← Back to ORIG DESIGN DOCS

DSPEx 02 TECH SPECS FOUNDATION2 INTEGRATION

Documentation for DSPEx_02_TECH_SPECS_FOUNDATION2_INTEGRATION from the Ds ex repository.

DSPEx Technical Specifications: Foundation 2.0 Integration

Document Series Overview

This comprehensive technical specification details the integration of DSPEx with Foundation 2.0, covering implementation details, API designs, and architectural patterns necessary for building the world’s first distributed-native AI programming framework.

Part 1: Enhanced Client Architecture

1.1 Foundation 2.0-Powered Client Design

The DSPEx client architecture leverages Foundation 2.0’s distributed infrastructure capabilities while maintaining backward compatibility with existing APIs.

defmodule DSPEx.Client do
  @moduledoc """
  Foundation 2.0-enhanced LLM client with distributed capabilities.
  
  Features:
  - Multi-provider support with unified API
  - Foundation 2.0 circuit breakers and rate limiting
  - Distributed connection pooling
  - Intelligent failover and load balancing
  """
  
  use GenServer
  require Logger
  
  @type provider :: :openai | :anthropic | :gemini | :cohere
  @type client_options :: %{
    provider: provider(),
    model: String.t(),
    api_key: String.t(),
    base_url: String.t(),
    foundation_config: map()
  }
  
  # Public API
  
  @doc """
  Start a new client instance with Foundation 2.0 infrastructure.
  """
  @spec start_link(client_options()) :: GenServer.on_start()
  def start_link(opts) do
    name = Keyword.get(opts, :name, __MODULE__)
    GenServer.start_link(__MODULE__, opts, name: name)
  end
  
  @doc """
  Make a prediction request with distributed resilience.
  """
  @spec request(GenServer.server(), list(map()), keyword()) :: 
    {:ok, map()} | {:error, Foundation.Error.t()}
  def request(client, messages, opts \\ []) do
    correlation_id = Keyword.get(opts, :correlation_id) || 
      Foundation.Utils.generate_correlation_id()
    
    Foundation.Context.with_correlation_id(correlation_id, fn ->
      GenServer.call(client, {:request, messages, opts}, :infinity)
    end)
  end
  
  # GenServer Implementation
  
  @impl true
  def init(opts) do
    provider = Keyword.fetch!(opts, :provider)
    config_key = Keyword.get(opts, :config_key, provider)
    
    # Initialize Foundation 2.0 infrastructure
    case setup_foundation_infrastructure(provider, config_key, opts) do
      {:ok, infrastructure} ->
        state = %{
          provider: provider,
          infrastructure: infrastructure,
          stats: %{requests: 0, errors: 0, last_request: nil}
        }
        
        # Register with Foundation 2.0 service registry
        :ok = Foundation.ServiceRegistry.register(
          :production,
          :"dspex_client_#{provider}",
          self(),
          %{provider: provider, capabilities: [:prediction, :streaming]}
        )
        
        {:ok, state}
        
      {:error, reason} ->
        {:stop, {:infrastructure_setup_failed, reason}}
    end
  end
  
  @impl true
  def handle_call({:request, messages, opts}, _from, state) do
    # Update request stats
    state = update_in(state, [:stats, :requests], &(&1 + 1))
    state = put_in(state, [:stats, :last_request], DateTime.utc_now())
    
    # Execute request with Foundation 2.0 protection
    result = execute_protected_request(state.infrastructure, messages, opts)
    
    # Update error stats if needed
    state = case result do
      {:error, _} -> update_in(state, [:stats, :errors], &(&1 + 1))
      _ -> state
    end
    
    {:reply, result, state}
  end
  
  @impl true
  def handle_info({:foundation_event, event}, state) do
    # Handle Foundation 2.0 events (topology changes, etc.)
    case event do
      {:topology_changed, new_topology} ->
        Logger.info("DSPEx Client adapting to topology: #{inspect(new_topology)}")
        {:noreply, state}
        
      {:cluster_scaled, %{nodes_added: added, nodes_removed: removed}} ->
        Logger.info("Cluster scaled: +#{length(added)} -#{length(removed)} nodes")
        {:noreply, state}
        
      _ ->
        {:noreply, state}
    end
  end
  
  # Private Implementation
  
  defp setup_foundation_infrastructure(provider, config_key, opts) do
    with {:ok, provider_config} <- get_provider_config(config_key),
         {:ok, pool_name} <- setup_connection_pool(provider, provider_config),
         {:ok, protection_key} <- setup_protection_mechanisms(provider, provider_config) do
      
      infrastructure = %{
        pool_name: pool_name,
        protection_key: protection_key,
        provider_config: provider_config
      }
      
      {:ok, infrastructure}
    end
  end
  
  defp get_provider_config(config_key) do
    case Foundation.Config.get([:dspex, :providers, config_key]) do
      {:ok, config} -> {:ok, config}
      {:error, _} -> {:error, :provider_not_configured}
    end
  end
  
  defp setup_connection_pool(provider, config) do
    pool_name = :"dspex_#{provider}_pool"
    
    pool_config = %{
      worker_module: DSPEx.Client.HttpWorker,
      worker_args: [
        provider: provider,
        api_key: config.api_key,
        base_url: config.base_url,
        timeout: config.timeout || 30_000
      ],
      size: config.pool_size || 10,
      max_overflow: config.max_overflow || 5
    }
    
    case Foundation.Infrastructure.ConnectionManager.start_pool(pool_name, pool_config) do
      :ok -> {:ok, pool_name}
      error -> error
    end
  end
  
  defp setup_protection_mechanisms(provider, config) do
    protection_key = :"dspex_#{provider}_protection"
    
    protection_config = %{
      circuit_breaker: %{
        failure_threshold: config.circuit_breaker.failure_threshold || 5,
        recovery_time: config.circuit_breaker.recovery_time || 30_000,
        trip_function: &circuit_breaker_should_trip?/1
      },
      rate_limiter: %{
        scale: config.rate_limit.window_ms || 60_000,
        limit: config.rate_limit.max_requests || 100,
        bucket_function: &rate_limit_bucket/1
      }
    }
    
    case Foundation.Infrastructure.configure_protection(protection_key, protection_config) do
      :ok -> {:ok, protection_key}
      error -> error
    end
  end
  
  defp execute_protected_request(infrastructure, messages, opts) do
    request_fn = fn ->
      Foundation.Infrastructure.ConnectionManager.execute_with_worker(
        infrastructure.pool_name,
        fn worker ->
          DSPEx.Client.HttpWorker.post(worker, build_request_payload(messages, opts))
        end
      )
    end
    
    Foundation.Infrastructure.execute_protected(
      infrastructure.protection_key,
      [
        connection_pool: infrastructure.pool_name,
        rate_limiter: {:api_calls, opts[:user_id] || :global},
        timeout: opts[:timeout] || 30_000
      ],
      request_fn
    )
  end
  
  defp build_request_payload(messages, opts) do
    %{
      model: opts[:model] || "default",
      messages: messages,
      temperature: opts[:temperature] || 0.7,
      max_tokens: opts[:max_tokens] || 150,
      stream: opts[:stream] || false
    }
  end
  
  defp circuit_breaker_should_trip?(%{error_rate: rate, consecutive_failures: failures}) do
    rate > 0.5 or failures > 3
  end
  
  defp rate_limit_bucket(context) do
    # Dynamic bucket assignment based on context
    case context do
      %{user_id: user_id} -> "user:#{user_id}"
      %{api_key: api_key} -> "api_key:#{String.slice(api_key, 0..8)}"
      _ -> "global"
    end
  end
end

1.2 HTTP Worker Implementation

defmodule DSPEx.Client.HttpWorker do
  @moduledoc """
  HTTP worker for actual LLM API communication.
  """
  
  use GenServer
  
  @impl true
  def init(opts) do
    provider = Keyword.fetch!(opts, :provider)
    api_key = Keyword.fetch!(opts, :api_key)
    base_url = Keyword.fetch!(opts, :base_url)
    timeout = Keyword.get(opts, :timeout, 30_000)
    
    # Initialize HTTP client (Req-based)
    client = Req.new(
      base_url: base_url,
      headers: build_auth_headers(provider, api_key),
      receive_timeout: timeout,
      retry: false  # Let Foundation handle retries
    )
    
    state = %{
      provider: provider,
      client: client,
      stats: %{requests: 0, total_time: 0}
    }
    
    {:ok, state}
  end
  
  @impl true
  def handle_call({:post, payload}, _from, state) do
    start_time = System.monotonic_time()
    
    # Execute HTTP request
    result = case state.provider do
      :openai -> post_openai(state.client, payload)
      :anthropic -> post_anthropic(state.client, payload)
      :gemini -> post_gemini(state.client, payload)
      _ -> {:error, :unsupported_provider}
    end
    
    # Update stats
    end_time = System.monotonic_time()
    duration = System.convert_time_unit(end_time - start_time, :native, :millisecond)
    
    state = state
    |> update_in([:stats, :requests], &(&1 + 1))
    |> update_in([:stats, :total_time], &(&1 + duration))
    
    {:reply, result, state}
  end
  
  def post(worker, payload) do
    GenServer.call(worker, {:post, payload})
  end
  
  # Provider-specific implementations
  defp post_openai(client, payload) do
    case Req.post(client, url: "/chat/completions", json: payload) do
      {:ok, %{status: 200, body: body}} ->
        {:ok, body}
      {:ok, %{status: status, body: body}} ->
        {:error, %Foundation.Error{
          type: :api_error,
          message: "OpenAI API error",
          details: %{status: status, body: body}
        }}
      {:error, error} ->
        {:error, %Foundation.Error{
          type: :network_error,
          message: "Network error",
          details: %{error: error}
        }}
    end
  end
  
  defp post_anthropic(client, payload) do
    # Transform payload for Anthropic format
    anthropic_payload = %{
      model: payload.model,
      max_tokens: payload.max_tokens,
      messages: payload.messages
    }
    
    case Req.post(client, url: "/messages", json: anthropic_payload) do
      {:ok, %{status: 200, body: body}} ->
        # Transform response back to standard format
        {:ok, transform_anthropic_response(body)}
      {:ok, %{status: status, body: body}} ->
        {:error, %Foundation.Error{
          type: :api_error,
          message: "Anthropic API error",
          details: %{status: status, body: body}
        }}
      {:error, error} ->
        {:error, %Foundation.Error{
          type: :network_error,
          message: "Network error",
          details: %{error: error}
        }}
    end
  end
  
  defp post_gemini(client, payload) do
    # Transform payload for Gemini format
    gemini_payload = %{
      contents: transform_messages_to_gemini(payload.messages),
      generationConfig: %{
        temperature: payload.temperature,
        maxOutputTokens: payload.max_tokens
      }
    }
    
    case Req.post(client, url: ":generateContent", json: gemini_payload) do
      {:ok, %{status: 200, body: body}} ->
        {:ok, transform_gemini_response(body)}
      {:ok, %{status: status, body: body}} ->
        {:error, %Foundation.Error{
          type: :api_error,
          message: "Gemini API error",
          details: %{status: status, body: body}
        }}
      {:error, error} ->
        {:error, %Foundation.Error{
          type: :network_error,
          message: "Network error",
          details: %{error: error}
        }}
    end
  end
  
  defp build_auth_headers(:openai, api_key) do
    [{"authorization", "Bearer #{api_key}"}]
  end
  
  defp build_auth_headers(:anthropic, api_key) do
    [
      {"x-api-key", api_key},
      {"anthropic-version", "2023-06-01"}
    ]
  end
  
  defp build_auth_headers(:gemini, _api_key) do
    # Gemini uses query parameter authentication
    []
  end
  
  # Response transformation helpers
  defp transform_anthropic_response(body) do
    %{
      "choices" => [
        %{
          "message" => %{
            "role" => "assistant",
            "content" => body["content"] |> List.first() |> Map.get("text")
          }
        }
      ]
    }
  end
  
  defp transform_gemini_response(body) do
    content = body["candidates"]
    |> List.first()
    |> get_in(["content", "parts"])
    |> List.first()
    |> Map.get("text")
    
    %{
      "choices" => [
        %{
          "message" => %{
            "role" => "assistant",
            "content" => content
          }
        }
      ]
    }
  end
  
  defp transform_messages_to_gemini(messages) do
    Enum.map(messages, fn
      %{"role" => "system", "content" => content} ->
        %{"parts" => [%{"text" => content}], "role" => "user"}
      %{"role" => "user", "content" => content} ->
        %{"parts" => [%{"text" => content}], "role" => "user"}
      %{"role" => "assistant", "content" => content} ->
        %{"parts" => [%{"text" => content}], "role" => "model"}
    end)
  end
end

Part 2: Distributed Evaluation Engine

2.1 Foundation 2.0-Enhanced Evaluation

defmodule DSPEx.Evaluate do
  @moduledoc """
  Distributed evaluation engine using Foundation 2.0 capabilities.
  
  Features:
  - Cluster-aware workload distribution
  - Fault-tolerant evaluation with automatic recovery
  - Real-time progress tracking and metrics
  - Dynamic load balancing across nodes
  """
  
  alias Foundation.{Cluster, WorkDistribution, Context, Telemetry}
  
  @type evaluation_options :: %{
    max_concurrency: pos_integer(),
    timeout: timeout(),
    distribution_strategy: :round_robin | :capability_aware | :load_balanced,
    fault_tolerance: :none | :retry | :skip_failed,
    progress_callback: (map() -> :ok) | nil
  }
  
  @doc """
  Run distributed evaluation across Foundation 2.0 cluster.
  """
  @spec run_distributed(DSPEx.Program.t(), [DSPEx.Example.t()], function(), evaluation_options()) ::
    {:ok, %{score: float(), stats: map()}} | {:error, term()}
  def run_distributed(program, examples, metric_fn, opts \\ %{}) do
    correlation_id = Foundation.Utils.generate_correlation_id()
    
    Context.with_correlation_id(correlation_id, fn ->
      Telemetry.emit_span([:dspex, :evaluate, :distributed], %{
        program: program_name(program),
        example_count: length(examples),
        correlation_id: correlation_id
      }, fn ->
        do_run_distributed(program, examples, metric_fn, opts)
      end)
    end)
  end
  
  @doc """
  Run local evaluation with Foundation 2.0 observability.
  """
  @spec run_local(DSPEx.Program.t(), [DSPEx.Example.t()], function(), evaluation_options()) ::
    {:ok, %{score: float(), stats: map()}} | {:error, term()}
  def run_local(program, examples, metric_fn, opts \\ %{}) do
    max_concurrency = Map.get(opts, :max_concurrency, 100)
    timeout = Map.get(opts, :timeout, :infinity)
    
    start_time = System.monotonic_time()
    
    results = examples
    |> Task.async_stream(
      fn example ->
        Context.propagate(fn ->
          evaluate_single_example(program, example, metric_fn)
        end)
      end,
      max_concurrency: max_concurrency,
      timeout: timeout,
      on_timeout: :kill_task
    )
    |> Enum.to_list()
    
    end_time = System.monotonic_time()
    duration = System.convert_time_unit(end_time - start_time, :native, :millisecond)
    
    process_evaluation_results(results, duration)
  end
  
  # Private Implementation
  
  defp do_run_distributed(program, examples, metric_fn, opts) do
    distribution_strategy = Map.get(opts, :distribution_strategy, :capability_aware)
    
    # Get active cluster nodes with capabilities
    nodes = Cluster.active_nodes_with_capabilities([:dspex_evaluation])
    
    if Enum.empty?(nodes) do
      # Fallback to local evaluation
      run_local(program, examples, metric_fn, opts)
    else
      # Distribute work across cluster
      distribute_evaluation_work(program, examples, metric_fn, nodes, opts)
    end
  end
  
  defp distribute_evaluation_work(program, examples, metric_fn, nodes, opts) do
    chunk_size = calculate_optimal_chunk_size(examples, nodes)
    
    examples
    |> Enum.chunk_every(chunk_size)
    |> Enum.with_index()
    |> Task.async_stream(fn {chunk, index} ->
      target_node = select_target_node(nodes, index, opts)
      
      Context.propagate(fn ->
        WorkDistribution.execute_on_node(target_node, fn ->
          evaluate_chunk_on_node(program, chunk, metric_fn, opts)
        end)
      end)
    end, timeout: :infinity)
    |> Enum.reduce({[], %{}}, fn
      {:ok, {:ok, chunk_result}}, {results, stats} ->
        {[chunk_result | results], merge_stats(stats, chunk_result.stats)}
      {:ok, {:error, error}}, {results, stats} ->
        # Handle chunk failure based on fault tolerance setting
        case Map.get(opts, :fault_tolerance, :retry) do
          :skip_failed -> {results, update_in(stats, [:failed_chunks], &((&1 || 0) + 1))}
          :retry -> {results, stats}  # TODO: Implement retry logic
          :none -> throw({:chunk_failed, error})
        end
      {:exit, reason}, {results, stats} ->
        {results, update_in(stats, [:node_failures], &((&1 || 0) + 1))}
    end)
    |> then(fn {chunk_results, global_stats} ->
      aggregate_distributed_results(chunk_results, global_stats)
    end)
  end
  
  defp evaluate_chunk_on_node(program, chunk, metric_fn, opts) do
    max_concurrency = Map.get(opts, :max_concurrency, 50)
    start_time = System.monotonic_time()
    
    results = chunk
    |> Task.async_stream(
      fn example ->
        evaluate_single_example(program, example, metric_fn)
      end,
      max_concurrency: max_concurrency,
      timeout: 30_000
    )
    |> Enum.to_list()
    
    end_time = System.monotonic_time()
    duration = System.convert_time_unit(end_time - start_time, :native, :millisecond)
    
    {scores, errors} = Enum.reduce(results, {[], []}, fn
      {:ok, {:ok, score}}, {scores, errors} -> {[score | scores], errors}
      {:ok, {:error, error}}, {scores, errors} -> {scores, [error | errors]}
      {:exit, reason}, {scores, errors} -> {scores, [{:process_exit, reason} | errors]}
    end)
    
    {:ok, %{
      scores: scores,
      stats: %{
        node: node(),
        chunk_size: length(chunk),
        successful: length(scores),
        failed: length(errors),
        duration_ms: duration,
        errors: errors
      }
    }}
  end
  
  defp evaluate_single_example(program, example, metric_fn) do
    Telemetry.emit_span([:dspex, :evaluate, :example], %{
      program: program_name(program)
    }, fn ->
      with {:ok, prediction} <- DSPEx.Program.forward(program, example.inputs),
           score when is_number(score) <- metric_fn.(example, prediction) do
        {:ok, score}
      else
        {:error, reason} -> {:error, reason}
        other -> {:error, {:invalid_metric_result, other}}
      end
    end)
  end
  
  defp calculate_optimal_chunk_size(examples, nodes) do
    total_examples = length(examples)
    total_nodes = length(nodes)
    
    # Aim for 2-3 chunks per node for load balancing
    chunk_size = div(total_examples, total_nodes * 3)
    max(chunk_size, 1)
  end
  
  defp select_target_node(nodes, index, opts) do
    case Map.get(opts, :distribution_strategy, :round_robin) do
      :round_robin ->
        Enum.at(nodes, rem(index, length(nodes)))
      
      :capability_aware ->
        # Select node based on current load and capabilities
        Cluster.select_optimal_node(nodes, :dspex_evaluation)
      
      :load_balanced ->
        # Use Foundation's load balancing
        WorkDistribution.select_least_loaded_node(nodes)
    end
  end
  
  defp process_evaluation_results(results, duration) do
    {scores, errors} = Enum.reduce(results, {[], []}, fn
      {:ok, {:ok, score}}, {scores, errors} -> {[score | scores], errors}
      {:ok, {:error, error}}, {scores, errors} -> {scores, [error | errors]}
      {:exit, reason}, {scores, errors} -> {scores, [{:timeout, reason} | errors]}
    end)
    
    if Enum.empty?(scores) do
      {:error, :no_successful_evaluations}
    else
      average_score = Enum.sum(scores) / length(scores)
      
      {:ok, %{
        score: average_score,
        stats: %{
          total_examples: length(scores) + length(errors),
          successful: length(scores),
          failed: length(errors),
          duration_ms: duration,
          success_rate: length(scores) / (length(scores) + length(errors)),
          errors: errors
        }
      }}
    end
  end
  
  defp aggregate_distributed_results(chunk_results, global_stats) do
    all_scores = Enum.flat_map(chunk_results, & &1.scores)
    
    if Enum.empty?(all_scores) do
      {:error, :no_successful_evaluations}
    else
      average_score = Enum.sum(all_scores) / length(all_scores)
      
      total_stats = Enum.reduce(chunk_results, %{}, fn chunk_result, acc ->
        %{
          total_examples: (acc[:total_examples] || 0) + chunk_result.stats.chunk_size,
          successful: (acc[:successful] || 0) + chunk_result.stats.successful,
          failed: (acc[:failed] || 0) + chunk_result.stats.failed,
          total_duration_ms: (acc[:total_duration_ms] || 0) + chunk_result.stats.duration_ms,
          nodes_used: MapSet.put(acc[:nodes_used] || MapSet.new(), chunk_result.stats.node)
        }
      end)
      
      {:ok, %{
        score: average_score,
        stats: Map.merge(total_stats, global_stats)
      }}
    end
  end
  
  defp merge_stats(stats1, stats2) do
    Map.merge(stats1, stats2, fn
      _key, v1, v2 when is_number(v1) and is_number(v2) -> v1 + v2
      _key, v1, v2 when is_list(v1) and is_list(v2) -> v1 ++ v2
      _key, _v1, v2 -> v2
    end)
  end
  
  defp program_name(program) when is_struct(program) do
    program.__struct__
    |> Module.split()
    |> List.last()
    |> String.to_atom()
  end
  defp program_name(_), do: :unknown
end

Part 3: Distributed Teleprompter Architecture

3.1 Foundation 2.0-Enhanced Optimization

defmodule DSPEx.Teleprompter.DistributedBootstrap do
  @moduledoc """
  Distributed BootstrapFewShot optimizer using Foundation 2.0.
  
  Features:
  - Cluster-wide optimization coordination
  - Distributed consensus on best demonstrations
  - Fault-tolerant optimization with automatic recovery
  - Real-time optimization progress tracking
  """
  
  use GenServer
  @behaviour DSPEx.Teleprompter
  
  alias Foundation.{DistributedState, Consensus, WorkDistribution, Context}
  
  defstruct [
    :student,
    :teacher, 
    :trainset,
    :metric_fn,
    :optimization_state,
    :consensus_group,
    demos: [],
    target_demos: 16,
    optimization_id: nil
  ]
  
  @type optimization_options :: %{
    target_demos: pos_integer(),
    quality_threshold: float(),
    max_iterations: pos_integer(),
    consensus_threshold: float(),
    distributed: boolean()
  }
  
  # Public API
  
  @doc """
  Compile a student program using distributed optimization.
  """
  @spec compile(DSPEx.Program.t(), DSPEx.Program.t(), [DSPEx.Example.t()], 
                function(), optimization_options()) ::
    {:ok, DSPEx.Program.t()} | {:error, term()}
  def compile(student, teacher, trainset, metric_fn, opts \\ %{}) do
    optimization_id = Foundation.Utils.generate_correlation_id()
    
    Context.with_correlation_id(optimization_id, fn ->
      if Map.get(opts, :distributed, true) and cluster_available?() do
        compile_distributed(student, teacher, trainset, metric_fn, opts)
      else
        compile_local(student, teacher, trainset, metric_fn, opts)
      end
    end)
  end
  
  # GenServer Implementation
  
  def start_link(opts) do
    GenServer.start_link(__MODULE__, opts)
  end
  
  @impl true
  def init(opts) do
    state = struct(__MODULE__, opts)
    {:ok, state}
  end
  
  @impl true
  def handle_call({:optimize_distributed, opts}, _from, state) do
    result = do_optimize_distributed(state, opts)
    {:reply, result, state}
  end
  
  @impl true
  def handle_cast({:consensus_update, update}, state) do
    # Handle consensus updates from other nodes
    updated_state = apply_consensus_update(state, update)
    {:noreply, updated_state}
  end
  
  # Private Implementation
  
  defp compile_distributed(student, teacher, trainset, metric_fn, opts) do
    optimization_id = Foundation.Utils.generate_correlation_id()
    
    # Create distributed optimization state
    {:ok, optimization_state} = DistributedState.create(
      {:dspex_optimization, optimization_id},
      %{
        student: student,
        teacher: teacher,
        trainset: trainset,
        metric_fn: metric_fn,
        demos: [],
        target_demos: Map.get(opts, :target_demos, 16),
        quality_threshold: Map.get(opts, :quality_threshold, 0.7),
        nodes_participating: Foundation.Cluster.active_nodes(),
        start_time: DateTime.utc_now()
      }
    )
    
    # Create consensus group for demo selection
    {:ok, consensus_group} = Consensus.create_group(
      {:dspex_demo_consensus, optimization_id},
      threshold: Map.get(opts, :consensus_threshold, 0.6)
    )
    
    # Distribute bootstrap work across cluster
    case bootstrap_examples_distributed(optimization_state, consensus_group) do
      {:ok, best_demos} ->
        # Create optimized student with consensus-selected demos
        optimized_student = update_program_demos(student, best_demos)
        {:ok, optimized_student}
        
      {:error, reason} ->
        {:error, reason}
    end
  end
  
  defp compile_local(student, teacher, trainset, metric_fn, opts) do
    target_demos = Map.get(opts, :target_demos, 16)
    quality_threshold = Map.get(opts, :quality_threshold, 0.7)
    
    # Bootstrap examples locally
    bootstrapped_demos = trainset
    |> Task.async_stream(fn example ->
      bootstrap_single_example(teacher, example, metric_fn, quality_threshold)
    end, max_concurrency: 20)
    |> Stream.filter(fn
      {:ok, {:ok, _demo}} -> true
      _ -> false
    end)
    |> Stream.map(fn {:ok, {:ok, demo}} -> demo end)
    |> Enum.take(target_demos)
    
    optimized_student = update_program_demos(student, bootstrapped_demos)
    {:ok, optimized_student}
  end
  
  defp bootstrap_examples_distributed(optimization_state, consensus_group) do
    # Get cluster nodes capable of running teacher models
    capable_nodes = Foundation.Cluster.active_nodes_with_capabilities([:dspex_teacher])
    
    # Distribute training examples across nodes
    distributed_results = WorkDistribution.distribute_workload(
      optimization_state.trainset,
      capable_nodes,
      fn examples_chunk, target_node ->
        WorkDistribution.execute_on_node(target_node, fn ->
          bootstrap_chunk_on_node(
            optimization_state.teacher,
            examples_chunk,
            optimization_state.metric_fn,
            optimization_state.quality_threshold
          )
        end)
      end
    )
    
    # Collect all bootstrapped demos from all nodes
    all_demos = distributed_results
    |> Enum.flat_map(fn
      {:ok, demos} when is_list(demos) -> demos
      _ -> []
    end)
    
    # Use consensus to select best demos
    select_best_demos_with_consensus(all_demos, consensus_group, optimization_state.target_demos)
  end
  
  defp bootstrap_chunk_on_node(teacher, examples_chunk, metric_fn, quality_threshold) do
    Foundation.Context.propagate(fn ->
      examples_chunk
      |> Task.async_stream(fn example ->
        bootstrap_single_example(teacher, example, metric_fn, quality_threshold)
      end, max_concurrency: 10)
      |> Enum.reduce([], fn
        {:ok, {:ok, demo}}, acc -> [demo | acc]
        _, acc -> acc
      end)
    end)
  end
  
  defp bootstrap_single_example(teacher, example, metric_fn, quality_threshold) do
    Foundation.Telemetry.emit_span([:dspex, :bootstrap, :example], %{}, fn ->
      case DSPEx.Program.forward(teacher, example.inputs) do
        {:ok, prediction} ->
          score = metric_fn.(example, prediction)
          
          if score >= quality_threshold do
            demo = %DSPEx.Example{
              inputs: example.inputs,
              outputs: prediction.outputs,
              metadata: %{
                bootstrap_score: score,
                teacher_used: teacher_name(teacher),
                node: node()
              }
            }
            {:ok, demo}
          else
            {:error, :quality_too_low}
          end
          
        {:error, reason} ->
          {:error, reason}
      end
    end)
  end
  
  defp select_best_demos_with_consensus(all_demos, consensus_group, target_count) do
    # Score and rank all demos
    scored_demos = all_demos
    |> Enum.map(fn demo ->
      {demo, demo.metadata.bootstrap_score}
    end)
    |> Enum.sort_by(&elem(&1, 1), :desc)
    
    # Use consensus to agree on top demos
    consensus_proposals = scored_demos
    |> Enum.take(target_count * 2)  # Consider top 2x candidates
    |> Enum.chunk_every(div(target_count, 4))  # Create proposal chunks
    
    selected_demos = consensus_proposals
    |> Enum.reduce([], fn chunk, acc ->
      case Consensus.propose_and_decide(consensus_group, {:select_demos, chunk}) do
        {:ok, :accepted} ->
          chunk_demos = Enum.map(chunk, &elem(&1, 0))
          acc ++ chunk_demos
        _ ->
          acc
      end
    end)
    |> Enum.take(target_count)
    
    {:ok, selected_demos}
  end
  
  defp update_program_demos(program, demos) do
    # Update program with new demonstrations
    # This will depend on the specific program type
    case program do
      %DSPEx.Predict{} = predict ->
        %{predict | demos: demos}
      
      %DSPEx.ChainOfThought{predictor: predictor} = cot ->
        updated_predictor = %{predictor | demos: demos}
        %{cot | predictor: updated_predictor}
      
      other ->
        # For custom programs, try to set demos field if it exists
        if Map.has_key?(other, :demos) do
          %{other | demos: demos}
        else
          other
        end
    end
  end
  
  defp cluster_available?() do
    Foundation.Cluster.active_nodes() |> length() > 1
  end
  
  defp teacher_name(teacher) when is_struct(teacher) do
    teacher.__struct__
    |> Module.split()
    |> List.last()
  end
  defp teacher_name(_), do: "unknown"
end

Part 4: Advanced Foundation 2.0 Integration Patterns

4.1 Process Ecosystem for Complex AI Programs

defmodule DSPEx.ProcessEcosystem do
  @moduledoc """
  Foundation 2.0 process ecosystems for complex AI workflows.
  """
  
  alias Foundation.ProcessEcosystem
  
  @doc """
  Create a complete AI inference ecosystem.
  """
  def create_inference_ecosystem(program, inputs, opts \\ []) do
    ecosystem_id = Foundation.Utils.generate_correlation_id()
    
    ProcessEcosystem.spawn_ecosystem(
      {:dspex_inference, ecosystem_id},
      [
        # Main coordinator process
        {:coordinator, DSPEx.InferenceCoordinator, [
          program: program,
          inputs: inputs,
          correlation_id: ecosystem_id
        ]},
        
        # Input validation and preprocessing
        {:validator, DSPEx.InputValidator, [
          signature: program.signature,
          strict_mode: Keyword.get(opts, :strict_validation, false)
        ]},
        
        # Output post-processing and validation
        {:processor, DSPEx.OutputProcessor, [
          signature: program.signature,
          transformations: Keyword.get(opts, :transformations, [])
        ]},
        
        # Performance monitoring
        {:monitor, DSPEx.PerformanceMonitor, [
          metrics: [:latency, :token_usage, :cost],
          threshold_alerts: Keyword.get(opts, :alerts, [])
        ]},
        
        # Caching layer
        {:cache, DSPEx.CacheManager, [
          strategy: Keyword.get(opts, :cache_strategy, :lru),
          ttl: Keyword.get(opts, :cache_ttl, 3600)
        ]}
      ]
    )
  end
end

defmodule DSPEx.InferenceCoordinator do
  @moduledoc """
  Coordinates a complete inference workflow across ecosystem processes.
  """
  
  use GenServer
  alias Foundation.{Context, Telemetry}
  
  def start_link(opts) do
    GenServer.start_link(__MODULE__, opts)
  end
  
  @impl true
  def init(opts) do
    program = Keyword.fetch!(opts, :program)
    inputs = Keyword.fetch!(opts, :inputs)
    correlation_id = Keyword.fetch!(opts, :correlation_id)
    
    state = %{
      program: program,
      inputs: inputs,
      correlation_id: correlation_id,
      ecosystem_members: %{},
      status: :initializing
    }
    
    # Register with ecosystem
    send(self(), :register_with_ecosystem)
    
    {:ok, state}
  end
  
  @impl true
  def handle_info(:register_with_ecosystem, state) do
    # Discover other ecosystem members
    members = Foundation.ProcessEcosystem.get_ecosystem_members(
      {:dspex_inference, state.correlation_id}
    )
    
    state = %{state | ecosystem_members: members, status: :ready}
    
    # Start the inference workflow
    send(self(), :start_inference)
    
    {:noreply, state}
  end
  
  @impl true
  def handle_info(:start_inference, state) do
    Context.with_correlation_id(state.correlation_id, fn ->
      Telemetry.emit_span([:dspex, :ecosystem, :inference], %{
        program: program_name(state.program),
        correlation_id: state.correlation_id
      }, fn ->
        execute_inference_workflow(state)
      end)
    end)
    
    {:noreply, %{state | status: :completed}}
  end
  
  defp execute_inference_workflow(state) do
    with {:ok, validated_inputs} <- validate_inputs(state),
         {:ok, cached_result} <- check_cache(state, validated_inputs),
         {:ok, result} <- cached_result || execute_program(state, validated_inputs),
         {:ok, processed_result} <- process_output(state, result),
         :ok <- cache_result(state, validated_inputs, processed_result),
         :ok <- update_metrics(state, processed_result) do
      
      # Notify ecosystem of completion
      Foundation.ProcessEcosystem.broadcast_to_ecosystem(
        {:dspex_inference, state.correlation_id},
        {:inference_complete, processed_result}
      )
      
      {:ok, processed_result}
    else
      {:error, reason} ->
        # Handle and propagate errors
        Foundation.ProcessEcosystem.broadcast_to_ecosystem(
          {:dspex_inference, state.correlation_id},
          {:inference_failed, reason}
        )
        {:error, reason}
    end
  end
  
  defp validate_inputs(state) do
    case Map.get(state.ecosystem_members, :validator) do
      nil -> {:ok, state.inputs}
      validator_pid ->
        GenServer.call(validator_pid, {:validate, state.inputs})
    end
  end
  
  defp check_cache(state, inputs) do
    case Map.get(state.ecosystem_members, :cache) do
      nil -> {:ok, nil}
      cache_pid ->
        GenServer.call(cache_pid, {:get, cache_key(state.program, inputs)})
    end
  end
  
  defp execute_program(state, inputs) do
    DSPEx.Program.forward(state.program, inputs)
  end
  
  defp process_output(state, result) do
    case Map.get(state.ecosystem_members, :processor) do
      nil -> {:ok, result}
      processor_pid ->
        GenServer.call(processor_pid, {:process, result})
    end
  end
  
  defp cache_result(state, inputs, result) do
    case Map.get(state.ecosystem_members, :cache) do
      nil -> :ok
      cache_pid ->
        GenServer.cast(cache_pid, {:put, cache_key(state.program, inputs), result})
    end
  end
  
  defp update_metrics(state, result) do
    case Map.get(state.ecosystem_members, :monitor) do
      nil -> :ok
      monitor_pid ->
        GenServer.cast(monitor_pid, {:record_inference, result})
    end
  end
  
  defp cache_key(program, inputs) do
    :crypto.hash(:sha256, :erlang.term_to_binary({program, inputs}))
    |> Base.encode16()
  end
  
  defp program_name(program) when is_struct(program) do
    program.__struct__ |> Module.split() |> List.last()
  end
  defp program_name(_), do: "unknown"
end

This comprehensive technical specification provides the foundation for implementing DSPEx with full Foundation 2.0 integration, enabling unprecedented scale and reliability for distributed AI applications on the BEAM platform.