← Back to 001 initial

102 claude

Documentation for 102_claude from the Ds ex repository.

DSPy to Elixir/BEAM: Detailed Technical Specifications

Detailed Module System Architecture

Module Process Lifecycle and State Management

defmodule DSPy.Module.Instance do
  use GenServer
  
  defstruct [
    :id,
    :signature,
    :parameters,
    :demos,
    :lm_ref,
    :adapter_ref,
    :callbacks,
    :metrics,
    :parent_ref
  ]
  
  def start_link(opts) do
    GenServer.start_link(__MODULE__, opts, name: via_tuple(opts[:id]))
  end
  
  def init(opts) do
    state = %__MODULE__{
      id: opts[:id] || UUID.uuid4(),
      signature: opts[:signature],
      parameters: %{},
      demos: [],
      callbacks: opts[:callbacks] || [],
      metrics: DSPy.Metrics.new(),
      parent_ref: opts[:parent_ref]
    }
    
    # Register with parent supervision tree
    if state.parent_ref do
      DSPy.Module.Registry.register(state.parent_ref, state.id, self())
    end
    
    {:ok, state}
  end
  
  # Main execution interface
  def handle_call({:forward, inputs, opts}, from, state) do
    # Implement async execution to avoid blocking
    task = Task.async(fn ->
      with {:ok, processed_inputs} <- validate_inputs(inputs, state.signature),
           {:ok, outputs} <- execute_module(processed_inputs, state, opts),
           {:ok, validated_outputs} <- validate_outputs(outputs, state.signature) do
        {:ok, validated_outputs}
      else
        {:error, reason} -> {:error, reason}
      end
    end)
    
    {:noreply, %{state | current_task: {task, from}}}
  end
  
  # Handle task completion
  def handle_info({ref, result}, %{current_task: {%Task{ref: ref}, from}} = state) do
    GenServer.reply(from, result)
    Process.demonitor(ref, [:flush])
    
    # Update metrics
    new_metrics = DSPy.Metrics.update(state.metrics, result)
    
    {:noreply, %{state | current_task: nil, metrics: new_metrics}}
  end
  
  private
  
  defp via_tuple(id), do: {:via, Registry, {DSPy.Module.Registry, id}}
end

Signature System with Pattern Matching

defmodule DSPy.Signature do
  @moduledoc """
  Type-safe signature system using Elixir structs and pattern matching
  """
  
  defmacro __using__(opts) do
    quote do
      @behaviour DSPy.Signature
      
      defstruct [
        :instructions,
        :fields,
        :input_fields,
        :output_fields
      ]
      
      def new(instructions \\ "", fields \\ %{}) do
        %__MODULE__{
          instructions: instructions,
          fields: fields,
          input_fields: Enum.filter(fields, fn {_k, v} -> v.type == :input end),
          output_fields: Enum.filter(fields, fn {_k, v} -> v.type == :output end)
        }
      end
    end
  end
  
  @callback fields() :: %{atom() => DSPy.Field.t()}
  @callback instructions() :: String.t()
  @callback validate_inputs(map()) :: {:ok, map()} | {:error, term()}
  @callback validate_outputs(map()) :: {:ok, map()} | {:error, term()}
end

defmodule DSPy.Field do
  @type field_type :: :input | :output
  @type annotation :: atom() | module() | {:list, atom()} | {:union, [atom()]}
  
  defstruct [
    :name,
    :type,        # :input | :output
    :annotation,  # String.t() | integer() | custom_type()
    :desc,
    :prefix,
    :format,
    :parser,
    :default,
    :required
  ]
  
  def input_field(name, annotation \\ :string, opts \\ []) do
    %__MODULE__{
      name: name,
      type: :input,
      annotation: annotation,
      desc: opts[:desc] || "",
      prefix: opts[:prefix],
      format: opts[:format],
      required: Keyword.get(opts, :required, true)
    }
  end
  
  def output_field(name, annotation \\ :string, opts \\ []) do
    %__MODULE__{
      name: name,
      type: :output,
      annotation: annotation,
      desc: opts[:desc] || "",
      prefix: opts[:prefix],
      format: opts[:format],
      required: Keyword.get(opts, :required, true)
    }
  end
end

# Example signature definition
defmodule DSPy.Signatures.QuestionAnswer do
  use DSPy.Signature
  
  def fields do
    %{
      question: DSPy.Field.input_field(:question, :string, desc: "The question to answer"),
      context: DSPy.Field.input_field(:context, {:list, :string}, desc: "Relevant context"),
      answer: DSPy.Field.output_field(:answer, :string, desc: "The answer to the question")
    }
  end
  
  def instructions do
    "Answer the question based on the provided context. Be concise and accurate."
  end
  
  def validate_inputs(%{question: q, context: c} = inputs) 
      when is_binary(q) and is_list(c) do
    {:ok, inputs}
  end
  def validate_inputs(_), do: {:error, :invalid_inputs}
  
  def validate_outputs(%{answer: a} = outputs) when is_binary(a) do
    {:ok, outputs}
  end
  def validate_outputs(_), do: {:error, :invalid_outputs}
end

Language Model Abstraction Layer

LM Provider Pool Architecture

defmodule DSPy.LM.Supervisor do
  use Supervisor
  
  def start_link(init_arg) do
    Supervisor.start_link(__MODULE__, init_arg, name: __MODULE__)
  end
  
  def init(_init_arg) do
    children = [
      # Provider pools
      {DSPy.LM.Provider.OpenAI.Pool, []},
      {DSPy.LM.Provider.Anthropic.Pool, []},
      {DSPy.LM.Provider.Local.Pool, []},
      
      # Caching layer
      {DSPy.Cache.Manager, []},
      
      # Circuit breaker manager
      {DSPy.CircuitBreaker.Manager, []},
      
      # Rate limiter
      {DSPy.RateLimit.Manager, []}
    ]
    
    Supervisor.init(children, strategy: :one_for_one)
  end
end

defmodule DSPy.LM.Provider.OpenAI.Pool do
  use DynamicSupervisor
  
  def start_link(init_arg) do
    DynamicSupervisor.start_link(__MODULE__, init_arg, name: __MODULE__)
  end
  
  def init(_init_arg) do
    DynamicSupervisor.init(strategy: :one_for_one)
  end
  
  def get_worker(model, opts \\ []) do
    case DSPy.LM.Provider.Registry.lookup({:openai, model}) do
      [{pid, _}] when is_pid(pid) -> 
        if Process.alive?(pid), do: {:ok, pid}, else: start_worker(model, opts)
      [] -> 
        start_worker(model, opts)
    end
  end
  
  defp start_worker(model, opts) do
    child_spec = {DSPy.LM.Provider.OpenAI.Worker, [model: model] ++ opts}
    DynamicSupervisor.start_child(__MODULE__, child_spec)
  end
end

defmodule DSPy.LM.Provider.OpenAI.Worker do
  use GenServer
  
  defstruct [
    :model,
    :api_key,
    :base_url,
    :client,
    :circuit_breaker,
    :rate_limiter,
    :metrics
  ]
  
  def start_link(opts) do
    GenServer.start_link(__MODULE__, opts)
  end
  
  def init(opts) do
    model = opts[:model]
    
    state = %__MODULE__{
      model: model,
      api_key: opts[:api_key] || System.get_env("OPENAI_API_KEY"),
      base_url: opts[:base_url] || "https://api.openai.com/v1",
      circuit_breaker: DSPy.CircuitBreaker.new(model),
      rate_limiter: DSPy.RateLimit.new(model),
      metrics: DSPy.Metrics.new()
    }
    
    # Register in provider registry
    Registry.register(DSPy.LM.Provider.Registry, {:openai, model}, %{
      worker_pid: self(),
      model: model,
      started_at: DateTime.utc_now()
    })
    
    {:ok, state}
  end
  
  def handle_call({:complete, messages, opts}, _from, state) do
    case DSPy.CircuitBreaker.call(state.circuit_breaker, fn ->
      DSPy.RateLimit.call(state.rate_limiter, fn ->
        perform_completion(messages, opts, state)
      end)
    end) do
      {:ok, result} ->
        new_metrics = DSPy.Metrics.record_success(state.metrics, result)
        {:reply, {:ok, result}, %{state | metrics: new_metrics}}
      
      {:error, reason} ->
        new_metrics = DSPy.Metrics.record_error(state.metrics, reason)
        {:reply, {:error, reason}, %{state | metrics: new_metrics}}
    end
  end
  
  defp perform_completion(messages, opts, state) do
    # Check cache first
    cache_key = DSPy.Cache.key(state.model, messages, opts)
    
    case DSPy.Cache.get(cache_key) do
      {:ok, cached_result} ->
        {:ok, cached_result}
      
      :miss ->
        # Make API call
        with {:ok, response} <- make_api_call(messages, opts, state),
             :ok <- DSPy.Cache.put(cache_key, response) do
          {:ok, response}
        end
    end
  end
  
  defp make_api_call(messages, opts, state) do
    # Implement OpenAI API call with proper error handling
    # This would use something like Finch or HTTPoison
  end
end

Streaming Support with GenStage

defmodule DSPy.LM.StreamProducer do
  use GenStage
  
  def start_link(opts) do
    GenStage.start_link(__MODULE__, opts)
  end
  
  def init(opts) do
    {:producer, %{
      lm_worker: opts[:lm_worker],
      messages: opts[:messages],
      opts: opts[:opts],
      buffer: :queue.new(),
      demand: 0
    }}
  end
  
  def handle_demand(demand, state) when demand > 0 do
    new_state = %{state | demand: state.demand + demand}
    
    if :queue.is_empty(state.buffer) do
      # Start streaming from LM
      start_streaming(new_state)
    else
      dispatch_events(new_state)
    end
  end
  
  defp start_streaming(state) do
    # Start async streaming task
    Task.start_link(fn ->
      DSPy.LM.Provider.stream(
        state.lm_worker, 
        state.messages, 
        state.opts ++ [stream_to: self()]
      )
    end)
    
    {:noreply, [], state}
  end
  
  def handle_info({:stream_chunk, chunk}, state) do
    new_buffer = :queue.in(chunk, state.buffer)
    dispatch_events(%{state | buffer: new_buffer})
  end
  
  def handle_info(:stream_end, state) do
    # Signal completion
    {:stop, :normal, state}
  end
  
  defp dispatch_events(%{demand: 0} = state) do
    {:noreply, [], state}
  end
  
  defp dispatch_events(%{demand: demand, buffer: buffer} = state) do
    {events, new_buffer, new_demand} = take_events(buffer, demand, [])
    {:noreply, events, %{state | buffer: new_buffer, demand: new_demand}}
  end
  
  defp take_events(buffer, 0, acc), do: {Enum.reverse(acc), buffer, 0}
  defp take_events(buffer, demand, acc) do
    case :queue.out(buffer) do
      {{:value, event}, new_buffer} ->
        take_events(new_buffer, demand - 1, [event | acc])
      {:empty, buffer} ->
        {Enum.reverse(acc), buffer, demand}
    end
  end
end

defmodule DSPy.LM.StreamConsumer do
  use GenStage
  
  def start_link(opts) do
    GenStage.start_link(__MODULE__, opts)
  end
  
  def init(opts) do
    {:consumer, %{
      callback: opts[:callback],
      buffer: ""
    }}
  end
  
  def handle_events(events, _from, state) do
    # Process streaming chunks
    new_buffer = Enum.reduce(events, state.buffer, fn chunk, acc ->
      updated_buffer = acc <> chunk.content
      
      # Call callback with accumulated content
      state.callback.(updated_buffer, chunk)
      
      updated_buffer
    end)
    
    {:noreply, [], %{state | buffer: new_buffer}}
  end
end

Advanced Adapter System

Adapter Pipeline Architecture

defmodule DSPy.Adapter do
  @callback format(DSPy.Signature.t(), list(), map()) :: {:ok, list()} | {:error, term()}
  @callback parse(DSPy.Signature.t(), String.t()) :: {:ok, map()} | {:error, term()}
  @callback supports_streaming?() :: boolean()
end

defmodule DSPy.Adapter.Chat do
  @behaviour DSPy.Adapter
  
  def format(signature, demos, inputs) do
    with {:ok, system_message} <- build_system_message(signature),
         {:ok, demo_messages} <- format_demos(demos, signature),
         {:ok, user_message} <- format_user_message(inputs, signature) do
      
      messages = [system_message] ++ demo_messages ++ [user_message]
      {:ok, messages}
    end
  end
  
  def parse(signature, completion) do
    DSPy.Adapter.Chat.Parser.parse(completion, signature)
  end
  
  def supports_streaming?, do: true
  
  defp build_system_message(signature) do
    content = """
    #{signature.instructions}
    
    #{format_field_descriptions(signature)}
    
    #{format_field_structure(signature)}
    """
    
    {:ok, %{role: "system", content: String.trim(content)}}
  end
  
  defp format_field_descriptions(signature) do
    input_desc = format_fields_description(signature.input_fields, "Input")
    output_desc = format_fields_description(signature.output_fields, "Output")
    
    input_desc <> "\n\n" <> output_desc
  end
  
  defp format_field_structure(signature) do
    input_fields = Enum.map(signature.input_fields, fn {name, field} ->
      "- #{name}: #{field.desc || "Input field"}"
    end)
    
    output_fields = Enum.map(signature.output_fields, fn {name, field} ->
      "- #{name}: #{field.desc || "Output field"}"
    end)
    
    """
    Input Fields:
    #{Enum.join(input_fields, "\n")}
    
    Output Fields:
    #{Enum.join(output_fields, "\n")}
    
    Follow this format for your response:
    #{format_output_template(signature)}
    """
  end
  
  defp format_output_template(signature) do
    signature.output_fields
    |> Enum.map(fn {name, _field} -> "[[ ## #{name} ## ]]" end)
    |> Enum.join("\n")
  end
end

defmodule DSPy.Adapter.JSON do
  @behaviour DSPy.Adapter
  
  def format(signature, demos, inputs) do
    # Similar to ChatAdapter but formatted for JSON response
    with {:ok, system_message} <- build_json_system_message(signature),
         {:ok, demo_messages} <- format_json_demos(demos, signature),
         {:ok, user_message} <- format_json_user_message(inputs, signature) do
      
      messages = [system_message] ++ demo_messages ++ [user_message]
      {:ok, messages}
    end
  end
  
  def parse(signature, completion) do
    DSPy.Adapter.JSON.Parser.parse(completion, signature)
  end
  
  def supports_streaming?, do: false
  
  defp build_json_system_message(signature) do
    schema = build_json_schema(signature)
    
    content = """
    #{signature.instructions}
    
    Respond with valid JSON that matches this schema:
    #{Jason.encode!(schema, pretty: true)}
    """
    
    {:ok, %{role: "system", content: content}}
  end
  
  defp build_json_schema(signature) do
    properties = 
      signature.output_fields
      |> Enum.into(%{}, fn {name, field} ->
        {name, field_to_json_schema(field)}
      end)
    
    required = 
      signature.output_fields
      |> Enum.filter(fn {_name, field} -> field.required end)
      |> Enum.map(fn {name, _field} -> name end)
    
    %{
      type: "object",
      properties: properties,
      required: required,
      additionalProperties: false
    }
  end
end

Custom Type System

defmodule DSPy.CustomType do
  @callback format(any()) :: list() | String.t()
  @callback parse(String.t()) :: {:ok, any()} | {:error, term()}
  @callback description() :: String.t()
end

defmodule DSPy.Types.Image do
  @behaviour DSPy.CustomType
  
  defstruct [:url, :data, :format]
  
  def format(%__MODULE__{url: url}) when is_binary(url) do
    [%{type: "image_url", image_url: %{url: url}}]
  end
  
  def format(%__MODULE__{data: data, format: format}) when is_binary(data) do
    data_uri = "data:image/#{format};base64,#{data}"
    [%{type: "image_url", image_url: %{url: data_uri}}]
  end
  
  def parse(input) when is_binary(input) do
    cond do
      String.starts_with?(input, "http") ->
        {:ok, %__MODULE__{url: input}}
      
      String.starts_with?(input, "data:image/") ->
        parse_data_uri(input)
      
      true ->
        {:error, :invalid_image_format}
    end
  end
  
  def description, do: "An image that can be referenced by URL or embedded as base64 data"
  
  defp parse_data_uri("data:image/" <> rest) do
    case String.split(rest, ";base64,", parts: 2) do
      [format, data] ->
        {:ok, %__MODULE__{data: data, format: format}}
      _ ->
        {:error, :invalid_data_uri}
    end
  end
end

defmodule DSPy.Types.Tool do
  @behaviour DSPy.CustomType
  
  defstruct [:name, :description, :function, :parameters]
  
  def format(%__MODULE__{} = tool) do
    %{
      type: "function",
      function: %{
        name: tool.name,
        description: tool.description,
        parameters: tool.parameters
      }
    }
  end
  
  def parse(tool_call_json) do
    # Parse tool call from LM response
    with {:ok, decoded} <- Jason.decode(tool_call_json),
         {:ok, tool} <- extract_tool_call(decoded) do
      {:ok, tool}
    end
  end
  
  def description, do: "A function that can be called by the language model"
end

Optimization/Teleprompting Architecture

COPRO Optimizer Implementation

defmodule DSPy.Teleprompt.COPRO do
  use GenServer
  
  defstruct [
    :prompt_model,
    :metric,
    :breadth,
    :depth,
    :temperature,
    :candidates,
    :evaluation_results,
    :optimization_state
  ]
  
  def start_link(opts) do
    GenServer.start_link(__MODULE__, opts)
  end
  
  def compile(pid, student, trainset, eval_opts \\ []) do
    GenServer.call(pid, {:compile, student, trainset, eval_opts}, :infinity)
  end
  
  def init(opts) do
    state = %__MODULE__{
      prompt_model: opts[:prompt_model],
      metric: opts[:metric],
      breadth: opts[:breadth] || 10,
      depth: opts[:depth] || 3,
      temperature: opts[:temperature] || 1.4,
      candidates: %{},
      evaluation_results: %{},
      optimization_state: :idle
    }
    
    {:ok, state}
  end
  
  def handle_call({:compile, student, trainset, eval_opts}, _from, state) do
    # Start optimization process
    optimization_pid = start_optimization_process(student, trainset, eval_opts, state)
    
    # Wait for completion
    result = wait_for_optimization(optimization_pid)
    
    {:reply, result, %{state | optimization_state: :idle}}
  end
  
  defp start_optimization_process(student, trainset, eval_opts, state) do
    Task.async(fn ->
      run_copro_optimization(student, trainset, eval_opts, state)
    end)
  end
  
  defp run_copro_optimization(student, trainset, eval_opts, state) do
    # Initialize candidates with baseline
    initial_candidates = initialize_candidates(student, state)
    
    # Run depth iterations
    final_candidates = 
      1..state.depth
      |> Enum.reduce(initial_candidates, fn depth, candidates ->
        run_optimization_round(candidates, trainset, eval_opts, state, depth)
      end)
    
    # Select best candidate
    select_best_candidate(final_candidates, trainset, eval_opts, state)
  end
  
  defp run_optimization_round(candidates, trainset, eval_opts, state, depth) do
    # Generate new instruction candidates
    new_instructions = generate_instruction_candidates(candidates, state)
    
    # Evaluate candidates in parallel
    evaluation_tasks = 
      new_instructions
      |> Enum.map(fn instruction ->
        Task.async(fn ->
          evaluate_candidate(instruction, trainset, eval_opts, state)
        end)
      end)
    
    # Collect results
    results = Task.await_many(evaluation_tasks, :infinity)
    
    # Update candidates with results
    update_candidates(candidates, results)
  end
  
  defp evaluate_candidate(instruction, trainset, eval_opts, state) do
    # Create module with new instruction
    module = update_module_instruction(instruction)
    
    # Evaluate on trainset
    evaluator = DSPy.Evaluate.start_link(
      devset: trainset,
      metric: state.metric,
      num_threads: eval_opts[:num_threads] || 4
    )
    
    score = DSPy.Evaluate.call(evaluator, module)
    
    %{
      instruction: instruction,
      module: module,
      score: score
    }
  end
end

Bootstrap Few-Shot with Process Pools

defmodule DSPy.Teleprompt.Bootstrap do
  use Supervisor
  
  def start_link(opts) do
    Supervisor.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def init(opts) do
    children = [
      # Teacher pool for generating examples
      {DSPy.Teleprompt.Bootstrap.TeacherPool, opts},
      
      # Evaluation worker pool
      {DSPy.Teleprompt.Bootstrap.EvaluationPool, opts},
      
      # Demo candidate manager
      {DSPy.Teleprompt.Bootstrap.DemoManager, opts},
      
      # Progress tracker
      {DSPy.Teleprompt.Bootstrap.ProgressTracker, opts}
    ]
    
    Supervisor.init(children, strategy: :one_for_one)
  end
  
  def compile(student, teacher, trainset, opts \\ []) do
    # Start compilation process
    compilation_id = UUID.uuid4()
    
    DSPy.Teleprompt.Bootstrap.Coordinator.start_compilation(
      compilation_id,
      student,
      teacher,
      trainset,
      opts
    )
  end
end

defmodule DSPy.Teleprompt.Bootstrap.TeacherPool do
  use DynamicSupervisor
  
  def start_link(opts) do
    DynamicSupervisor.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def init(_opts) do
    DynamicSupervisor.init(strategy: :one_for_one)
  end
  
  def generate_examples(teacher, examples, opts) do
    # Distribute example generation across worker pool
    tasks = 
      examples
      |> Enum.chunk_every(opts[:batch_size] || 10)
      |> Enum.map(fn batch ->
        start_teacher_worker(teacher, batch, opts)
      end)
    
    # Collect results
    Task.await_many(tasks, :infinity)
    |> List.flatten()
  end
  
  defp start_teacher_worker(teacher, batch, opts) do
    Task.async(fn ->
      worker_pid = start_teacher_instance(teacher)
      
      results = 
        batch
        |> Enum.map(fn example ->
          DSPy.Module.call(worker_pid, example, opts)
        end)
        |> Enum.filter(&valid_example?/1)
      
      # Clean up worker
      GenServer.stop(worker_pid)
      
      results
    end)
  end
end

Distributed Architecture Support

Multi-Node Coordination

defmodule DSPy.Cluster.Manager do
  use GenServer
  
  def start_link(opts) do
    GenServer.start_link(__MODULE__, opts, name: {:global, __MODULE__})
  end
  
  def init(opts) do
    # Set up cluster monitoring
    :net_kernel.monitor_nodes(true)
    
    state = %{
      nodes: [Node.self()],
      node_capabilities: %{Node.self() => get_node_capabilities()},
      distributed_tasks: %{},
      load_balancer: DSPy.LoadBalancer.new()
    }
    
    {:ok, state}
  end
  
  def handle_info({:nodeup, node}, state) do
    # New node joined cluster
    capabilities = :rpc.call(node, __MODULE__, :get_node_capabilities, [])
    
    new_state = %{
      state |
      nodes: [node | state.nodes],
      node_capabilities: Map.put(state.node_capabilities, node, capabilities)
    }
    
    {:noreply, new_state}
  end
  
  def handle_info({:nodedown, node}, state) do
    # Node left cluster - redistribute tasks
    tasks_to_redistribute = get_tasks_for_node(state.distributed_tasks, node)
    
    new_state = redistribute_tasks(state, tasks_to_redistribute)
    
    {:noreply, new_state}
  end
  
  def distribute_optimization(optimization_spec) do
    GenServer.call({:global, __MODULE__}, {:distribute_optimization, optimization_spec})
  end
  
  def handle_call({:distribute_optimization, spec}, _from, state) do
    # Determine optimal node distribution based on capabilities
    distribution_plan = plan_distribution(spec, state)
    
    # Start distributed optimization
    task_refs = start_distributed_tasks(distribution_plan)
    
    {:reply, {:ok, task_refs}, state}
  end
  
  defp plan_distribution(spec, state) do
    # Analyze optimization requirements and node capabilities
    # Return distribution plan
  end
end

defmodule DSPy.Cluster.DistributedOptimization do
  def run_distributed_copro(student, trainset, opts) do
    # Split trainset across available nodes
    nodes = DSPy.Cluster.Manager.get_available_nodes()
    
    trainset_chunks = chunk_data(trainset, length(nodes))
    
    # Start optimization tasks on each node
    tasks = 
      Enum.zip(nodes, trainset_chunks)
      |> Enum.map(fn {node, chunk} ->
        :rpc.async_call(node, DSPy.Teleprompt.COPRO, :run_partial_optimization, [
          student, chunk, opts
        ])
      end)
    
    # Collect and merge results
    results = 
      tasks
      |> Enum.map(&:rpc.yield/1)
      |> merge_optimization_results()
    
    results
  end
  
  defp chunk_data(data, num_chunks) do
    chunk_size = div(length(data), num_chunks)
    Enum.chunk_every(data, chunk_size)
  end
  
  defp merge_optimization_results(results) do
    # Implement result merging logic
    # This would combine candidates from different nodes
    # and potentially run final evaluation round
  end
end

Persistent State with Mnesia

defmodule DSPy.Storage.Schema do
  def install(nodes \\ [node()]) do
    # Create Mnesia schema
    :mnesia.create_schema(nodes)
    :mnesia.start()
    
    # Create tables
    create_tables()
    
    :ok
  end
  
  defp create_tables do
    # Optimization runs table
    :mnesia.create_table(:optimization_runs, [
      attributes: [:id, :student_module, :trainset_hash, :optimizer_type, :config, 
                  :status, :results, :started_at, :completed_at],
      type: :set,
      disc_copies: [node()]
    ])
    
    # Module parameters table
    :mnesia.create_table(:module_parameters, [
      attributes: [:module_id, :signature_hash, :parameters, :demos, :updated_at],
      type: :set,
      disc_copies: [node()]
    ])

    # Evaluation cache table
    :mnesia.create_table(:evaluation_cache, [
      attributes: [:cache_key, :module_hash, :input_hash, :result, :score, :timestamp],
      type: :set,
      disc_copies: [node()],
      index: [:module_hash, :timestamp]
    ])
    
    # Training examples table
    :mnesia.create_table(:training_examples, [
      attributes: [:id, :dataset_id, :input_data, :output_data, :metadata, :created_at],
      type: :set,
      disc_copies: [node()],
      index: [:dataset_id]
    ])
    
    # LM usage statistics
    :mnesia.create_table(:lm_usage_stats, [
      attributes: [:session_id, :provider, :model, :tokens_used, :cost, :timestamp],
      type: :bag,
      disc_copies: [node()],
      index: [:provider, :timestamp]
    ])
  end
end

defmodule DSPy.Storage.OptimizationRuns do
  def save_run(run_data) do
    :mnesia.transaction(fn ->
      :mnesia.write({:optimization_runs, 
        run_data.id,
        run_data.student_module,
        run_data.trainset_hash,
        run_data.optimizer_type,
        run_data.config,
        run_data.status,
        run_data.results,
        run_data.started_at,
        run_data.completed_at
      })
    end)
  end
  
  def get_run(run_id) do
    :mnesia.transaction(fn ->
      :mnesia.read(:optimization_runs, run_id)
    end)
  end
  
  def list_runs_by_type(optimizer_type) do
    :mnesia.transaction(fn ->
      :mnesia.match_object({:optimization_runs, :_, :_, :_, optimizer_type, :_, :_, :_, :_, :_})
    end)
  end
  
  def get_best_run_for_signature(signature_hash) do
    # Find the optimization run with the best score for a given signature
    :mnesia.transaction(fn ->
      runs = :mnesia.match_object({:optimization_runs, :_, :_, :_, :_, :_, :_, :_, :_, :_})
      
      runs
      |> Enum.filter(fn {_, _, _, _, _, _, results, _, _} -> 
        results != nil and results.signature_hash == signature_hash 
      end)
      |> Enum.max_by(fn {_, _, _, _, _, _, results, _, _} -> results.score end, fn -> nil end)
    end)
  end
end

Real-time Monitoring and Observability

Phoenix LiveView Dashboard

defmodule DSPyWeb.DashboardLive do
  use DSPyWeb, :live_view
  
  def mount(_params, _session, socket) do
    if connected?(socket) do
      # Subscribe to real-time updates
      DSPy.PubSub.subscribe("optimization:progress")
      DSPy.PubSub.subscribe("module:metrics")
      DSPy.PubSub.subscribe("lm:usage")
      
      # Schedule periodic updates
      :timer.send_interval(1000, self(), :update_metrics)
    end
    
    socket = 
      socket
      |> assign(:optimization_runs, get_active_optimizations())
      |> assign(:module_metrics, get_module_metrics())
      |> assign(:lm_usage, get_lm_usage_summary())
      |> assign(:system_health, get_system_health())
    
    {:ok, socket}
  end
  
  def handle_info({:optimization_progress, data}, socket) do
    # Update optimization progress in real-time
    updated_runs = update_optimization_run(socket.assigns.optimization_runs, data)
    {:noreply, assign(socket, :optimization_runs, updated_runs)}
  end
  
  def handle_info({:module_metrics, metrics}, socket) do
    # Update module performance metrics
    {:noreply, assign(socket, :module_metrics, metrics)}
  end
  
  def handle_info({:lm_usage, usage}, socket) do
    # Update LM usage statistics
    updated_usage = merge_usage_stats(socket.assigns.lm_usage, usage)
    {:noreply, assign(socket, :lm_usage, updated_usage)}
  end
  
  def handle_info(:update_metrics, socket) do
    # Periodic system health check
    health = get_system_health()
    {:noreply, assign(socket, :system_health, health)}
  end
  
  def render(assigns) do
    ~H"""
    <div class="dashboard">
      <.header>DSPy System Dashboard</.header>
      
      <div class="grid grid-cols-1 md:grid-cols-2 lg:grid-cols-3 gap-6">
        <!-- System Health Card -->
        <.card title="System Health">
          <.health_indicator health={@system_health} />
        </.card>
        
        <!-- Active Optimizations -->
        <.card title="Active Optimizations">
          <.optimization_list runs={@optimization_runs} />
        </.card>
        
        <!-- LM Usage -->
        <.card title="LM Usage">
          <.usage_chart usage={@lm_usage} />
        </.card>
        
        <!-- Module Performance -->
        <.card title="Module Performance">
          <.metrics_table metrics={@module_metrics} />
        </.card>
      </div>
      
      <!-- Detailed Views -->
      <div class="mt-8">
        <.live_component 
          module={DSPyWeb.OptimizationDetailComponent} 
          id="optimization-detail"
          runs={@optimization_runs} 
        />
      </div>
    </div>
    """
  end
end

defmodule DSPy.Telemetry do
  def setup do
    events = [
      [:dspy, :module, :call, :start],
      [:dspy, :module, :call, :stop],
      [:dspy, :module, :call, :exception],
      [:dspy, :lm, :request, :start],
      [:dspy, :lm, :request, :stop],
      [:dspy, :lm, :request, :exception],
      [:dspy, :optimization, :start],
      [:dspy, :optimization, :stop],
      [:dspy, :cache, :hit],
      [:dspy, :cache, :miss]
    ]
    
    :telemetry.attach_many(
      "dspy-telemetry",
      events,
      &handle_event/4,
      %{}
    )
  end
  
  def handle_event([:dspy, :module, :call, :start], measurements, metadata, _config) do
    # Track module execution start
    Phoenix.PubSub.broadcast(DSPy.PubSub, "module:metrics", {
      :module_start,
      %{
        module_id: metadata.module_id,
        timestamp: measurements.system_time,
        inputs: metadata.inputs
      }
    })
  end
  
  def handle_event([:dspy, :module, :call, :stop], measurements, metadata, _config) do
    # Track module execution completion
    duration = measurements.duration
    
    Phoenix.PubSub.broadcast(DSPy.PubSub, "module:metrics", {
      :module_complete,
      %{
        module_id: metadata.module_id,
        duration: duration,
        outputs: metadata.outputs,
        success: true
      }
    })
    
    # Update metrics in ETS
    DSPy.Metrics.record_execution(metadata.module_id, duration, true)
  end
  
  def handle_event([:dspy, :lm, :request, :stop], measurements, metadata, _config) do
    # Track LM usage
    usage = %{
      provider: metadata.provider,
      model: metadata.model,
      tokens_used: metadata.tokens_used,
      cost: metadata.cost,
      duration: measurements.duration
    }
    
    Phoenix.PubSub.broadcast(DSPy.PubSub, "lm:usage", usage)
    
    # Store in persistent storage for billing/analytics
    DSPy.Storage.LMUsage.record(usage)
  end
end

Error Handling and Recovery Patterns

Circuit Breaker Implementation

defmodule DSPy.CircuitBreaker do
  use GenServer
  
  defstruct [
    :name,
    :state,           # :closed | :open | :half_open
    :failure_count,
    :failure_threshold,
    :timeout,
    :last_failure_time,
    :metrics
  ]
  
  def start_link(opts) do
    name = opts[:name] || __MODULE__
    GenServer.start_link(__MODULE__, opts, name: name)
  end
  
  def call(circuit_breaker, function) when is_function(function) do
    GenServer.call(circuit_breaker, {:call, function})
  end
  
  def init(opts) do
    state = %__MODULE__{
      name: opts[:name],
      state: :closed,
      failure_count: 0,
      failure_threshold: opts[:failure_threshold] || 5,
      timeout: opts[:timeout] || 60_000,  # 1 minute
      last_failure_time: nil,
      metrics: DSPy.Metrics.new()
    }
    
    {:ok, state}
  end
  
  def handle_call({:call, function}, _from, %{state: :open} = state) do
    # Check if timeout has elapsed
    if timeout_elapsed?(state) do
      # Transition to half-open and try the call
      new_state = %{state | state: :half_open}
      execute_function(function, new_state)
    else
      # Circuit is open, fail fast
      {:reply, {:error, :circuit_open}, state}
    end
  end
  
  def handle_call({:call, function}, _from, state) do
    execute_function(function, state)
  end
  
  defp execute_function(function, state) do
    try do
      result = function.()
      
      # Success - reset circuit breaker
      new_state = %{state | 
        state: :closed, 
        failure_count: 0,
        metrics: DSPy.Metrics.record_success(state.metrics, result)
      }
      
      {:reply, {:ok, result}, new_state}
    rescue
      error ->
        # Failure - increment count and possibly open circuit
        new_failure_count = state.failure_count + 1
        new_metrics = DSPy.Metrics.record_error(state.metrics, error)
        
        new_state = 
          if new_failure_count >= state.failure_threshold do
            %{state | 
              state: :open, 
              failure_count: new_failure_count,
              last_failure_time: DateTime.utc_now(),
              metrics: new_metrics
            }
          else
            %{state | 
              failure_count: new_failure_count,
              metrics: new_metrics
            }
          end
        
        {:reply, {:error, error}, new_state}
    end
  end
  
  defp timeout_elapsed?(%{last_failure_time: nil}), do: false
  defp timeout_elapsed?(%{last_failure_time: last_time, timeout: timeout}) do
    DateTime.diff(DateTime.utc_now(), last_time, :millisecond) >= timeout
  end
end

defmodule DSPy.Supervisor.Strategies do
  @moduledoc """
  Custom supervisor strategies for different DSPy components
  """
  
  def module_supervisor_spec do
    # Modules should restart immediately but with exponential backoff
    # if they keep failing
    %{
      strategy: :one_for_one,
      intensity: 5,
      period: 60,
      restart: :transient,
      shutdown: 5000
    }
  end
  
  def lm_provider_supervisor_spec do
    # LM providers should restart but with circuit breaker protection
    %{
      strategy: :rest_for_one,
      intensity: 3,
      period: 30,
      restart: :permanent,
      shutdown: 10000
    }
  end
  
  def optimization_supervisor_spec do
    # Optimization processes are temporary and shouldn't restart
    %{
      strategy: :one_for_one,
      intensity: 1,
      period: 10,
      restart: :temporary,
      shutdown: :infinity
    }
  end
end

Poison Message Handling

defmodule DSPy.PoisonMessage.Handler do
  use GenServer
  
  def start_link(opts) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def init(_opts) do
    state = %{
      poison_messages: %{},
      quarantine_threshold: 3,
      quarantine_duration: :timer.hours(1)
    }
    
    {:ok, state}
  end
  
  def report_poison_message(message, error, context) do
    GenServer.cast(__MODULE__, {:poison_message, message, error, context})
  end
  
  def is_quarantined?(message) do
    GenServer.call(__MODULE__, {:is_quarantined, message})
  end
  
  def handle_cast({:poison_message, message, error, context}, state) do
    message_hash = hash_message(message)
    
    current_count = Map.get(state.poison_messages, message_hash, 0)
    new_count = current_count + 1
    
    new_state = 
      if new_count >= state.quarantine_threshold do
        # Quarantine the message
        quarantine_message(message, error, context)
        
        %{state | poison_messages: Map.put(state.poison_messages, message_hash, new_count)}
      else
        %{state | poison_messages: Map.put(state.poison_messages, message_hash, new_count)}
      end
    
    {:noreply, new_state}
  end
  
  def handle_call({:is_quarantined, message}, _from, state) do
    message_hash = hash_message(message)
    count = Map.get(state.poison_messages, message_hash, 0)
    
    quarantined = count >= state.quarantine_threshold
    {:reply, quarantined, state}
  end
  
  defp quarantine_message(message, error, context) do
    # Store in persistent storage for analysis
    DSPy.Storage.PoisonMessages.store(%{
      message: message,
      error: error,
      context: context,
      quarantined_at: DateTime.utc_now(),
      hash: hash_message(message)
    })
    
    # Notify administrators
    DSPy.Notifications.send_poison_message_alert(message, error, context)
  end
  
  defp hash_message(message) do
    :crypto.hash(:sha256, :erlang.term_to_binary(message))
    |> Base.encode16()
  end
end

defmodule DSPy.Module.SafeWrapper do
  @moduledoc """
  Wraps module execution with poison message detection and recovery
  """
  
  def safe_call(module_pid, inputs, opts \\ []) do
    if DSPy.PoisonMessage.Handler.is_quarantined?(inputs) do
      {:error, :quarantined_input}
    else
      try do
        case GenServer.call(module_pid, {:forward, inputs, opts}) do
          {:ok, result} -> {:ok, result}
          {:error, reason} = error ->
            # Check if this should be considered a poison message
            if should_quarantine?(reason, opts) do
              DSPy.PoisonMessage.Handler.report_poison_message(
                inputs, 
                reason, 
                %{module_pid: module_pid, opts: opts}
              )
            end
            error
        end
      catch
        :exit, reason ->
          # Process crashed - definitely a poison message
          DSPy.PoisonMessage.Handler.report_poison_message(
            inputs,
            {:process_crash, reason},
            %{module_pid: module_pid, opts: opts}
          )
          {:error, :process_crashed}
      end
    end
  end
  
  defp should_quarantine?(reason, _opts) do
    case reason do
      :timeout -> true
      :invalid_format -> true
      {:parse_error, _} -> true
      _ -> false
    end
  end
end

Performance Optimization Patterns

ETS-based Caching Layer

defmodule DSPy.Cache.Manager do
  use GenServer
  
  def start_link(opts) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def init(_opts) do
    # Create ETS tables for different cache types
    :ets.new(:lm_response_cache, [:named_table, :set, :public, read_concurrency: true])
    :ets.new(:module_result_cache, [:named_table, :set, :public, read_concurrency: true])
    :ets.new(:evaluation_cache, [:named_table, :set, :public, read_concurrency: true])
    
    # Start cache cleanup timer
    :timer.send_interval(:timer.minutes(10), self(), :cleanup_expired)
    
    {:ok, %{}}
  end
  
  def get(cache_type, key) do
    table = cache_table(cache_type)
    
    case :ets.lookup(table, key) do
      [{^key, value, expires_at}] ->
        if DateTime.compare(DateTime.utc_now(), expires_at) == :lt do
          {:hit, value}
        else
          :ets.delete(table, key)
          :miss
        end
      [] ->
        :miss
    end
  end
  
  def put(cache_type, key, value, ttl \\ :timer.minutes(30)) do
    table = cache_table(cache_type)
    expires_at = DateTime.add(DateTime.utc_now(), ttl, :millisecond)
    
    :ets.insert(table, {key, value, expires_at})
    :ok
  end
  
  def handle_info(:cleanup_expired, state) do
    now = DateTime.utc_now()
    
    # Clean up expired entries from all tables
    [:lm_response_cache, :module_result_cache, :evaluation_cache]
    |> Enum.each(fn table ->
      cleanup_table(table, now)
    end)
    
    {:noreply, state}
  end
  
  defp cache_table(:lm_response), do: :lm_response_cache
  defp cache_table(:module_result), do: :module_result_cache
  defp cache_table(:evaluation), do: :evaluation_cache
  
  defp cleanup_table(table, now) do
    # Use select_delete for efficient cleanup
    match_spec = [
      {{:_, :_, :"$1"}, [{:<, :"$1", {:const, now}}], [true]}
    ]
    
    :ets.select_delete(table, match_spec)
  end
end

defmodule DSPy.Cache.Key do
  @moduledoc """
  Utilities for generating consistent cache keys
  """
  
  def lm_key(provider, model, messages, opts) do
    # Create deterministic key for LM responses
    content = %{
      provider: provider,
      model: model,
      messages: normalize_messages(messages),
      opts: normalize_opts(opts)
    }
    
    :crypto.hash(:sha256, :erlang.term_to_binary(content))
    |> Base.encode16()
  end
  
  def module_key(module_id, signature_hash, inputs) do
    content = %{
      module_id: module_id,
      signature_hash: signature_hash,
      inputs: normalize_inputs(inputs)
    }
    
    :crypto.hash(:sha256, :erlang.term_to_binary(content))
    |> Base.encode16()
  end
  
  defp normalize_messages(messages) do
    # Normalize messages for consistent hashing
    messages
    |> Enum.map(fn msg ->
      msg
      |> Map.take(["role", "content", "name"])
      |> Map.update("content", "", &String.trim/1)
    end)
  end
  
  defp normalize_opts(opts) do
    # Only include cache-relevant options
    opts
    |> Map.take(["temperature", "max_tokens", "top_p", "frequency_penalty"])
  end
  
  defp normalize_inputs(inputs) do
    # Normalize inputs for consistent hashing
    inputs
    |> Enum.sort()
    |> Enum.into(%{})
  end
end

Batch Processing with GenStage

defmodule DSPy.BatchProcessor do
  @moduledoc """
  Batch processing pipeline for efficient LM calls and evaluations
  """
  
  def start_link(opts) do
    # Set up GenStage pipeline
    {:ok, producer} = DSPy.BatchProcessor.Producer.start_link(opts)
    {:ok, processor} = DSPy.BatchProcessor.Processor.start_link(opts)
    {:ok, consumer} = DSPy.BatchProcessor.Consumer.start_link(opts)
    
    # Connect the pipeline
    GenStage.sync_subscribe(processor, to: producer)
    GenStage.sync_subscribe(consumer, to: processor)
    
    {:ok, %{producer: producer, processor: processor, consumer: consumer}}
  end
end

defmodule DSPy.BatchProcessor.Producer do
  use GenStage
  
  def start_link(opts) do
    GenStage.start_link(__MODULE__, opts)
  end
  
  def init(opts) do
    {:producer, %{
      queue: :queue.new(),
      demand: 0,
      batch_size: opts[:batch_size] || 10
    }}
  end
  
  def add_request(producer, request) do
    GenStage.cast(producer, {:add_request, request})
  end
  
  def handle_demand(demand, state) when demand > 0 do
    dispatch_events(%{state | demand: state.demand + demand})
  end
  
  def handle_cast({:add_request, request}, state) do
    new_queue = :queue.in(request, state.queue)
    dispatch_events(%{state | queue: new_queue})
  end
  
  defp dispatch_events(%{demand: 0} = state) do
    {:noreply, [], state}
  end
  
  defp dispatch_events(%{demand: demand, queue: queue} = state) do
    {events, new_queue, new_demand} = take_events(queue, demand, [])
    {:noreply, events, %{state | queue: new_queue, demand: new_demand}}
  end
  
  defp take_events(queue, 0, acc), do: {Enum.reverse(acc), queue, 0}
  defp take_events(queue, demand, acc) do
    case :queue.out(queue) do
      {{:value, event}, new_queue} ->
        take_events(new_queue, demand - 1, [event | acc])
      {:empty, queue} ->
        {Enum.reverse(acc), queue, demand}
    end
  end
end

defmodule DSPy.BatchProcessor.Processor do
  use GenStage
  
  def start_link(opts) do
    GenStage.start_link(__MODULE__, opts)
  end
  
  def init(opts) do
    {:producer_consumer, %{
      batch_size: opts[:batch_size] || 10,
      lm_worker: opts[:lm_worker]
    }}
  end
  
  def handle_events(events, _from, state) do
    # Group events into batches for efficient processing
    batches = Enum.chunk_every(events, state.batch_size)
    
    processed_events = 
      batches
      |> Enum.map(fn batch ->
        process_batch(batch, state)
      end)
      |> List.flatten()
    
    {:noreply, processed_events, state}
  end
  
  defp process_batch(batch, state) do
    # Combine requests for efficient LM batching
    combined_messages = combine_batch_messages(batch)
    
    case DSPy.LM.Provider.batch_complete(state.lm_worker, combined_messages) do
      {:ok, results} ->
        # Split results back to individual requests
        split_batch_results(batch, results)
      
      {:error, reason} ->
        # Handle batch failure
        Enum.map(batch, fn request ->
          %{request | status: :error, error: reason}
        end)
    end
  end
end

This comprehensive technical specification provides the detailed architecture for porting DSPy to Elixir/BEAM, leveraging OTP’s strengths while maintaining DSPy’s core functionality. The design emphasizes fault tolerance, scalability, and the “let it crash” philosophy while providing robust error handling and recovery mechanisms.