{signature: InstructionEvolutionSignature, inputs: %{prompt: evolution_prompt}},
%{client: :openai, temperature: 0.7}
)
end
end
4.3 Adaptive Demonstration Selection
Smart Demo Curation:
defmodule DSPEx.DemonstrationCurator do
def curate_demonstrations(candidates, target_signature, diversity_weight \\ 0.3) do
# Use embedding similarity for diversity
embeddings = generate_embeddings(candidates)
# Select diverse, high-quality examples
selected = optimize_demo_set(
candidates,
embeddings,
quality_scores: score_demonstrations(candidates),
diversity_weight: diversity_weight,
max_demos: 4
)
{:ok, selected}
end
defp optimize_demo_set(candidates, embeddings, opts) do
# Genetic algorithm for optimal demo selection
population = initialize_population(candidates, opts[:max_demos])
Enum.reduce(1..50, population, fn _generation, pop ->
evolve_population(pop, embeddings, opts)
end)
|> select_best_individual()
end
end
Phase 5: Production Features (4-6 weeks)
5.1 Performance Optimization
Concurrent Evaluation Engine:
defmodule DSPEx.Evaluate.Concurrent do
def evaluate_candidates(candidates, test_set, opts \\ []) do
max_concurrency = opts[:max_concurrency] || System.schedulers_online() * 2
candidates
|> Task.async_stream(
fn candidate ->
# Each evaluation runs in isolation
evaluate_single_candidate(candidate, test_set)
end,
max_concurrency: max_concurrency,
timeout: opts[:timeout] || 300_000,
on_timeout: :kill_task
)
|> Enum.to_list()
end
end
Caching and Memoization:
defmodule DSPEx.Cache do
# Cache LLM responses for identical inputs
def cached_predict(signature, inputs, client_opts) do
cache_key = :crypto.hash(:sha256, :erlang.term_to_binary({signature, inputs, client_opts}))
case get_cache(cache_key) do
{:ok, result} -> {:ok, result}
:miss ->
case DSPEx.Predict.forward(signature, inputs, client_opts) do
{:ok, result} = success ->
put_cache(cache_key, result)
success
error -> error
end
end
end
end
5.2 Production Monitoring
Comprehensive Metrics:
defmodule DSPEx.Metrics do
def setup_telemetry() do
events = [
[:dspex, :optimization, :start],
[:dspex, :optimization, :complete],
[:dspex, :prediction, :latency],
[:dspex, :prediction, :cost],
[:dspex, :prediction, :accuracy]
]
:telemetry.attach_many("dspex-metrics", events, &handle_event/4, %{})
end
def handle_event([:dspex, :optimization, :complete], measurements, metadata, _config) do
# Export to Prometheus, DataDog, etc.
:prometheus_counter.inc(:dspex_optimizations_total, [], 1)
:prometheus_histogram.observe(:dspex_optimization_duration, [], measurements.duration)
end
end
Implementation Timeline
Total Duration: 28-38 weeks (~7-9 months)
Success Metrics
Technical Metrics:
- Optimization Speed: 50% faster BEACON convergence through concurrency
- Reliability: 99.9% uptime for long-running optimizations
- Accuracy: Match or exceed DSPy benchmarks on standard datasets
- Developer Experience: <5 minutes from signature to optimized program
Strategic Metrics:
- Adoption: Become the go-to Elixir framework for LLM program optimization
- Ecosystem: 10+ community-contributed skills and teleprompters
- Performance: Best-in-class results on DSPy benchmark suite
- Recognition: Acknowledged by DSPy team as premier alternative implementation
Risk Mitigation
Technical Risks:
- Breaking Changes: Maintain compatibility layers during migration
- Performance Regression: Comprehensive benchmarking at each phase
- Complexity: Start with minimal viable integration, iterate
Strategic Risks:
- Scope Creep: Strict phase boundaries with clear deliverables
- Community Adoption: Early preview releases for feedback
- Maintenance Burden: Automated testing and CI/CD from day one
This plan transforms DSPEx from a solid DSPy implementation into a state-of-the-art, uniquely Elixir-native AI optimization framework that combines the best of DSPy, Jido, and BAML while adding innovations that leverage the BEAM’s unique strengths.