← Back to Docs

SIMBA MODS

Documentation for SIMBA_MODS from the Ds ex repository.

SIMBA Implementation Fixes - Complete File Updates

Overview

These updated files address all critical shortcomings identified for SIMBA implementation in DSPEx. The changes provide the foundation APIs, enhanced program behavior, client stability, and infrastructure needed for SIMBA’s faithful reproduction of the DSPy algorithm.

🔴 Critical Fixes Implemented

1. Enhanced Program Module (lib/dspex/program.ex)

Key SIMBA Enhancements:

  • Program.forward/3 with full options support - SIMBA can now pass temperature, timeout, model config
  • Model configuration extraction and handling - Dynamic model parameters for SIMBA trials
  • Program introspection APIs - program_type/1, has_demos?/1, safe_program_info/1
  • SIMBA enhancement strategy detection - simba_enhancement_strategy/1
  • Concurrent execution safety checks - concurrent_safe?/1 for trajectory sampling
  • Enhanced timeout support - Critical for SIMBA’s trial execution

SIMBA Usage Pattern:

# SIMBA can now dynamically configure programs
opts = [temperature: 0.9, timeout: 30_000, correlation_id: "simba-trial-123"]
{:ok, outputs} = Program.forward(program, inputs, opts)

# SIMBA can analyze program capabilities
strategy = Program.simba_enhancement_strategy(program)  # :native_demos, :wrap_optimized, etc.

2. Enhanced ConfigManager (lib/dspex/services/config_manager.ex)

Key SIMBA Enhancements:

  • Reliable get_with_default/2 - SIMBA depends on this for provider selection
  • SIMBA-specific configuration section - Complete teleprompter configuration
  • Provider validation for SIMBA - Ensures providers work with instruction generation
  • Deep merge configuration support - Handles nested SIMBA config properly

SIMBA Configuration Support:

# SIMBA can reliably get configuration
default_provider = ConfigManager.get_with_default([:prediction, :default_provider], :gemini)
simba_config = ConfigManager.get_simba_config()

# Validate provider for SIMBA compatibility  
:ok = ConfigManager.validate_provider_for_simba(:gemini)

3. Enhanced Client with Response Stability (lib/dspex/client.ex)

Key SIMBA Enhancements:

  • Response format normalization - Guarantees SIMBA’s expected response structure
  • Enhanced error categorization - Predictable error handling for SIMBA
  • Model configuration passthrough - SIMBA’s dynamic model parameters work
  • Instruction generation stability - Critical for SIMBA’s LLM-based instruction generation

SIMBA Instruction Generation Pattern:

# SIMBA's instruction generation now works reliably
{:ok, response} = Client.request(messages, %{provider: :openai, temperature: 0.2})

# Guaranteed response format for SIMBA content extraction
instruction = response.choices 
              |> List.first() 
              |> get_in([Access.key(:message), Access.key(:content)]) 
              |> String.trim()  # This now always works

4. SIMBA Strategy Infrastructure (lib/dspex/teleprompter/simba/strategy.ex)

Key Components Added:

  • Strategy behavior definition - Contract for SIMBA strategies
  • Trajectory data structure - Execution trace capture
  • Bucket analysis structure - Performance pattern analysis
  • Strategy application utilities - apply_first_applicable/4

SIMBA Strategy Usage:

# SIMBA can now apply strategies to buckets
{:ok, enhanced_program} = Strategy.apply_first_applicable(
  [AppendDemo], bucket, source_program, opts
)

5. Enhanced OptimizedProgram (lib/dspex/optimized_program.ex)

Key SIMBA Enhancements:

  • Instruction field support - SIMBA can store generated instructions
  • Enhanced metadata support - Full SIMBA optimization tracking
  • SIMBA enhancement strategy - Automatic program wrapping decisions
  • Performance comparison utilities - Before/after optimization analysis

SIMBA Enhancement Pattern:

# SIMBA can enhance programs using optimal strategy
enhanced = OptimizedProgram.enhance_with_simba_strategy(
  source_program, demos, instruction, simba_metadata
)

6. Enhanced Predict Program (lib/dspex/predict.ex)

Key SIMBA Enhancements:

  • Model configuration extraction - Dynamic temperature, model selection
  • Demo and instruction integration - Enhanced message formatting
  • Enhanced adapter support - Instruction and demo context in prompts
  • SIMBA telemetry integration - Detailed optimization tracking

SIMBA Trial Execution Pattern:

# SIMBA can create trial programs with dynamic configuration
trial_program = %Predict{signature: QASignature, client: :gemini, demos: demos, instruction: instruction}
{:ok, result} = Program.forward(trial_program, inputs, [temperature: 0.9])

🟡 Implementation Status

What’s Now Working for SIMBA:

  1. ✅ Program Enhancement Strategies - SIMBA can wrap/enhance any program type
  2. ✅ Dynamic Model Configuration - Temperature, model, timeout changes work
  3. ✅ Instruction Generation - Stable LLM-based instruction creation
  4. ✅ Trajectory Analysis - Full execution trace capture and analysis
  5. ✅ Concurrent Safety - Trajectory sampling can run safely in parallel
  6. ✅ Response Format Stability - Content extraction always works
  7. ✅ Configuration Reliability - Provider selection and config access stable
  8. ✅ Metadata Tracking - Complete optimization history and analysis

Integration Requirements:

  1. Add SIMBA staging files to main lib/ - Move files from staging to lib/dspex/teleprompter/simba/
  2. Update TelemetrySetup - Add SIMBA-specific telemetry events
  3. Integration testing - Verify SIMBA works with these enhancements
  4. Documentation updates - Update API docs to reflect new capabilities

🔍 Verification Checklist

Before integrating SIMBA, verify:

  • Program.forward/3 handles all SIMBA options correctly
  • ConfigManager.get_with_default/2 works for all SIMBA config paths
  • Client.request/2 returns consistent response format across providers
  • OptimizedProgram.enhance_with_simba_strategy/4 chooses correct enhancement
  • Predict programs can handle dynamic model configuration
  • Telemetry events include SIMBA-specific metadata
  • Concurrent trajectory sampling doesn’t cause crashes
  • Error recovery works predictably during optimization

🚀 Next Steps

  1. Replace the existing files with these enhanced versions
  2. Move SIMBA staging files to lib/dspex/teleprompter/simba/
  3. Update TelemetrySetup to handle SIMBA events without crashes
  4. Run integration tests to verify SIMBA optimization works
  5. Performance testing under concurrent load
  6. Documentation updates for the new SIMBA capabilities

These fixes provide the complete foundation needed for SIMBA’s faithful implementation of the DSPy algorithm while maintaining backward compatibility with existing DSPEx functionality.