DSPy to Elixir/BEAM: Architecture Built on Foundation Based on the Foundation library’s capabilities, here’s a comprehensive architectural design for porting DSPy to the Elixir/BEAM ecosystem.
DSPy Elixir Architecture on Foundation
Overview
This architecture leverages the Foundation library’s infrastructure to create a robust, observable, and fault-tolerant implementation of DSPy patterns in Elixir. The design emphasizes modularity, supervision, and the “let it crash” philosophy while maintaining DSPy’s core abstractions.
System Architecture
High-Level Component Structure
Core Behaviours and Contracts
1. DSPy.Module Behaviour
Defines the contract for all DSPy modules (ChainOfThought, ReAct, etc.)
defmodule DSPy.Module do
@moduledoc """
Behaviour for DSPy modules with Foundation integration.
"""
@callback signature() :: DSPy.Signature.t()
@callback forward(inputs :: map(), opts :: keyword()) ::
{:ok, map()} | {:error, Foundation.Types.Error.t()}
@callback configure(config :: map()) :: :ok | {:error, Foundation.Types.Error.t()}
@callback reset() :: :ok
# Optional callbacks for optimization
@callback update_parameters(params :: map()) :: :ok | {:error, Foundation.Types.Error.t()}
@callback get_parameters() :: {:ok, map()} | {:error, Foundation.Types.Error.t()}
@optional_callbacks [update_parameters: 1, get_parameters: 0]
end
2. DSPy.LMProvider Behaviour
Standardizes language model integrations with Foundation’s protection patterns
defmodule DSPy.LMProvider do
@moduledoc """
Behaviour for language model providers with circuit breaker and rate limiting.
"""
@callback name() :: atom()
@callback complete(messages :: list(), opts :: keyword()) ::
{:ok, map()} | {:error, Foundation.Types.Error.t()}
@callback stream(messages :: list(), opts :: keyword()) ::
{:ok, Enumerable.t()} | {:error, Foundation.Types.Error.t()}
@callback supports_streaming?() :: boolean()
@callback cost_per_token() :: %{input: float(), output: float()}
@callback context_window() :: pos_integer()
@callback configure(config :: map()) :: :ok | {:error, Foundation.Types.Error.t()}
end
3. DSPy.Optimizer Behaviour
Defines teleprompting/optimization strategies
defmodule DSPy.Optimizer do
@moduledoc """
Behaviour for DSPy optimization strategies (COPRO, Bootstrap, etc.)
"""
@callback compile(student :: module(), trainset :: list(), opts :: keyword()) ::
{:ok, DSPy.Module.t()} | {:error, Foundation.Types.Error.t()}
@callback name() :: atom()
@callback supports_distributed?() :: boolean()
@callback configure(config :: map()) :: :ok | {:error, Foundation.Types.Error.t()}
end
4. DSPy.Adapter Behaviour
Handles different prompt formats (Chat, JSON, etc.)
defmodule DSPy.Adapter do
@moduledoc """
Behaviour for prompt adapters with signature-aware formatting.
"""
@callback format(signature :: DSPy.Signature.t(), demos :: list(), inputs :: map()) ::
{:ok, list()} | {:error, Foundation.Types.Error.t()}
@callback parse(signature :: DSPy.Signature.t(), completion :: String.t()) ::
{:ok, map()} | {:error, Foundation.Types.Error.t()}
@callback supports_streaming?() :: boolean()
@callback name() :: atom()
end
Core Data Structures
DSPy.Signature
Type-safe signature definitions using Elixir structs and behaviours
defmodule DSPy.Signature do
@moduledoc """
Defines input/output structure for DSPy modules with validation.
"""
defstruct [
:name,
:instructions,
:input_fields,
:output_fields,
:metadata
]
@type t() :: %__MODULE__{
name: atom(),
instructions: String.t(),
input_fields: %{atom() => DSPy.Field.t()},
output_fields: %{atom() => DSPy.Field.t()},
metadata: map()
}
defmacro __using__(opts) do
quote do
@behaviour DSPy.Signature
def validate_inputs(inputs), do: DSPy.Signature.validate_inputs(__MODULE__, inputs)
def validate_outputs(outputs), do: DSPy.Signature.validate_outputs(__MODULE__, outputs)
def format_prompt(demos, inputs), do: DSPy.Signature.format_prompt(__MODULE__, demos, inputs)
defoverridable [validate_inputs: 1, validate_outputs: 1, format_prompt: 2]
end
end
end
defmodule DSPy.Field do
defstruct [
:name,
:type, # :input | :output
:annotation, # String.t() | :integer | custom_type
:description,
:required,
:default,
:validator
]
@type t() :: %__MODULE__{
name: atom(),
type: :input | :output,
annotation: atom() | module(),
description: String.t(),
required: boolean(),
default: term(),
validator: function() | nil
}
end
DSPy.Module.State
Encapsulates module runtime state with Foundation integration
defmodule DSPy.Module.State do
defstruct [
:module_id,
:signature,
:parameters,
:demos,
:lm_provider,
:adapter,
:config,
:metrics,
:correlation_id
]
@type t() :: %__MODULE__{
module_id: String.t(),
signature: DSPy.Signature.t(),
parameters: map(),
demos: list(),
lm_provider: atom(),
adapter: atom(),
config: map(),
metrics: map(),
correlation_id: String.t() | nil
}
end
Service Architecture
DSPy.Services.ModuleManager
Central coordination service for DSPy modules built on Foundation
defmodule DSPy.Services.ModuleManager do
use GenServer
require Logger
@moduledoc """
Manages DSPy module instances with Foundation telemetry and error handling.
"""
# Built on Foundation's service patterns
def start_link(opts) do
namespace = Keyword.get(opts, :namespace, :production)
GenServer.start_link(__MODULE__, opts,
name: Foundation.ServiceRegistry.via_tuple(namespace, :dspy_module_manager))
end
def init(opts) do
# Register with Foundation
:ok = Foundation.ServiceRegistry.register(
opts[:namespace] || :production,
:dspy_module_manager,
self()
)
# Emit startup telemetry
Foundation.Telemetry.emit_system_event(:service_started, %{
service: :dspy_module_manager,
pid: self()
})
state = %{
modules: %{},
config: opts[:config] || %{},
namespace: opts[:namespace] || :production
}
{:ok, state}
end
# Module lifecycle management
def handle_call({:create_module, module_spec}, from, state) do
correlation_id = Foundation.Utils.generate_correlation_id()
# Use Foundation's error context
context = Foundation.ErrorContext.new(
__MODULE__,
:create_module,
correlation_id: correlation_id,
metadata: %{module_spec: module_spec}
)
result = Foundation.ErrorContext.with_context(context, fn ->
create_module_impl(module_spec, state)
end)
case result do
{:ok, {module_id, new_state}} ->
# Emit success event
Foundation.Events.new_event(:module_created, %{
module_id: module_id,
module_type: module_spec.type
}, correlation_id: correlation_id)
|> Foundation.Events.store()
{:reply, {:ok, module_id}, new_state}
{:error, error} ->
# Error already enhanced by ErrorContext
{:reply, {:error, error}, state}
end
end
def handle_call({:execute_module, module_id, inputs, opts}, from, state) do
correlation_id = Keyword.get(opts, :correlation_id) || Foundation.Utils.generate_correlation_id()
# Use Foundation's infrastructure protection
result = Foundation.Infrastructure.execute_protected(
:module_execution,
[
circuit_breaker: :dspy_module_breaker,
rate_limiter: {:module_execution, module_id}
],
fn -> execute_module_impl(module_id, inputs, opts, state) end
)
case result do
{:ok, outputs} ->
# Record successful execution
Foundation.Telemetry.emit_counter([:dspy, :module, :execution, :success], %{
module_id: module_id,
module_type: get_module_type(module_id, state)
})
{:reply, {:ok, outputs}, state}
{:error, reason} ->
# Record failed execution
Foundation.Telemetry.emit_counter([:dspy, :module, :execution, :error], %{
module_id: module_id,
error_type: reason
})
{:reply, {:error, reason}, state}
end
end
# Private implementation functions would follow...
end
DSPy.Services.LMProvider
Language model provider service with Foundation’s protection patterns
defmodule DSPy.Services.LMProvider do
use GenServer
@moduledoc """
Manages language model providers with circuit breakers and rate limiting.
"""
def start_link(opts) do
provider_name = Keyword.fetch!(opts, :provider_name)
namespace = Keyword.get(opts, :namespace, :production)
GenServer.start_link(__MODULE__, opts,
name: Foundation.ServiceRegistry.via_tuple(namespace, {:lm_provider, provider_name}))
end
def init(opts) do
provider_name = opts[:provider_name]
provider_module = opts[:provider_module]
# Configure Foundation infrastructure protection
:ok = Foundation.Infrastructure.configure_protection(
{:lm_provider, provider_name},
%{
circuit_breaker: %{
failure_threshold: 5,
recovery_time: 30_000
},
rate_limiter: %{
scale: 60_000, # 1 minute
limit: 100 # 100 requests per minute
}
}
)
state = %{
provider_name: provider_name,
provider_module: provider_module,
config: opts[:config] || %{},
metrics: %{},
namespace: opts[:namespace] || :production
}
{:ok, state}
end
def handle_call({:complete, messages, opts}, from, state) do
correlation_id = Keyword.get(opts, :correlation_id) || Foundation.Utils.generate_correlation_id()
# Measure and protect the LM call
result = Foundation.Telemetry.measure(
[:dspy, :lm, :completion],
%{provider: state.provider_name, correlation_id: correlation_id},
fn ->
Foundation.Infrastructure.execute_protected(
{:lm_provider, state.provider_name},
[],
fn -> apply(state.provider_module, :complete, [messages, opts]) end
)
end
)
case result do
{:ok, completion} ->
# Emit cost telemetry if available
if cost = calculate_cost(completion, state.provider_module) do
Foundation.Telemetry.emit_gauge([:dspy, :lm, :cost], cost, %{
provider: state.provider_name,
correlation_id: correlation_id
})
end
{:reply, {:ok, completion}, state}
{:error, reason} ->
{:reply, {:error, reason}, state}
end
end
# Stream handling with Foundation events
def handle_call({:stream, messages, opts}, from, state) do
correlation_id = Keyword.get(opts, :correlation_id) || Foundation.Utils.generate_correlation_id()
if apply(state.provider_module, :supports_streaming?, []) do
# Create a GenStage producer for streaming
{:ok, producer_pid} = DSPy.Streaming.Producer.start_link(
provider_module: state.provider_module,
messages: messages,
opts: opts,
correlation_id: correlation_id
)
{:reply, {:ok, producer_pid}, state}
else
error = Foundation.Error.new(
:streaming_not_supported,
"Provider #{state.provider_name} does not support streaming",
context: %{provider: state.provider_name}
)
{:reply, {:error, error}, state}
end
end
end
DSPy.Services.OptimizationCoordinator
Coordinates teleprompting optimizations with distributed capabilities
defmodule DSPy.Services.OptimizationCoordinator do
use GenServer
@moduledoc """
Coordinates optimization processes with Foundation configuration and events.
"""
def start_link(opts) do
namespace = Keyword.get(opts, :namespace, :production)
GenServer.start_link(__MODULE__, opts,
name: Foundation.ServiceRegistry.via_tuple(namespace, :optimization_coordinator))
end
def init(opts) do
# Subscribe to relevant configuration changes
:ok = Foundation.Config.subscribe()
state = %{
active_optimizations: %{},
optimization_history: [],
config: opts[:config] || %{},
namespace: opts[:namespace] || :production
}
{:ok, state}
end
def handle_call({:start_optimization, spec}, from, state) do
correlation_id = Foundation.Utils.generate_correlation_id()
optimization_id = Foundation.Utils.generate_id()
# Create optimization context
context = Foundation.ErrorContext.new(
__MODULE__,
:start_optimization,
correlation_id: correlation_id,
metadata: %{
optimization_id: optimization_id,
optimizer_type: spec.optimizer,
student_module: spec.student_module
}
)
result = Foundation.ErrorContext.with_context(context, fn ->
start_optimization_impl(optimization_id, spec, state)
end)
case result do
{:ok, new_state} ->
# Store optimization event
Foundation.Events.new_event(:optimization_started, %{
optimization_id: optimization_id,
optimizer_type: spec.optimizer,
student_module: spec.student_module,
trainset_size: length(spec.trainset)
}, correlation_id: correlation_id)
|> Foundation.Events.store()
{:reply, {:ok, optimization_id}, new_state}
{:error, error} ->
{:reply, {:error, error}, state}
end
end
# Handle configuration changes
def handle_info({:config_notification, {:config_updated, path, value}}, state) do
# React to relevant configuration changes
case path do
[:dspy, :optimization | _] ->
# Update optimization parameters for active optimizations
updated_state = update_active_optimizations(state, path, value)
{:noreply, updated_state}
_ ->
{:noreply, state}
end
end
end
Configuration Schema
DSPy-specific configuration integrated with Foundation’s config system:
# Foundation configuration extended for DSPy
%{
# Existing Foundation config sections...
ai: %{
provider: :openai, # Used by Foundation
api_key: {:system, "OPENAI_API_KEY"}
},
# DSPy-specific configuration
dspy: %{
modules: %{
default_lm_provider: :openai,
default_adapter: :chat,
cache_enabled: true,
cache_ttl: 3600
},
optimization: %{
copro: %{
breadth: 10,
depth: 3,
temperature: 1.4,
max_iterations: 50
},
bootstrap: %{
max_bootstrapped_demos: 4,
max_labeled_demos: 16,
teacher_settings: %{},
student_settings: %{}
}
},
providers: %{
openai: %{
base_url: "https://api.openai.com/v1",
default_model: "gpt-4",
max_retries: 3,
timeout: 30_000
},
anthropic: %{
base_url: "https://api.anthropic.com",
default_model: "claude-3-sonnet-20240229",
max_retries: 3,
timeout: 30_000
}
},
infrastructure: %{
circuit_breakers: %{
dspy_module_breaker: %{
failure_threshold: 5,
recovery_time: 30_000
}
},
rate_limiters: %{
module_execution: %{scale: 60_000, limit: 100},
lm_provider_default: %{scale: 60_000, limit: 50}
}
}
}
}
Event Schema
DSPy events integrated with Foundation’s event system:
# Module execution events
%Foundation.Types.Event{
event_type: :module_execution_start,
data: %{
module_id: "cot_1234",
module_type: :chain_of_thought,
signature: "question -> answer",
input_data: %{question: "What is the capital of France?"}
},
correlation_id: "req_abc123"
}
%Foundation.Types.Event{
event_type: :module_execution_complete,
data: %{
module_id: "cot_1234",
output_data: %{answer: "Paris"},
duration_ms: 1234,
lm_calls: 1,
cost_usd: 0.001
},
correlation_id: "req_abc123"
}
# Optimization events
%Foundation.Types.Event{
event_type: :optimization_iteration,
data: %{
optimization_id: "opt_5678",
iteration: 3,
candidate_instruction: "Think step by step...",
evaluation_score: 0.85,
metric: :accuracy
},
correlation_id: "opt_xyz789"
}
# LM provider events
%Foundation.Types.Event{
event_type: :lm_request,
data: %{
provider: :openai,
model: "gpt-4",
input_tokens: 150,
output_tokens: 75,
cost_usd: 0.002,
duration_ms: 800
},
correlation_id: "req_abc123"
}
Telemetry Schema
DSPy metrics integrated with Foundation’s telemetry:
# Performance metrics
[:dspy, :module, :execution, :duration] # Histogram
[:dspy, :module, :execution, :success] # Counter
[:dspy, :module, :execution, :error] # Counter
# LM provider metrics
[:dspy, :lm, :request, :duration] # Histogram
[:dspy, :lm, :request, :tokens] # Gauge
[:dspy, :lm, :request, :cost] # Gauge
# Optimization metrics
[:dspy, :optimization, :iteration] # Counter
[:dspy, :optimization, :score] # Gauge
[:dspy, :optimization, :duration] # Histogram
# Infrastructure metrics
[:dspy, :circuit_breaker, :state] # Gauge (open/closed)
[:dspy, :rate_limiter, :rejected] # Counter
[:dspy, :cache, :hit_rate] # Gauge
Supervision Strategy
Distributed Architecture Patterns
Multi-Node Optimization
defmodule DSPy.Cluster.OptimizationManager do
@moduledoc """
Manages distributed optimization across cluster nodes.
"""
# Leverages Foundation's service registry for cluster coordination
def distribute_optimization(optimization_spec) do
nodes = Node.list() ++ [Node.self()]
# Use Foundation's error context for distributed operations
correlation_id = Foundation.Utils.generate_correlation_id()
context = Foundation.ErrorContext.new(__MODULE__, :distribute_optimization,
correlation_id: correlation_id,
metadata: %{nodes: nodes, spec: optimization_spec}
)
Foundation.ErrorContext.with_context(context, fn ->
# Distribute work across nodes using Foundation's service registry
tasks = distribute_work_across_nodes(nodes, optimization_spec)
# Collect results with Foundation telemetry
results = collect_distributed_results(tasks, correlation_id)
# Aggregate using Foundation events for audit trail
final_result = aggregate_optimization_results(results, correlation_id)
{:ok, final_result}
end)
end
end
Streaming and Real-time Processing
defmodule DSPy.Streaming.ModuleExecution do
@moduledoc """
Handles streaming module execution with Foundation telemetry.
"""
use GenStage
def start_link(opts) do
GenStage.start_link(__MODULE__, opts)
end
def init(opts) do
# Subscribe to Foundation events for reactive processing
:ok = Foundation.Events.subscribe([:module_execution_start])
{:consumer, %{
module_manager: opts[:module_manager],
correlation_id: opts[:correlation_id]
}}
end
def handle_events(events, _from, state) do
# Process streaming events with Foundation error handling
processed_events = Enum.map(events, fn event ->
Foundation.ErrorContext.with_context(
Foundation.ErrorContext.new(__MODULE__, :handle_event,
correlation_id: state.correlation_id),
fn -> process_streaming_event(event, state) end
)
end)
{:noreply, [], state}
end
end
Testing Architecture
Built on Foundation’s test isolation capabilities:
defmodule DSPy.Test.Support do
@moduledoc """
Test utilities leveraging Foundation's test isolation.
"""
def setup_isolated_dspy_environment do
# Create isolated Foundation environment
test_ref = make_ref()
namespace = {:test, test_ref}
# Start isolated DSPy services
{:ok, _} = DSPy.Services.ModuleManager.start_link(namespace: namespace)
{:ok, _} = DSPy.Services.OptimizationCoordinator.start_link(namespace: namespace)
# Configure test-specific settings
Foundation.Config.update([:dspy, :modules, :cache_enabled], false)
Foundation.Config.update([:dspy, :optimization, :copro, :max_iterations], 3)
on_exit(fn ->
Foundation.ServiceRegistry.cleanup_test_namespace(test_ref)
end)
%{namespace: namespace, test_ref: test_ref}
end
end
defmodule DSPy.ModuleTest do
use ExUnit.Case
import DSPy.Test.Support
setup do
setup_isolated_dspy_environment()
end
test "chain of thought execution", %{namespace: namespace} do
# Test uses isolated DSPy environment with Foundation telemetry
correlation_id = Foundation.Utils.generate_correlation_id()
# Module execution with full observability
result = DSPy.Module.call(
DSPy.ChainOfThought,
%{question: "Test question"},
namespace: namespace,
correlation_id: correlation_id
)
assert {:ok, %{answer: _}} = result
# Verify telemetry was emitted
{:ok, events} = Foundation.Events.get_by_correlation(correlation_id)
assert length(events) > 0
end
end
Performance and Scalability Patterns
Caching Strategy
defmodule DSPy.Services.CacheManager do
@moduledoc """
Multi-layer caching with Foundation telemetry integration.
"""
# L1: In-memory ETS cache for hot data
# L2: Distributed cache across cluster nodes
# L3: Persistent cache for expensive operations
def get_cached_result(cache_key, opts \\ []) do
correlation_id = Keyword.get(opts, :correlation_id)
Foundation.Telemetry.measure(
[:dspy, :cache, :lookup],
%{cache_key: cache_key, correlation_id: correlation_id},
fn ->
case lookup_l1_cache(cache_key) do
{:hit, result} ->
Foundation.Telemetry.emit_counter([:dspy, :cache, :l1_hit], %{})
{:ok, result}
:miss ->
case lookup_l2_cache(cache_key) do
{:hit, result} ->
# Populate L1 cache
populate_l1_cache(cache_key, result)
Foundation.Telemetry.emit_counter([:dspy, :cache, :l2_hit], %{})
{:ok, result}
:miss ->
case lookup_l3_cache(cache_key) do
{:hit, result} ->
# Populate both L1 and L2
populate_l1_cache(cache_key, result)
populate_l2_cache(cache_key, result)
Foundation.Telemetry.emit_counter([:dspy, :cache, :l3_hit], %{})
{:ok, result}
:miss ->
Foundation.Telemetry.emit_counter([:dspy, :cache, :miss], %{})
:miss
end
end
end
end
)
end
end
Resource Pool Management
defmodule DSPy.ResourcePool do
@moduledoc """
Manages pools of expensive resources (LM connections, optimization workers)
using Foundation's connection manager patterns.
"""
def start_lm_provider_pool(provider_name, opts \\ []) do
pool_config = [
name: {:local, :"#{provider_name}_pool"},
worker_module: DSPy.LMProvider.Worker,
size: opts[:pool_size] || 5,
max_overflow: opts[:max_overflow] || 10,
worker_args: [
provider_name: provider_name,
config: opts[:config] || %{}
]
]
# Use Foundation's connection manager for pool lifecycle
Foundation.Infrastructure.ConnectionManager.start_pool(
:"#{provider_name}_pool",
pool_config
)
end
def execute_with_provider(provider_name, operation_fn) do
pool_name = :"#{provider_name}_pool"
# Use Foundation's protected execution with connection pooling
Foundation.Infrastructure.execute_protected(
:lm_provider_call,
[
connection_pool: pool_name,
circuit_breaker: :"#{provider_name}_breaker",
rate_limiter: {:lm_provider, provider_name}
],
operation_fn
)
end
end
Advanced DSPy Features
Signature Composition and Inheritance
defmodule DSPy.Signature.Composition do
@moduledoc """
Advanced signature patterns with type safety and validation.
"""
defmacro compose_signatures(signatures) do
quote do
def composed_signature do
base_signatures = unquote(signatures)
# Merge input and output fields with conflict resolution
merged_inputs = merge_signature_fields(base_signatures, :input)
merged_outputs = merge_signature_fields(base_signatures, :output)
%DSPy.Signature{
name: :composed,
instructions: compose_instructions(base_signatures),
input_fields: merged_inputs,
output_fields: merged_outputs,
metadata: %{composed_from: Enum.map(base_signatures, & &1.name)}
}
end
end
end
# Dynamic signature creation for complex workflows
def create_dynamic_signature(workflow_spec) do
correlation_id = Foundation.Utils.generate_correlation_id()
context = Foundation.ErrorContext.new(__MODULE__, :create_dynamic_signature,
correlation_id: correlation_id,
metadata: %{workflow_spec: workflow_spec}
)
Foundation.ErrorContext.with_context(context, fn ->
signature = build_signature_from_spec(workflow_spec)
# Validate the dynamically created signature
case DSPy.Signature.validate(signature) do
:ok ->
# Store signature creation event
Foundation.Events.new_event(:signature_created, %{
signature_name: signature.name,
field_count: map_size(signature.input_fields) + map_size(signature.output_fields)
}, correlation_id: correlation_id)
|> Foundation.Events.store()
{:ok, signature}
{:error, validation_errors} ->
error = Foundation.Error.new(
:signature_validation_failed,
"Dynamic signature validation failed",
context: %{validation_errors: validation_errors}
)
{:error, error}
end
end)
end
end
Advanced Module Patterns
defmodule DSPy.Module.ChainOfThought do
@moduledoc """
Chain of Thought implementation with Foundation integration.
"""
@behaviour DSPy.Module
use DSPy.Signature, fields: [
question: DSPy.Field.input(:string, "Question to answer"),
rationale: DSPy.Field.output(:string, "Step-by-step reasoning"),
answer: DSPy.Field.output(:string, "Final answer")
]
def signature do
%DSPy.Signature{
name: :chain_of_thought,
instructions: "Think step by step and provide detailed reasoning before giving your final answer.",
input_fields: %{question: DSPy.Field.input(:string, "Question to answer")},
output_fields: %{
rationale: DSPy.Field.output(:string, "Step-by-step reasoning"),
answer: DSPy.Field.output(:string, "Final answer")
},
metadata: %{reasoning_type: :sequential}
}
end
def forward(inputs, opts \\ []) do
correlation_id = Keyword.get(opts, :correlation_id) || Foundation.Utils.generate_correlation_id()
module_id = Keyword.get(opts, :module_id) || "cot_#{Foundation.Utils.generate_id()}"
# Create execution context
context = Foundation.ErrorContext.new(__MODULE__, :forward,
correlation_id: correlation_id,
metadata: %{module_id: module_id, inputs: inputs}
)
Foundation.ErrorContext.with_context(context, fn ->
# Validate inputs
case validate_inputs(inputs) do
:ok -> execute_chain_of_thought(inputs, opts, context)
{:error, validation_error} -> {:error, validation_error}
end
end)
end
defp execute_chain_of_thought(inputs, opts, context) do
# Get LM provider from configuration or options
provider = Keyword.get(opts, :lm_provider) ||
Foundation.Config.get_with_default([:dspy, :modules, :default_lm_provider], :openai)
# Get adapter for prompt formatting
adapter = Keyword.get(opts, :adapter) ||
Foundation.Config.get_with_default([:dspy, :modules, :default_adapter], :chat)
# Format prompt using adapter
case DSPy.Adapter.format(adapter, signature(), [], inputs) do
{:ok, formatted_prompt} ->
# Execute with LM provider through Foundation's protection
result = Foundation.Infrastructure.execute_protected(
:chain_of_thought_execution,
[
circuit_breaker: :dspy_module_breaker,
rate_limiter: {:module_execution, provider}
],
fn -> call_lm_provider(provider, formatted_prompt, opts) end
)
case result do
{:ok, completion} ->
# Parse completion using adapter
case DSPy.Adapter.parse(adapter, signature(), completion) do
{:ok, outputs} ->
# Validate outputs
case validate_outputs(outputs) do
:ok ->
# Emit success telemetry
Foundation.Telemetry.emit_counter([:dspy, :module, :cot, :success], %{
provider: provider,
correlation_id: context.correlation_id
})
{:ok, outputs}
{:error, validation_error} ->
{:error, validation_error}
end
{:error, parse_error} ->
{:error, parse_error}
end
{:error, lm_error} ->
{:error, lm_error}
end
{:error, format_error} ->
{:error, format_error}
end
end
defp call_lm_provider(provider, prompt, opts) do
# Use Foundation's service registry to get provider
case Foundation.ServiceRegistry.lookup(:production, {:lm_provider, provider}) do
{:ok, provider_pid} ->
GenServer.call(provider_pid, {:complete, prompt, opts})
{:error, _} ->
error = Foundation.Error.new(
:lm_provider_unavailable,
"LM provider #{provider} is not available",
context: %{provider: provider}
)
{:error, error}
end
end
end
Multi-Hop Reasoning Patterns
defmodule DSPy.Module.MultiHopQA do
@moduledoc """
Multi-hop question answering with Foundation event tracking for each step.
"""
@behaviour DSPy.Module
def signature do
%DSPy.Signature{
name: :multi_hop_qa,
instructions: "Answer complex questions by breaking them into steps and gathering information for each step.",
input_fields: %{
question: DSPy.Field.input(:string, "Complex question requiring multiple reasoning steps"),
context: DSPy.Field.input(:list, "Available context documents")
},
output_fields: %{
reasoning_steps: DSPy.Field.output(:list, "List of reasoning steps taken"),
final_answer: DSPy.Field.output(:string, "Final comprehensive answer")
},
metadata: %{reasoning_type: :multi_hop, complexity: :high}
}
end
def forward(inputs, opts \\ []) do
correlation_id = Keyword.get(opts, :correlation_id) || Foundation.Utils.generate_correlation_id()
context = Foundation.ErrorContext.new(__MODULE__, :forward,
correlation_id: correlation_id,
metadata: %{question: inputs.question}
)
Foundation.ErrorContext.with_context(context, fn ->
# Step 1: Decompose question into sub-questions
{:ok, sub_questions} = decompose_question(inputs.question, correlation_id)
# Step 2: Answer each sub-question
reasoning_steps = Enum.map(sub_questions, fn sub_q ->
answer_sub_question(sub_q, inputs.context, correlation_id)
end)
# Step 3: Synthesize final answer
final_answer = synthesize_answer(reasoning_steps, inputs.question, correlation_id)
{:ok, %{
reasoning_steps: reasoning_steps,
final_answer: final_answer
}}
end)
end
defp decompose_question(question, correlation_id) do
# Create child event for question decomposition
Foundation.Events.new_event(:question_decomposition_start, %{
question: question
}, correlation_id: correlation_id)
|> Foundation.Events.store()
# Use a specialized module for question decomposition
result = DSPy.Module.call(DSPy.QuestionDecomposer, %{question: question},
correlation_id: correlation_id)
case result do
{:ok, %{sub_questions: sub_questions}} ->
Foundation.Events.new_event(:question_decomposition_complete, %{
question: question,
sub_questions: sub_questions,
sub_question_count: length(sub_questions)
}, correlation_id: correlation_id)
|> Foundation.Events.store()
{:ok, sub_questions}
error ->
error
end
end
defp answer_sub_question(sub_question, context, correlation_id) do
# Each sub-question gets its own reasoning trace
sub_correlation_id = "#{correlation_id}_sub_#{Foundation.Utils.generate_id()}"
Foundation.Events.new_event(:sub_question_start, %{
sub_question: sub_question,
parent_correlation_id: correlation_id
}, correlation_id: sub_correlation_id)
|> Foundation.Events.store()
# Use Chain of Thought for each sub-question
result = DSPy.Module.call(DSPy.ChainOfThought, %{
question: sub_question,
context: context
}, correlation_id: sub_correlation_id)
case result do
{:ok, %{rationale: rationale, answer: answer}} ->
Foundation.Events.new_event(:sub_question_complete, %{
sub_question: sub_question,
rationale: rationale,
answer: answer,
parent_correlation_id: correlation_id
}, correlation_id: sub_correlation_id)
|> Foundation.Events.store()
%{question: sub_question, rationale: rationale, answer: answer}
{:error, _} ->
%{question: sub_question, rationale: "Failed to answer", answer: "Unknown"}
end
end
end
Optimization Engine Architecture
COPRO Implementation with Foundation
defmodule DSPy.Teleprompt.COPRO do
@moduledoc """
Collaborative Prompt Optimization with Foundation event tracking and distributed execution.
"""
@behaviour DSPy.Optimizer
def name, do: :copro
def supports_distributed?, do: true
def compile(student_module, trainset, opts \\ []) do
correlation_id = Keyword.get(opts, :correlation_id) || Foundation.Utils.generate_correlation_id()
# Get COPRO configuration from Foundation config
{:ok, copro_config} = Foundation.Config.get([:dspy, :optimization, :copro])
config = Map.merge(copro_config, Map.new(opts))
context = Foundation.ErrorContext.new(__MODULE__, :compile,
correlation_id: correlation_id,
metadata: %{
student_module: student_module,
trainset_size: length(trainset),
config: config
}
)
Foundation.ErrorContext.with_context(context, fn ->
optimization_id = Foundation.Utils.generate_id()
# Start optimization tracking
Foundation.Events.new_event(:optimization_started, %{
optimization_id: optimization_id,
optimizer: :copro,
student_module: student_module,
trainset_size: length(trainset),
config: config
}, correlation_id: correlation_id)
|> Foundation.Events.store()
# Run COPRO optimization
result = run_copro_optimization(optimization_id, student_module, trainset, config, correlation_id)
case result do
{:ok, optimized_module} ->
Foundation.Events.new_event(:optimization_completed, %{
optimization_id: optimization_id,
optimizer: :copro,
final_score: optimized_module.final_score,
iterations: optimized_module.iterations_completed
}, correlation_id: correlation_id)
|> Foundation.Events.store()
{:ok, optimized_module}
{:error, error} ->
Foundation.Events.new_event(:optimization_failed, %{
optimization_id: optimization_id,
optimizer: :copro,
error: Foundation.Error.to_string(error)
}, correlation_id: correlation_id)
|> Foundation.Events.store()
{:error, error}
end
end)
end
defp run_copro_optimization(optimization_id, student_module, trainset, config, correlation_id) do
# Initialize with baseline instruction
current_instruction = get_baseline_instruction(student_module)
best_score = 0.0
best_instruction = current_instruction
# Run depth iterations
1..config.depth
|> Enum.reduce_while({best_instruction, best_score}, fn iteration, {best_inst, best_sc} ->
# Generate instruction candidates
candidates = generate_instruction_candidates(
best_inst,
config.breadth,
config.temperature,
correlation_id
)
# Evaluate candidates in parallel with Foundation protection
evaluation_results = evaluate_candidates_parallel(
candidates,
student_module,
trainset,
correlation_id
)
# Find best candidate
{iteration_best_instruction, iteration_best_score} =
Enum.max_by(evaluation_results, fn {_inst, score} -> score end)
# Emit iteration telemetry
Foundation.Telemetry.emit_gauge([:dspy, :optimization, :copro, :iteration_score],
iteration_best_score, %{
optimization_id: optimization_id,
iteration: iteration,
correlation_id: correlation_id
})
# Track iteration progress
Foundation.Events.new_event(:optimization_iteration, %{
optimization_id: optimization_id,
iteration: iteration,
candidates_evaluated: length(candidates),
best_score: iteration_best_score,
best_instruction: iteration_best_instruction
}, correlation_id: correlation_id)
|> Foundation.Events.store()
if iteration_best_score > best_sc do
{:cont, {iteration_best_instruction, iteration_best_score}}
else
# No improvement, consider early stopping based on config
if config[:early_stopping] && iteration > config[:min_iterations] do
{:halt, {best_inst, best_sc}}
else
{:cont, {best_inst, best_sc}}
end
end
end)
|> case do
{final_instruction, final_score} ->
# Create optimized module
optimized_module = create_optimized_module(
student_module,
final_instruction,
final_score,
optimization_id
)
{:ok, optimized_module}
end
end
defp evaluate_candidates_parallel(candidates, student_module, trainset, correlation_id) do
# Use Foundation's infrastructure protection for parallel evaluation
tasks = Enum.map(candidates, fn candidate_instruction ->
Task.async(fn ->
Foundation.Infrastructure.execute_protected(
:copro_candidate_evaluation,
[
circuit_breaker: :optimization_breaker,
rate_limiter: {:optimization_eval, candidate_instruction}
],
fn ->
evaluate_single_candidate(candidate_instruction, student_module, trainset, correlation_id)
end
)
end)
end)
# Collect results with timeout protection
Task.await_many(tasks, 60_000)
|> Enum.filter(fn
{:ok, result} -> true
{:error, _} -> false
end)
|> Enum.map(fn {:ok, result} -> result end)
end
end
Bootstrap Few-Shot with Process Pools
defmodule DSPy.Teleprompt.Bootstrap do
@moduledoc """
Bootstrap few-shot optimization using Foundation's process management.
"""
@behaviour DSPy.Optimizer
def name, do: :bootstrap
def supports_distributed?, do: true
def compile(student_module, trainset, opts \\ []) do
correlation_id = Keyword.get(opts, :correlation_id) || Foundation.Utils.generate_correlation_id()
# Use Foundation's configuration for bootstrap settings
{:ok, bootstrap_config} = Foundation.Config.get([:dspy, :optimization, :bootstrap])
config = Map.merge(bootstrap_config, Map.new(opts))
context = Foundation.ErrorContext.new(__MODULE__, :compile,
correlation_id: correlation_id,
metadata: %{student_module: student_module, config: config}
)
Foundation.ErrorContext.with_context(context, fn ->
# Start teacher pool for generating examples
{:ok, teacher_pool} = start_teacher_pool(config.teacher_settings, correlation_id)
# Generate bootstrapped demonstrations
{:ok, demonstrations} = generate_demonstrations(
teacher_pool,
trainset,
config,
correlation_id
)
# Select best demonstrations
best_demos = select_best_demonstrations(demonstrations, config, correlation_id)
# Create optimized student with demonstrations
optimized_student = create_student_with_demos(student_module, best_demos, correlation_id)
# Cleanup teacher pool
:ok = stop_teacher_pool(teacher_pool)
{:ok, optimized_student}
end)
end
defp start_teacher_pool(teacher_settings, correlation_id) do
# Use Foundation's connection manager for teacher process pool
pool_config = [
name: {:local, :bootstrap_teacher_pool},
worker_module: DSPy.Bootstrap.TeacherWorker,
size: teacher_settings[:pool_size] || 4,
max_overflow: teacher_settings[:max_overflow] || 2,
worker_args: [
teacher_settings: teacher_settings,
correlation_id: correlation_id
]
]
Foundation.Infrastructure.ConnectionManager.start_pool(
:bootstrap_teacher_pool,
pool_config
)
end
defp generate_demonstrations(teacher_pool, trainset, config, correlation_id) do
# Generate demonstrations using teacher pool
Foundation.Infrastructure.ConnectionManager.with_connection(
:bootstrap_teacher_pool,
fn teacher_worker ->
# Generate demonstrations with Foundation telemetry
Foundation.Telemetry.measure(
[:dspy, :bootstrap, :demonstration_generation],
%{correlation_id: correlation_id},
fn ->
demonstrations = Enum.map(trainset, fn example ->
GenServer.call(teacher_worker, {:generate_demo, example, config})
end)
# Filter successful demonstrations
successful_demos = Enum.filter(demonstrations, fn
{:ok, _demo} -> true
{:error, _} -> false
end)
|> Enum.map(fn {:ok, demo} -> demo end)
{:ok, successful_demos}
end
)
end
)
end
end
Error Handling and Recovery Patterns
Circuit Breaker Integration
defmodule DSPy.Infrastructure.CircuitBreaker do
@moduledoc """
DSPy-specific circuit breaker patterns using Foundation's infrastructure.
"""
def configure_dspy_circuit_breakers do
# Configure circuit breakers for different DSPy operations
breakers = [
# Module execution protection
{:dspy_module_breaker, %{
failure_threshold: 5,
recovery_time: 30_000,
timeout: 60_000
}},
# LM provider protection
{:lm_provider_breaker, %{
failure_threshold: 3,
recovery_time: 15_000,
timeout: 30_000
}},
# Optimization process protection
{:optimization_breaker, %{
failure_threshold: 2,
recovery_time: 60_000,
timeout: 300_000 # 5 minutes for long optimizations
}}
]
Enum.each(breakers, fn {name, config} ->
Foundation.Infrastructure.configure_protection(name, %{
circuit_breaker: config
})
end)
end
def handle_circuit_breaker_event(event_name, measurements, metadata) do
case event_name do
[:foundation, :circuit_breaker, :open] ->
# Circuit breaker opened - implement fallback strategies
handle_circuit_open(metadata.circuit_breaker_name, metadata)
[:foundation, :circuit_breaker, :half_open] ->
# Circuit breaker is testing - log for monitoring
Foundation.Events.new_event(:circuit_breaker_testing, %{
breaker_name: metadata.circuit_breaker_name,
correlation_id: metadata[:correlation_id]
}) |> Foundation.Events.store()
[:foundation, :circuit_breaker, :closed] ->
# Circuit breaker recovered - resume normal operation
handle_circuit_recovered(metadata.circuit_breaker_name, metadata)
end
end
defp handle_circuit_open(breaker_name, metadata) do
case breaker_name do
:dspy_module_breaker ->
# Switch to cached responses or simpler models
activate_module_fallback_strategy(metadata)
:lm_provider_breaker ->
# Switch to backup LM provider
activate_backup_lm_provider(metadata)
:optimization_breaker ->
# Pause optimization processes
pause_active_optimizations(metadata)
end
end
end
Graceful Degradation Patterns
defmodule DSPy.GracefulDegradation do
@moduledoc """
Implements graceful degradation patterns for DSPy operations.
"""
def execute_with_fallback(operation, primary_strategy, fallback_strategies \\ []) do
correlation_id = Foundation.Utils.generate_correlation_id()
context = Foundation.ErrorContext.new(__MODULE__, :execute_with_fallback,
correlation_id: correlation_id,
metadata: %{operation: operation, strategies_available: length(fallback_strategies) + 1}
)
Foundation.ErrorContext.with_context(context, fn ->
case try_strategy(operation, primary_strategy, correlation_id) do
{:ok, result} ->
{:ok, result}
{:error, _primary_error} ->
try_fallback_strategies(operation, fallback_strategies, correlation_id)
end
end)
end
defp try_fallback_strategies(_operation, [], correlation_id) do
error = Foundation.Error.new(
:all_strategies_failed,
"All execution strategies failed",
correlation_id: correlation_id
)
{:error, error}
end
defp try_fallback_strategies(operation, [strategy | remaining], correlation_id) do
case try_strategy(operation, strategy, correlation_id) do
{:ok, result} ->
# Log successful fallback
Foundation.Events.new_event(:fallback_strategy_success, %{
operation: operation,
strategy: strategy,
remaining_strategies: length(remaining)
}, correlation_id: correlation_id)
|> Foundation.Events.store()
{:ok, result}
{:error, _} ->
try_fallback_strategies(operation, remaining, correlation_id)
end
end
# Module execution with fallback to cached results
def execute_module_with_cache_fallback(module, inputs, opts \\ []) do
cache_key = DSPy.Cache.generate_key(module, inputs)
execute_with_fallback(
{:module_execution, module, inputs},
fn -> DSPy.Module.call(module, inputs, opts) end,
[
# Fallback 1: Use cached result if available
fn -> DSPy.Cache.get_cached_result(cache_key, allow_stale: true) end,
# Fallback 2: Use simplified version of the module
fn -> DSPy.Module.call(module, inputs, Keyword.put(opts, :simplified, true)) end,
# Fallback 3: Return default response
fn -> {:ok, generate_default_response(module, inputs)} end
]
)
end
end
Monitoring and Observability
Comprehensive Telemetry Integration
defmodule DSPy.Telemetry.Handler do
@moduledoc """
Central telemetry handler for DSPy operations using Foundation's telemetry system.
"""
def setup_dspy_telemetry do
# Attach handlers for DSPy-specific events
events = [
[:dspy, :module, :execution, :start],
[:dspy, :module, :execution, :stop],
[:dspy, :module, :execution, :exception],
[:dspy, :optimization, :start],
[:dspy, :optimization, :stop],
[:dspy, :optimization, :iteration],
[:dspy, :lm, :request, :start],
[:dspy, :lm, :request, :stop],
[:dspy, :cache, :hit],
[:dspy, :cache, :miss]
]
Foundation.Telemetry.attach_handlers(events)
# Set up custom handlers for DSPy metrics
:telemetry.attach_many(
"dspy-telemetry-handler",
events,
&handle_dspy_event/4,
%{}
)
end
def handle_dspy_event([:dspy, :optimization, :iteration], measurements, metadata, _config) do
# Track optimization progress
Foundation.Telemetry.emit_gauge(
[:dspy, :performance, :optimization_score],
measurements.score,
%{
optimization_id: metadata.optimization_id,
iteration: metadata.iteration,
optimizer_type: metadata.optimizer_type
}
)
# Store iteration event for detailed analysis
Foundation.Events.new_event(:optimization_iteration_complete, %{
optimization_id: metadata.optimization_id,
iteration: metadata.iteration,
score: measurements.score,
instruction: metadata.instruction,
parameters: metadata.parameters
}, correlation_id: metadata.correlation_id)
|> Foundation.Events.store()
end
end
Performance Monitoring and Alerting
defmodule DSPy.Monitoring.PerformanceWatcher do
use GenServer
@moduledoc """
Monitors DSPy system performance and triggers alerts based on Foundation telemetry.
"""
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(opts) do
# Subscribe to Foundation telemetry events
Foundation.Telemetry.subscribe([
[:dspy, :module, :execution],
[:dspy, :lm, :request],
[:dspy, :optimization]
])
state = %{
performance_window: opts[:performance_window] || 300_000, # 5 minutes
alert_thresholds: opts[:alert_thresholds] || default_thresholds(),
metrics_buffer: :ets.new(:dspy_metrics, [:ordered_set, :private])
}
{:ok, state}
end
def handle_info({:telemetry, event_name, measurements, metadata}, state) do
# Analyze performance patterns and detect anomalies
case analyze_performance_trend(event_name, measurements, metadata, state) do
{:alert, alert_type, details} ->
trigger_alert(alert_type, details)
{:degradation, metric, trend} ->
Foundation.Events.new_event(:performance_degradation_detected, %{
metric: metric,
trend: trend,
timestamp: System.system_time(:millisecond)
}) |> Foundation.Events.store()
:normal ->
:ok
end
{:noreply, state}
end
defp analyze_performance_trend(event_name, measurements, metadata, state) do
# Complex performance analysis using sliding windows
# Implementation would analyze trends, detect outliers, etc.
end
defp default_thresholds do
%{
module_execution_p95: 5000, # 5 seconds
lm_request_failure_rate: 0.05, # 5%
optimization_stagnation: 10 # iterations without improvement
}
end
end
Advanced DSPy Features Implementation
Signature Composition and Type Safety
defmodule DSPy.Signature.Advanced do
@moduledoc """
Advanced signature patterns with compile-time validation and composition.
"""
defmacro compose_signatures(signature_modules) do
quote do
# Compile-time signature validation and composition
composed_fields = unquote(signature_modules)
|> Enum.reduce(%{input: %{}, output: %{}}, fn sig_module, acc ->
sig = sig_module.signature()
# Validate field compatibility
validate_field_compatibility!(acc.input, sig.input_fields, :input)
validate_field_compatibility!(acc.output, sig.output_fields, :output)
%{
input: Map.merge(acc.input, sig.input_fields),
output: Map.merge(acc.output, sig.output_fields)
}
end)
# Generate composed signature struct
%DSPy.Signature{
name: :composed,
instructions: compose_instructions(unquote(signature_modules)),
input_fields: composed_fields.input,
output_fields: composed_fields.output,
metadata: %{
composed_from: Enum.map(unquote(signature_modules), & &1.__name__),
composition_time: System.system_time(:microsecond)
}
}
end
end
# Dynamic signature adaptation based on runtime context
def adapt_signature_for_context(base_signature, context) do
correlation_id = Foundation.Utils.generate_correlation_id()
context_analysis = analyze_context_requirements(context, correlation_id)
case context_analysis do
{:ok, adaptations} ->
adapted_signature = apply_signature_adaptations(base_signature, adaptations)
Foundation.Events.new_event(:signature_adapted, %{
base_signature: base_signature.name,
adaptations: adaptations,
context_type: context.type
}, correlation_id: correlation_id)
|> Foundation.Events.store()
{:ok, adapted_signature}
{:error, reason} ->
Foundation.Error.new(
:signature_adaptation_failed,
"Failed to adapt signature for context",
context: %{reason: reason, context: context}
)
end
end
end
Multi-Modal Module Support
defmodule DSPy.Module.MultiModal do
@behaviour DSPy.Module
@moduledoc """
Multi-modal DSPy module supporting text, image, audio, and video inputs.
"""
def signature do
%DSPy.Signature{
name: :multi_modal_analysis,
instructions: "Analyze the provided multi-modal inputs and generate comprehensive insights.",
input_fields: %{
text_input: DSPy.Field.input(:string, "Text content to analyze"),
image_input: DSPy.Field.input(:image, "Image content to analyze", optional: true),
audio_input: DSPy.Field.input(:audio, "Audio content to analyze", optional: true),
analysis_type: DSPy.Field.input(:enum, "Type of analysis required",
enum: [:sentiment, :content, :comprehensive])
},
output_fields: %{
text_analysis: DSPy.Field.output(:string, "Analysis of text content"),
image_analysis: DSPy.Field.output(:string, "Analysis of image content"),
audio_analysis: DSPy.Field.output(:string, "Analysis of audio content"),
cross_modal_insights: DSPy.Field.output(:string, "Insights from cross-modal analysis"),
confidence_scores: DSPy.Field.output(:map, "Confidence scores for each analysis")
},
metadata: %{
modalities: [:text, :image, :audio],
requires_gpu: true
}
}
end
def forward(inputs, opts \\ []) do
correlation_id = Keyword.get(opts, :correlation_id) || Foundation.Utils.generate_correlation_id()
context = Foundation.ErrorContext.new(__MODULE__, :forward,
correlation_id: correlation_id,
metadata: %{inputs: inputs, modalities: detect_input_modalities(inputs)}
)
Foundation.ErrorContext.with_context(context, fn ->
# Validate multi-modal inputs
case validate_multimodal_inputs(inputs) do
:ok -> execute_multimodal_analysis(inputs, opts, context)
{:error, validation_error} -> {:error, validation_error}
end
end)
end
defp execute_multimodal_analysis(inputs, opts, context) do
# Route to appropriate LM provider based on modality requirements
provider = select_multimodal_provider(inputs, opts)
# Process each modality
modality_results = process_modalities_parallel(inputs, provider, context)
# Perform cross-modal fusion
case fuse_multimodal_results(modality_results, context) do
{:ok, fused_results} ->
Foundation.Telemetry.emit_counter([:dspy, :multimodal, :success], %{
modalities: length(Map.keys(modality_results)),
provider: provider
})
{:ok, fused_results}
{:error, fusion_error} ->
{:error, fusion_error}
end
end
end
Advanced Optimization Patterns
defmodule DSPy.Teleprompt.AdaptiveOptimizer do
@behaviour DSPy.Optimizer
@moduledoc """
Adaptive optimization that learns from previous optimization runs and adjusts strategy.
"""
def name, do: :adaptive_optimizer
def supports_distributed?, do: true
def compile(student_module, trainset, opts \\ []) do
correlation_id = Keyword.get(opts, :correlation_id) || Foundation.Utils.generate_correlation_id()
# Load optimization history from Foundation events
optimization_history = load_optimization_history(student_module, correlation_id)
# Select optimization strategy based on history and current context
strategy = select_optimization_strategy(student_module, trainset, optimization_history)
context = Foundation.ErrorContext.new(__MODULE__, :compile,
correlation_id: correlation_id,
metadata: %{
student_module: student_module,
strategy: strategy,
trainset_size: length(trainset)
}
)
Foundation.ErrorContext.with_context(context, fn ->
optimization_id = Foundation.Utils.generate_id()
Foundation.Events.new_event(:adaptive_optimization_started, %{
optimization_id: optimization_id,
strategy: strategy,
student_module: student_module,
historical_runs: length(optimization_history)
}, correlation_id: correlation_id)
|> Foundation.Events.store()
# Execute selected optimization strategy
result = execute_adaptive_strategy(
strategy,
student_module,
trainset,
optimization_history,
correlation_id
)
case result do
{:ok, optimized_module} ->
# Store optimization results for future learning
store_optimization_results(optimization_id, strategy, optimized_module, correlation_id)
Foundation.Events.new_event(:adaptive_optimization_completed, %{
optimization_id: optimization_id,
strategy: strategy,
final_score: optimized_module.final_score,
adaptation_confidence: optimized_module.adaptation_confidence
}, correlation_id: correlation_id)
|> Foundation.Events.store()
{:ok, optimized_module}
{:error, error} ->
Foundation.Events.new_event(:adaptive_optimization_failed, %{
optimization_id: optimization_id,
strategy: strategy,
error: Foundation.Error.to_string(error)
}, correlation_id: correlation_id)
|> Foundation.Events.store()
{:error, error}
end
end)
end
defp select_optimization_strategy(student_module, trainset, history) do
# Analyze module complexity, trainset characteristics, and historical performance
module_complexity = analyze_module_complexity(student_module)
data_characteristics = analyze_data_characteristics(trainset)
historical_performance = analyze_historical_performance(history)
# Use Foundation's AI capabilities for strategy selection
strategy_selector = Foundation.AI.create_selector(
model: "strategy-selection-model",
features: %{
module_complexity: module_complexity,
data_characteristics: data_characteristics,
historical_performance: historical_performance
}
)
case Foundation.AI.predict(strategy_selector) do
{:ok, %{strategy: strategy, confidence: confidence}} when confidence > 0.7 ->
strategy
_ ->
# Fallback to COPRO for safety
:copro
end
end
end
Integration with External Systems
Foundation Integration Layer Enhancement
defmodule DSPy.Foundation.Integration do
@moduledoc """
Deep integration layer between DSPy and Foundation for enhanced capabilities.
"""
def setup_dspy_foundation_integration do
# Configure Foundation for DSPy-specific needs
Foundation.Config.register_namespace(:dspy, DSPy.Foundation.ConfigSchema)
# Set up DSPy-specific event handlers
Foundation.Events.register_handler(:dspy, DSPy.Foundation.EventHandler)
# Configure telemetry aggregation
Foundation.Telemetry.configure_aggregation(:dspy, %{
aggregation_window: 60_000, # 1 minute
metrics: [:module_performance, :optimization_progress, :lm_usage],
storage_strategy: :time_series
})
# Set up distributed coordination
Foundation.Cluster.register_service(:dspy_optimizer, DSPy.Services.OptimizationCoordinator)
Foundation.Cluster.register_service(:dspy_module_manager, DSPy.Services.ModuleManager)
:ok
end
# Enhanced error handling with Foundation's error tracking
def with_foundation_error_handling(operation, context \\ %{}) do
Foundation.ErrorContext.with_context(
Foundation.ErrorContext.new(__MODULE__, operation, metadata: context),
fn ->
operation_result = yield()
# Enhance result with Foundation metadata
case operation_result do
{:ok, result} ->
enhanced_result = Foundation.Utils.add_metadata(result, %{
foundation_version: Foundation.version(),
operation_timestamp: System.system_time(:microsecond),
correlation_id: Foundation.ErrorContext.current_correlation_id()
})
{:ok, enhanced_result}
{:error, error} ->
# Enhanced error with Foundation context
enhanced_error = Foundation.Error.enhance(error, context)
{:error, enhanced_error}
end
end
)
end
end
Real-time Adaptation and Learning
defmodule DSPy.Adaptation.RealTimeEngine do
use GenServer
@moduledoc """
Real-time adaptation engine that continuously optimizes DSPy modules based on performance feedback.
"""
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(opts) do
# Subscribe to performance events
Foundation.Events.subscribe([
:module_execution_complete,
:optimization_iteration_complete,
:lm_request_complete
])
state = %{
adaptation_rules: load_adaptation_rules(),
performance_baselines: %{},
adaptation_queue: :queue.new(),
learning_rate: opts[:learning_rate] || 0.01
}
# Schedule periodic adaptation processing
:timer.send_interval(30_000, :process_adaptations) # Every 30 seconds
{:ok, state}
end
def handle_info({:foundation_event, event}, state) do
case analyze_event_for_adaptation(event, state) do
{:adapt, adaptation_spec} ->
new_queue = :queue.in(adaptation_spec, state.adaptation_queue)
{:noreply, %{state | adaptation_queue: new_queue}}
:no_adaptation ->
{:noreply, state}
end
end
def handle_info(:process_adaptations, state) do
case :queue.out(state.adaptation_queue) do
{{:value, adaptation_spec}, new_queue} ->
# Process adaptation asynchronously
Task.start(fn -> apply_real_time_adaptation(adaptation_spec) end)
{:noreply, %{state | adaptation_queue: new_queue}}
{:empty, _} ->
{:noreply, state}
end
end
defp apply_real_time_adaptation(adaptation_spec) do
correlation_id = Foundation.Utils.generate_correlation_id()
Foundation.Events.new_event(:real_time_adaptation_start, %{
adaptation_type: adaptation_spec.type,
module_id: adaptation_spec.module_id,
trigger: adaptation_spec.trigger
}, correlation_id: correlation_id)
|> Foundation.Events.store()
case execute_adaptation(adaptation_spec, correlation_id) do
{:ok, updated_module} ->
# Hot-swap the module in the running system
DSPy.Services.ModuleManager.update_module(
adaptation_spec.module_id,
updated_module,
correlation_id: correlation_id
)
Foundation.Events.new_event(:real_time_adaptation_success, %{
module_id: adaptation_spec.module_id,
adaptation_type: adaptation_spec.type
}, correlation_id: correlation_id)
|> Foundation.Events.store()
{:error, reason} ->
Foundation.Events.new_event(:real_time_adaptation_failed, %{
module_id: adaptation_spec.module_id,
reason: reason
}, correlation_id: correlation_id)
|> Foundation.Events.store()
end
end
end
Security and Privacy Framework
defmodule DSPy.Security.PrivacyEngine do
@moduledoc """
Privacy-preserving execution engine for DSPy with data sanitization and secure computation.
"""
def secure_module_execution(module, inputs, privacy_config \\ %{}) do
correlation_id = Foundation.Utils.generate_correlation_id()
context = Foundation.ErrorContext.new(__MODULE__, :secure_execution,
correlation_id: correlation_id,
metadata: %{module: module, privacy_level: privacy_config[:level] || :standard}
)
Foundation.ErrorContext.with_context(context, fn ->
# Data sanitization based on privacy configuration
sanitized_inputs = sanitize_inputs(inputs, privacy_config)
# Execute with privacy-preserving LM providers if required
execution_opts = configure_privacy_execution(privacy_config, correlation_id)
# Monitor for potential data leakage
with_leakage_monitoring(correlation_id, fn ->
DSPy.Module.call(module, sanitized_inputs, execution_opts)
end)
end)
end
defp sanitize_inputs(inputs, privacy_config) do
case privacy_config[:level] do
:high ->
# Advanced PII detection and removal
inputs
|> detect_and_redact_pii()
|> apply_differential_privacy()
:medium ->
# Basic sanitization
inputs
|> detect_and_redact_pii()
_ ->
inputs
end
end
defp with_leakage_monitoring(correlation_id, execution_fn) do
# Set up monitoring for potential data leakage
monitor_pid = spawn_link(fn ->
monitor_data_leakage(correlation_id)
end)
try do
result = execution_fn.()
# Validate output for potential leakage
case validate_output_privacy(result, correlation_id) do
:safe ->
{:ok, result}
{:unsafe, violations} ->
{:error, Foundation.Error.new(
:privacy_violation,
"Output contains potential privacy violations",
context: %{violations: violations}
)}
end
after
Process.exit(monitor_pid, :normal)
end
end
end
Deployment and DevOps Integration
defmodule DSPy.Deployment.Strategy do
@moduledoc """
Deployment strategies for DSPy applications with Foundation's deployment capabilities.
"""
def deploy_dspy_application(app_spec, deployment_config) do
correlation_id = Foundation.Utils.generate_correlation_id()
# Validate deployment specification
case validate_deployment_spec(app_spec) do
:ok ->
execute_deployment(app_spec, deployment_config, correlation_id)
{:error, validation_errors} ->
{:error, Foundation.Error.new(
:invalid_deployment_spec,
"Deployment specification validation failed",
context: %{errors: validation_errors}
)}
end
end
defp execute_deployment(app_spec, config, correlation_id) do
deployment_id = Foundation.Utils.generate_id()
Foundation.Events.new_event(:dspy_deployment_started, %{
deployment_id: deployment_id,
app_name: app_spec.name,
target_environment: config.environment
}, correlation_id: correlation_id)
|> Foundation.Events.store()
deployment_steps = [
{:validate_resources, &validate_deployment_resources/3},
{:prepare_modules, &prepare_dspy_modules/3},
{:configure_services, &configure_dspy_services/3},
{:deploy_infrastructure, &deploy_dspy_infrastructure/3},
{:verify_deployment, &verify_dspy_deployment/3},
{:enable_traffic, &enable_deployment_traffic/3}
]
# Execute deployment pipeline with Foundation's error handling
Enum.reduce_while(deployment_steps, {:ok, %{}}, fn {step_name, step_fn}, {:ok, acc} ->
case step_fn.(app_spec, config, acc) do
{:ok, step_result} ->
Foundation.Events.new_event(:dspy_deployment_step_complete, %{
deployment_id: deployment_id,
step: step_name,
result: step_result
}, correlation_id: correlation_id)
|> Foundation.Events.store()
{:cont, {:ok, Map.put(acc, step_name, step_result)}}
{:error, step_error} ->
Foundation.Events.new_event(:dspy_deployment_step_failed, %{
deployment_id: deployment_id,
step: step_name,
error: Foundation.Error.to_string(step_error)
}, correlation_id: correlation_id)
|> Foundation.Events.store()
{:halt, {:error, step_error}}
end
end)
end
end
This comprehensive architecture builds upon Foundation’s capabilities to provide a robust, observable, and fault-tolerant DSPy implementation in Elixir. The design leverages OTP’s supervision trees, Foundation’s error handling and event systems, and the BEAM’s concurrency model to create a system that is both powerful and reliable.
The architecture emphasizes:
- Foundation Integration: Deep integration with Foundation for configuration, events, telemetry, and error handling
- OTP Compliance: Proper supervision strategies and “let it crash” philosophy
- Observability: Comprehensive monitoring and telemetry throughout the system
- Fault Tolerance: Circuit breakers, graceful degradation, and error recovery
- Scalability: Distributed optimization and module execution capabilities
- Security: Privacy-preserving execution and secure deployment practices
This provides a solid foundation for implementing DSPy’s powerful language model programming capabilities in the Elixir/BEAM ecosystem while maintaining the reliability and fault-tolerance that OTP is known for.