MABEAM DSPEx Integration: ML-Specific Multi-Agent Layer
Overview
The DSPEx integration layer bridges the Foundation.MABEAM infrastructure with the sophisticated ElixirML variable system, enabling DSPEx programs to participate in multi-agent orchestration while maintaining their declarative signatures and ML-specific capabilities.
Integration Architecture
DSPEx.MABEAM.Integration - Program to Agent Conversion
defmodule DSPEx.MABEAM.Integration do
@moduledoc """
Integration layer that converts DSPEx programs into MABEAM agents.
Enables DSPEx programs to participate in multi-agent variable optimization
while maintaining their signatures and ML-specific capabilities.
"""
alias Foundation.MABEAM.Core
alias ElixirML.Variable
alias DSPEx.Program
@doc """
Convert a DSPEx program into a MABEAM agent.
## Examples
# Convert a DSPEx coder program into an agent
{:ok, agent_config} = DSPEx.MABEAM.Integration.agentize(
CoderProgram,
agent_id: :python_coder,
role: :executor,
coordination_variables: [
:coder_selection,
:resource_allocation,
:communication_topology
],
local_variables: [
:temperature,
:max_tokens,
:reasoning_strategy
]
)
"""
@spec agentize(module(), keyword()) :: {:ok, Foundation.MABEAM.Types.agent_config()} | {:error, term()}
def agentize(program_module, opts) do
with {:ok, program_info} <- analyze_program(program_module),
{:ok, agent_wrapper} <- create_agent_wrapper(program_module, opts),
{:ok, coordination_interface} <- setup_coordination_interface(program_info, opts),
{:ok, variable_bridge} <- bridge_variables(program_info, opts) do
agent_config = %{
module: agent_wrapper,
supervision_strategy: Keyword.get(opts, :supervision_strategy, :one_for_one),
resource_requirements: extract_resource_requirements(program_info, opts),
communication_interfaces: Keyword.get(opts, :communication_interfaces, [:direct, :pubsub]),
role: Keyword.get(opts, :role, :executor),
restart_strategy: Keyword.get(opts, :restart_strategy, :permanent),
# DSPEx-specific extensions
original_program: program_module,
coordination_variables: Keyword.get(opts, :coordination_variables, []),
local_variables: Keyword.get(opts, :local_variables, []),
variable_bridge: variable_bridge,
coordination_interface: coordination_interface
}
{:ok, agent_config}
end
end
@doc """
Create a multi-agent workflow from multiple DSPEx programs.
"""
@spec create_workflow([{module(), keyword()}], keyword()) ::
{:ok, Foundation.MABEAM.Types.multi_agent_space()} | {:error, term()}
def create_workflow(programs, opts \\ []) do
workflow_id = Keyword.get(opts, :workflow_id, generate_workflow_id())
# Convert each program to an agent
agent_configs = Enum.map(programs, fn {program_module, program_opts} ->
{:ok, config} = agentize(program_module, program_opts)
{program_opts[:agent_id] || program_module, config}
end)
# Create orchestration variables for the workflow
orchestration_variables = create_workflow_orchestration_variables(agent_configs, opts)
# Set up coordination graph
coordination_graph = create_coordination_graph(agent_configs, opts)
multi_agent_space = %{
id: workflow_id,
name: Keyword.get(opts, :name, "DSPEx Workflow"),
agents: Map.new(agent_configs),
orchestration_variables: Map.new(orchestration_variables, fn var -> {var.id, var} end),
coordination_graph: coordination_graph,
performance_metrics: %{},
adaptation_history: [],
fault_recovery: Keyword.get(opts, :fault_recovery, default_fault_recovery()),
scaling_policies: Keyword.get(opts, :scaling_policies, [])
}
{:ok, multi_agent_space}
end
## Private Implementation
defp analyze_program(program_module) do
# Extract program metadata, signatures, and variable dependencies
program_info = %{
module: program_module,
signatures: extract_signatures(program_module),
variables: extract_program_variables(program_module),
dependencies: extract_dependencies(program_module),
resource_hints: extract_resource_hints(program_module)
}
{:ok, program_info}
end
defp create_agent_wrapper(program_module, opts) do
agent_id = Keyword.get(opts, :agent_id, program_module)
# Create a GenServer wrapper that makes the program behave like an agent
wrapper_module = Module.concat([DSPEx.MABEAM.Agent, agent_id])
agent_code = quote do
defmodule unquote(wrapper_module) do
use GenServer
alias unquote(program_module)
alias Foundation.MABEAM.Core
alias ElixirML.Variable
@program_module unquote(program_module)
@agent_id unquote(agent_id)
def start_link(config) do
GenServer.start_link(__MODULE__, config, name: __MODULE__)
end
@impl true
def init(config) do
# Register with MABEAM core
:ok = Core.register_agent(@agent_id, config)
# Initialize program state
program_state = @program_module.init(config)
state = %{
program_state: program_state,
config: config,
coordination_variables: config.coordination_variables,
local_variables: config.local_variables,
performance_metrics: %{}
}
{:ok, state}
end
@impl true
def handle_call({:execute, inputs}, _from, state) do
# Execute the underlying DSPEx program
case @program_module.forward(state.program_state, inputs) do
{:ok, outputs} ->
# Update performance metrics
new_state = update_performance_metrics(state, inputs, outputs)
{:reply, {:ok, outputs}, new_state}
{:error, reason} ->
{:reply, {:error, reason}, state}
end
end
@impl true
def handle_call({:update_variables, variable_updates}, _from, state) do
# Update both coordination and local variables
new_program_state = apply_variable_updates(state.program_state, variable_updates)
new_state = %{state | program_state: new_program_state}
{:reply, :ok, new_state}
end
@impl true
def handle_cast({:coordination_directive, directive}, state) do
# Handle coordination directives from MABEAM
new_state = handle_coordination_directive(state, directive)
{:noreply, new_state}
end
defp update_performance_metrics(state, inputs, outputs) do
# Calculate performance metrics specific to this execution
execution_time = :os.system_time(:millisecond) - Map.get(inputs, :start_time, 0)
metrics = %{
last_execution_time: execution_time,
total_executions: Map.get(state.performance_metrics, :total_executions, 0) + 1,
average_execution_time: calculate_average_execution_time(state, execution_time),
success_rate: calculate_success_rate(state, :success)
}
%{state | performance_metrics: metrics}
end
defp apply_variable_updates(program_state, variable_updates) do
# Apply variable updates to the program state
Enum.reduce(variable_updates, program_state, fn {var_name, new_value}, acc_state ->
Variable.update_variable(acc_state, var_name, new_value)
end)
end
defp handle_coordination_directive(state, directive) do
case directive.action do
:reconfigure ->
# Reconfigure the agent based on coordination results
new_config = Map.merge(state.config, directive.parameters)
%{state | config: new_config}
:adjust_parameters ->
# Adjust program parameters
variable_updates = Map.get(directive.parameters, :variables, %{})
new_program_state = apply_variable_updates(state.program_state, variable_updates)
%{state | program_state: new_program_state}
_ ->
state
end
end
end
end
# Compile the agent wrapper
Code.compile_quoted(agent_code)
{:ok, wrapper_module}
end
defp setup_coordination_interface(program_info, opts) do
coordination_variables = Keyword.get(opts, :coordination_variables, [])
interface = %{
variable_subscriptions: coordination_variables,
coordination_callbacks: create_coordination_callbacks(program_info, coordination_variables),
resource_requirements: extract_resource_requirements(program_info, opts),
communication_protocols: [:direct_message, :variable_update, :coordination_directive]
}
{:ok, interface}
end
defp bridge_variables(program_info, opts) do
local_variables = Keyword.get(opts, :local_variables, [])
coordination_variables = Keyword.get(opts, :coordination_variables, [])
# Create mappings between ElixirML variables and MABEAM orchestration variables
variable_mappings = %{
local_to_orchestration: create_local_to_orchestration_mapping(local_variables, coordination_variables),
orchestration_to_local: create_orchestration_to_local_mapping(coordination_variables, local_variables)
}
bridge = %{
mappings: variable_mappings,
sync_strategy: Keyword.get(opts, :variable_sync, :on_coordination),
conflict_resolution: Keyword.get(opts, :conflict_resolution, :orchestration_wins)
}
{:ok, bridge}
end
end
DSPEx.MABEAM.VariableSpace - ML Variable Integration
defmodule DSPEx.MABEAM.VariableSpace do
@moduledoc """
Bridges ElixirML variable spaces with MABEAM orchestration variables.
Enables sophisticated ML variable optimization within multi-agent contexts.
"""
alias ElixirML.Variable
alias Foundation.MABEAM.Types
@doc """
Convert an ElixirML variable space to MABEAM orchestration variables.
"""
@spec convert_to_orchestration_variables(Variable.Space.t(), keyword()) ::
{:ok, [Types.orchestration_variable()]} | {:error, term()}
def convert_to_orchestration_variables(variable_space, opts \\ []) do
orchestration_variables = variable_space.variables
|> Map.values()
|> Enum.map(&convert_variable_to_orchestration(&1, opts))
|> Enum.reject(&is_nil/1)
{:ok, orchestration_variables}
end
@doc """
Create a multi-agent variable space that coordinates ML optimization.
"""
@spec create_multi_agent_space(Variable.Space.t(), [atom()], keyword()) ::
{:ok, Types.multi_agent_space()} | {:error, term()}
def create_multi_agent_space(base_space, agent_ids, opts \\ []) do
# Convert base variables to orchestration variables
{:ok, orchestration_vars} = convert_to_orchestration_variables(base_space, opts)
# Create agent-specific variable spaces
agent_spaces = Enum.map(agent_ids, fn agent_id ->
agent_space = create_agent_specific_space(base_space, agent_id, opts)
{agent_id, agent_space}
end) |> Map.new()
# Set up coordination graph based on variable dependencies
coordination_graph = create_variable_coordination_graph(orchestration_vars, agent_ids)
multi_agent_space = %{
id: Keyword.get(opts, :space_id, :multi_agent_ml_space),
name: Keyword.get(opts, :name, "Multi-Agent ML Variable Space"),
base_space: base_space,
agents: %{}, # Will be populated when agents are registered
orchestration_variables: Map.new(orchestration_vars, fn var -> {var.id, var} end),
local_variables: agent_spaces,
coordination_graph: coordination_graph,
performance_metrics: %{},
adaptation_history: []
}
{:ok, multi_agent_space}
end
## Private Implementation
defp convert_variable_to_orchestration(variable, opts) do
case determine_orchestration_type(variable) do
nil -> nil # Not suitable for orchestration
orchestration_type ->
%{
id: variable.name,
type: orchestration_type,
agents: Keyword.get(opts, :default_agents, []),
coordination_fn: create_coordination_function(variable, orchestration_type),
adaptation_fn: create_adaptation_function(variable),
constraints: convert_constraints(variable.constraints),
resource_requirements: estimate_resource_requirements(variable),
fault_tolerance: default_fault_tolerance(),
telemetry_config: default_telemetry_config()
}
end
end
defp determine_orchestration_type(variable) do
case variable.type do
:module -> :agent_selection
:choice when length(variable.constraints.choices) > 1 -> :agent_selection
:float when has_resource_implications?(variable) -> :resource_allocation
:integer when has_resource_implications?(variable) -> :resource_allocation
_ -> :parameter_coordination
end
end
defp create_coordination_function(variable, orchestration_type) do
case orchestration_type do
:agent_selection ->
fn var, agents, context ->
# Use variable value to select appropriate agents
selected = select_agents_based_on_variable(variable, agents, context)
directives = Enum.map(selected, fn agent ->
%Types.agent_directive{
agent: agent,
action: :activate,
parameters: %{variable_value: Variable.get_current_value(variable)},
priority: 1,
timeout: 30_000
}
end)
{:ok, directives}
end
:resource_allocation ->
fn var, agents, context ->
# Allocate resources based on variable value
allocation = calculate_resource_allocation(variable, agents, context)
directives = Enum.map(allocation, fn {agent, resources} ->
%Types.agent_directive{
agent: agent,
action: :allocate_resources,
parameters: %{resources: resources},
priority: 1,
timeout: 5_000
}
end)
{:ok, directives}
end
:parameter_coordination ->
fn var, agents, context ->
# Coordinate parameter values across agents
coordinated_value = coordinate_parameter_value(variable, agents, context)
directives = Enum.map(agents, fn agent ->
%Types.agent_directive{
agent: agent,
action: :update_parameter,
parameters: %{variable.name => coordinated_value},
priority: 1,
timeout: 1_000
}
end)
{:ok, directives}
end
end
end
defp create_adaptation_function(variable) do
fn var, metrics, context ->
# Use ElixirML's sophisticated variable optimization
case Variable.MLTypes.optimize_variable(variable, metrics, context) do
{:ok, optimized_variable} ->
# Convert back to orchestration variable
orchestration_var = convert_variable_to_orchestration(optimized_variable, [])
{:ok, orchestration_var}
{:error, reason} ->
{:error, reason}
end
end
end
end
DSPEx.MABEAM.Teleprompter - Multi-Agent Optimization
defmodule DSPEx.MABEAM.Teleprompter do
@moduledoc """
Multi-agent teleprompter that optimizes entire agent ecosystems.
Extends SIMBA and other algorithms to work across agent boundaries,
optimizing both individual agent parameters and inter-agent coordination.
"""
alias DSPEx.Teleprompter.SIMBA
alias ElixirML.Variable
alias Foundation.MABEAM.Core
@doc """
Multi-agent SIMBA that optimizes agent coordination and individual performance.
## Examples
# Optimize a coder-reviewer-tester agent team
{:ok, optimized_space} = DSPEx.MABEAM.Teleprompter.simba(
multi_agent_space,
training_tasks,
&team_performance_metric/2,
generations: 20,
mutation_strategies: [
:agent_selection, # Change which agents are active
:topology_mutation, # Change communication patterns
:parameter_mutation, # Optimize individual agent parameters
:resource_reallocation # Redistribute computational resources
]
)
"""
@spec simba(Types.multi_agent_space(), [training_example()], metric_function(), keyword()) ::
{:ok, Types.multi_agent_space()} | {:error, term()}
def simba(space, training_data, metric_fn, opts \\ []) do
generations = Keyword.get(opts, :generations, 10)
mutation_strategies = Keyword.get(opts, :mutation_strategies, [:parameter_mutation, :agent_selection])
population_size = Keyword.get(opts, :population_size, 20)
# Initialize population of multi-agent configurations
initial_population = generate_initial_population(space, population_size, opts)
# Evolution loop
final_population = Enum.reduce(1..generations, initial_population, fn generation, population ->
IO.puts("Multi-Agent SIMBA Generation #{generation}")
# Evaluate each configuration
evaluated_population = Enum.map(population, fn config ->
performance = evaluate_multi_agent_configuration(config, training_data, metric_fn)
{config, performance}
end)
# Select best configurations
elite = select_elite(evaluated_population, opts)
# Generate new population through mutation
new_population = generate_next_population(elite, mutation_strategies, opts)
new_population
end)
# Select best configuration
best_config = final_population
|> Enum.map(fn config ->
performance = evaluate_multi_agent_configuration(config, training_data, metric_fn)
{config, performance}
end)
|> Enum.max_by(fn {_config, performance} -> performance.overall_score end)
|> elem(0)
{:ok, best_config}
end
@doc """
Multi-agent BEACON for rapid team composition optimization.
"""
@spec beacon(Types.multi_agent_space(), [training_example()], metric_function(), keyword()) ::
{:ok, Types.multi_agent_space()} | {:error, term()}
def beacon(space, training_data, metric_fn, opts \\ []) do
# Use Bayesian optimization to find optimal agent team compositions
iterations = Keyword.get(opts, :iterations, 50)
# Define the optimization space
optimization_space = define_beacon_optimization_space(space)
# Bayesian optimization loop
best_config = Enum.reduce(1..iterations, nil, fn iteration, best_so_far ->
# Sample candidate configuration
candidate = sample_candidate_configuration(optimization_space, best_so_far, iteration)
# Evaluate candidate
performance = evaluate_multi_agent_configuration(candidate, training_data, metric_fn)
# Update best if improved
case best_so_far do
nil -> {candidate, performance}
{_best_config, best_performance} ->
if performance.overall_score > best_performance.overall_score do
{candidate, performance}
else
best_so_far
end
end
end)
{optimized_space, _performance} = best_config
{:ok, optimized_space}
end
## Private Implementation
defp generate_initial_population(base_space, population_size, opts) do
Enum.map(1..population_size, fn _ ->
mutate_multi_agent_space(base_space, [:random_initialization], opts)
end)
end
defp evaluate_multi_agent_configuration(space, training_data, metric_fn) do
# Start all agents in the configuration
{:ok, running_space} = start_agent_configuration(space)
# Run training examples through the agent team
results = Enum.map(training_data, fn example ->
execute_multi_agent_example(running_space, example)
end)
# Calculate team performance metrics
performance = %{
overall_score: metric_fn.(results, training_data),
individual_scores: calculate_individual_agent_scores(results, running_space),
coordination_efficiency: calculate_coordination_efficiency(results),
resource_utilization: calculate_resource_utilization(running_space),
communication_overhead: calculate_communication_overhead(results),
fault_tolerance_score: calculate_fault_tolerance_score(running_space),
adaptation_speed: calculate_adaptation_speed(results),
execution_time: calculate_total_execution_time(results),
memory_usage: calculate_memory_usage(running_space)
}
# Stop agents
stop_agent_configuration(running_space)
performance
end
defp mutate_multi_agent_space(space, strategies, opts) do
Enum.reduce(strategies, space, fn strategy, acc_space ->
apply_mutation_strategy(acc_space, strategy, opts)
end)
end
defp apply_mutation_strategy(space, :agent_selection, opts) do
# Randomly change which agents are active
available_agents = Map.keys(space.agents)
active_count = Enum.random(1..length(available_agents))
selected_agents = Enum.take_random(available_agents, active_count)
# Update orchestration variables to reflect new agent selection
updated_variables = space.orchestration_variables
|> Map.values()
|> Enum.map(fn var ->
if var.type == :agent_selection do
%{var | agents: selected_agents}
else
var
end
end)
|> Map.new(fn var -> {var.id, var} end)
%{space | orchestration_variables: updated_variables}
end
defp apply_mutation_strategy(space, :parameter_mutation, opts) do
# Mutate individual agent parameters
mutation_rate = Keyword.get(opts, :mutation_rate, 0.1)
updated_local_variables = space.local_variables
|> Enum.map(fn {agent_id, agent_space} ->
mutated_space = Variable.Space.mutate(agent_space, mutation_rate)
{agent_id, mutated_space}
end)
|> Map.new()
%{space | local_variables: updated_local_variables}
end
defp apply_mutation_strategy(space, :topology_mutation, opts) ->
# Change communication topology between agents
new_topology = generate_random_topology(Map.keys(space.agents))
updated_graph = %{space.coordination_graph | topology: new_topology}
%{space | coordination_graph: updated_graph}
end
defp apply_mutation_strategy(space, :resource_reallocation, opts) do
# Redistribute resources among agents
total_resources = calculate_total_available_resources(space)
agent_count = map_size(space.agents)
# Random resource allocation
allocations = generate_random_resource_allocation(total_resources, agent_count)
updated_variables = space.orchestration_variables
|> Map.values()
|> Enum.map(fn var ->
if var.type == :resource_allocation do
%{var | resource_requirements: Enum.random(allocations)}
else
var
end
end)
|> Map.new(fn var -> {var.id, var} end)
%{space | orchestration_variables: updated_variables}
end
end
Integration Benefits
Seamless DSPEx Compatibility
- Existing DSPEx programs work without modification
- Signatures and schemas are preserved
- ML-specific validation continues to work
Enhanced Variable System
- ElixirML variables become orchestration variables
- Sophisticated ML optimization algorithms (SIMBA, BEACON) work across agents
- Multi-objective optimization with agent coordination
Fault Tolerance
- Individual agent failures don’t crash the system
- Automatic agent recovery and replacement
- Graceful degradation of team performance
Performance Optimization
- Resource allocation based on agent performance
- Dynamic team composition optimization
- Communication pattern optimization
Usage Examples
Converting a DSPEx Program to an Agent
# Original DSPEx program
defmodule CoderProgram do
use DSPEx.Module
signature :code_generation do
input :requirements, :string
input :language, :choice, choices: [:python, :elixir, :javascript]
output :code, :string
output :confidence, :float
end
variable :temperature, :float, default: 0.3, range: {0.0, 1.0}
variable :max_tokens, :integer, default: 1000, range: {100, 4000}
end
# Convert to MABEAM agent
{:ok, agent_config} = DSPEx.MABEAM.Integration.agentize(
CoderProgram,
agent_id: :coder,
role: :executor,
coordination_variables: [:coder_selection, :resource_allocation],
local_variables: [:temperature, :max_tokens]
)
# Register with Foundation.MABEAM
Foundation.MABEAM.Core.register_agent(:coder, agent_config)
Creating a Multi-Agent Workflow
# Define multiple DSPEx programs
programs = [
{CoderProgram, [agent_id: :coder, role: :executor]},
{ReviewerProgram, [agent_id: :reviewer, role: :evaluator]},
{TesterProgram, [agent_id: :tester, role: :validator]}
]
# Create multi-agent workflow
{:ok, workflow} = DSPEx.MABEAM.Integration.create_workflow(
programs,
workflow_id: :code_development_team,
coordination_variables: [
:task_assignment, # Which agent handles which task
:quality_threshold, # When to escalate to human review
:resource_limits # Computational resource constraints
]
)
# Optimize the workflow with multi-agent SIMBA
{:ok, optimized_workflow} = DSPEx.MABEAM.Teleprompter.simba(
workflow,
training_tasks,
&code_quality_metric/2,
generations: 15,
mutation_strategies: [:agent_selection, :parameter_mutation, :topology_mutation]
)
Next Steps
- MABEAM_04_COORDINATION.md: Advanced coordination protocols
- MABEAM_05_DISTRIBUTION.md: Cluster distribution capabilities
- MABEAM_06_IMPLEMENTATION.md: Implementation plan and migration strategy
- Implementation of DSPEx.MABEAM.Integration module