MABEAM Advanced Coordination: Sophisticated Multi-Agent Protocols
Overview
Advanced coordination protocols enable sophisticated negotiation, consensus, and conflict resolution between agents in the MABEAM system. These protocols transform simple parameter coordination into intelligent multi-agent decision-making systems.
Negotiation Strategies
Auction-Based Coordination
defmodule Foundation.MABEAM.Coordination.Auction do
@moduledoc """
Auction-based coordination where agents bid for resources or parameter values.
"""
@doc """
Run an auction for variable value selection.
## Examples
# Agents bid for their preferred temperature setting
bids = [
{coder_agent, 0.1, bid: 5.0, reason: "Need precision for code"},
{creative_agent, 1.2, bid: 8.0, reason: "Need creativity for design"},
{reviewer_agent, 0.3, bid: 3.0, reason: "Need balance for review"}
]
{:ok, result} = Auction.run_auction(:temperature, bids,
auction_type: :sealed_bid,
payment_rule: :second_price
)
"""
@spec run_auction(atom(), [bid()], keyword()) :: {:ok, auction_result()} | {:error, term()}
def run_auction(variable_id, bids, opts \\ []) do
auction_type = Keyword.get(opts, :auction_type, :sealed_bid)
payment_rule = Keyword.get(opts, :payment_rule, :first_price)
case auction_type do
:sealed_bid -> run_sealed_bid_auction(variable_id, bids, payment_rule)
:english -> run_english_auction(variable_id, bids, opts)
:dutch -> run_dutch_auction(variable_id, bids, opts)
:combinatorial -> run_combinatorial_auction(variable_id, bids, opts)
end
end
defp run_sealed_bid_auction(variable_id, bids, payment_rule) do
# Sort bids by amount (highest first)
sorted_bids = Enum.sort_by(bids, fn {_agent, _value, opts} ->
Keyword.get(opts, :bid, 0.0)
end, :desc)
case sorted_bids do
[] -> {:error, :no_bids}
[{winner_agent, winner_value, winner_opts} | rest] ->
# Determine payment based on rule
payment = case payment_rule do
:first_price -> Keyword.get(winner_opts, :bid, 0.0)
:second_price ->
case rest do
[] -> Keyword.get(winner_opts, :bid, 0.0)
[{_second_agent, _second_value, second_opts} | _] ->
Keyword.get(second_opts, :bid, 0.0)
end
end
result = %{
winner: winner_agent,
winning_value: winner_value,
payment: payment,
auction_type: :sealed_bid,
participants: length(bids),
efficiency: calculate_auction_efficiency(sorted_bids)
}
{:ok, result}
end
end
defp run_english_auction(variable_id, bids, opts) do
# Ascending price auction with multiple rounds
starting_price = Keyword.get(opts, :starting_price, 0.0)
increment = Keyword.get(opts, :increment, 0.1)
max_rounds = Keyword.get(opts, :max_rounds, 10)
# Simulate ascending auction rounds
final_result = Enum.reduce(1..max_rounds, {bids, starting_price}, fn round, {active_bids, current_price} ->
# Filter agents willing to bid at current price
willing_bidders = Enum.filter(active_bids, fn {agent, value, opts} ->
max_bid = Keyword.get(opts, :max_bid, Keyword.get(opts, :bid, 0.0))
max_bid >= current_price
end)
case length(willing_bidders) do
0 -> {[], current_price - increment} # No bidders, auction ends
1 -> {willing_bidders, current_price} # One bidder left, they win
_ -> {willing_bidders, current_price + increment} # Continue auction
end
end)
case final_result do
{[], final_price} -> {:error, :no_winning_bid}
{[{winner_agent, winner_value, _opts}], final_price} ->
result = %{
winner: winner_agent,
winning_value: winner_value,
payment: final_price,
auction_type: :english,
rounds: max_rounds,
participants: length(bids)
}
{:ok, result}
_ -> {:error, :auction_timeout}
end
end
end
Consensus Mechanisms
defmodule Foundation.MABEAM.Coordination.Consensus do
@moduledoc """
Consensus mechanisms for multi-agent decision making.
"""
@doc """
Achieve consensus using various algorithms.
## Examples
# Simple majority voting
{:ok, result} = Consensus.achieve_consensus(
[agent1, agent2, agent3, agent4, agent5],
%{temperature: 0.7, max_tokens: 1000},
algorithm: :simple_majority
)
# Weighted voting based on agent expertise
{:ok, result} = Consensus.achieve_consensus(
agents_with_weights,
proposed_changes,
algorithm: :weighted_voting,
weights: %{expert_agent: 3.0, novice_agent: 1.0}
)
"""
@spec achieve_consensus([atom()], map(), keyword()) :: {:ok, consensus_result()} | {:error, term()}
def achieve_consensus(agents, proposed_changes, opts \\ []) do
algorithm = Keyword.get(opts, :algorithm, :simple_majority)
timeout = Keyword.get(opts, :timeout, 30_000)
case algorithm do
:simple_majority -> simple_majority_consensus(agents, proposed_changes, opts)
:weighted_voting -> weighted_voting_consensus(agents, proposed_changes, opts)
:unanimous -> unanimous_consensus(agents, proposed_changes, opts)
:raft -> raft_consensus(agents, proposed_changes, opts)
:pbft -> pbft_consensus(agents, proposed_changes, opts)
:blockchain -> blockchain_consensus(agents, proposed_changes, opts)
end
end
defp simple_majority_consensus(agents, proposed_changes, opts) do
# Collect votes from all agents
votes = collect_votes(agents, proposed_changes, opts)
# Count votes for each proposal
vote_counts = Enum.reduce(votes, %{}, fn {_agent, vote}, acc ->
Map.update(acc, vote, 1, &(&1 + 1))
end)
# Find majority winner
total_votes = length(votes)
majority_threshold = div(total_votes, 2) + 1
winner = vote_counts
|> Enum.filter(fn {_proposal, count} -> count >= majority_threshold end)
|> Enum.max_by(fn {_proposal, count} -> count end, fn -> nil end)
case winner do
nil -> {:error, :no_majority}
{winning_proposal, vote_count} ->
result = %{
consensus: winning_proposal,
algorithm: :simple_majority,
vote_count: vote_count,
total_voters: total_votes,
confidence: vote_count / total_votes
}
{:ok, result}
end
end
defp weighted_voting_consensus(agents, proposed_changes, opts) do
weights = Keyword.get(opts, :weights, %{})
votes = collect_weighted_votes(agents, proposed_changes, weights, opts)
# Calculate weighted vote totals
weighted_totals = Enum.reduce(votes, %{}, fn {agent, vote, weight}, acc ->
Map.update(acc, vote, weight, &(&1 + weight))
end)
# Find weighted majority
total_weight = Enum.sum(Map.values(weights))
majority_threshold = total_weight / 2.0
winner = weighted_totals
|> Enum.filter(fn {_proposal, weight} -> weight > majority_threshold end)
|> Enum.max_by(fn {_proposal, weight} -> weight end, fn -> nil end)
case winner do
nil -> {:error, :no_weighted_majority}
{winning_proposal, total_weight} ->
result = %{
consensus: winning_proposal,
algorithm: :weighted_voting,
total_weight: total_weight,
confidence: total_weight / Enum.sum(Map.values(weighted_totals))
}
{:ok, result}
end
end
defp raft_consensus(agents, proposed_changes, opts) do
# Simplified Raft consensus implementation
# 1. Leader election
{:ok, leader} = elect_leader(agents, opts)
# 2. Leader proposes changes
proposal_id = generate_proposal_id()
# 3. Collect follower acknowledgments
acks = collect_raft_acknowledgments(leader, agents -- [leader], proposed_changes, proposal_id)
# 4. Check for majority
majority_threshold = div(length(agents), 2) + 1
if length(acks) >= majority_threshold do
# 5. Commit the changes
commit_result = commit_raft_changes(leader, agents, proposed_changes, proposal_id)
result = %{
consensus: proposed_changes,
algorithm: :raft,
leader: leader,
proposal_id: proposal_id,
acknowledgments: length(acks),
committed: commit_result == :ok
}
{:ok, result}
else
{:error, :insufficient_raft_majority}
end
end
end
Conflict Resolution
defmodule Foundation.MABEAM.Coordination.ConflictResolution do
@moduledoc """
Sophisticated conflict resolution mechanisms for multi-agent systems.
"""
@doc """
Resolve conflicts when agents have incompatible requirements.
## Examples
conflicts = [
%{
variable_id: :temperature,
conflicting_agents: [:coder, :creative_writer],
requested_values: [0.1, 1.5],
conflict_type: :value_incompatible
}
]
{:ok, resolutions} = ConflictResolution.resolve_conflicts(
conflicts,
strategy: :compromise,
fallback_strategy: :priority_override
)
"""
@spec resolve_conflicts([conflict()], keyword()) :: {:ok, [resolution()]} | {:error, term()}
def resolve_conflicts(conflicts, opts \\ []) do
strategy = Keyword.get(opts, :strategy, :compromise)
fallback_strategy = Keyword.get(opts, :fallback_strategy, :priority_override)
resolutions = Enum.map(conflicts, fn conflict ->
case resolve_single_conflict(conflict, strategy, opts) do
{:ok, resolution} -> resolution
{:error, _reason} ->
# Try fallback strategy
case resolve_single_conflict(conflict, fallback_strategy, opts) do
{:ok, fallback_resolution} -> fallback_resolution
{:error, fallback_reason} ->
%{
variable_id: conflict.variable_id,
resolution_type: :failed,
error: fallback_reason
}
end
end
end)
{:ok, resolutions}
end
defp resolve_single_conflict(conflict, strategy, opts) do
case strategy do
:compromise -> resolve_by_compromise(conflict, opts)
:priority_override -> resolve_by_priority(conflict, opts)
:time_sharing -> resolve_by_time_sharing(conflict, opts)
:resource_partitioning -> resolve_by_resource_partitioning(conflict, opts)
:negotiated_settlement -> resolve_by_negotiation(conflict, opts)
:leader_decision -> resolve_by_leader_decision(conflict, opts)
end
end
defp resolve_by_compromise(conflict, opts) do
case conflict.conflict_type do
:value_incompatible ->
# Find a compromise value between conflicting requests
values = conflict.requested_values
compromise_value = calculate_compromise_value(values, conflict.conflicting_agents, opts)
resolution = %{
variable_id: conflict.variable_id,
resolution_type: :compromise,
resolved_value: compromise_value,
affected_agents: conflict.conflicting_agents,
compromise_method: determine_compromise_method(values)
}
{:ok, resolution}
:resource_competition ->
# Allocate resources proportionally
total_requested = Enum.sum(conflict.requested_values)
available = Keyword.get(opts, :available_resources, total_requested)
proportional_allocations = conflict.requested_values
|> Enum.zip(conflict.conflicting_agents)
|> Enum.map(fn {requested, agent} ->
allocated = (requested / total_requested) * available
{agent, allocated}
end)
resolution = %{
variable_id: conflict.variable_id,
resolution_type: :resource_compromise,
allocations: proportional_allocations,
efficiency: available / total_requested
}
{:ok, resolution}
:temporal_constraint ->
# Create time-based sharing schedule
time_slots = create_time_sharing_schedule(conflict.conflicting_agents, conflict.requested_values, opts)
resolution = %{
variable_id: conflict.variable_id,
resolution_type: :temporal_compromise,
schedule: time_slots,
rotation_period: Keyword.get(opts, :rotation_period, 3600_000) # 1 hour default
}
{:ok, resolution}
end
end
defp resolve_by_priority(conflict, opts) do
# Get agent priorities
priorities = Keyword.get(opts, :agent_priorities, %{})
# Find highest priority agent
highest_priority_agent = conflict.conflicting_agents
|> Enum.max_by(fn agent -> Map.get(priorities, agent, 0) end)
# Find the value requested by highest priority agent
agent_index = Enum.find_index(conflict.conflicting_agents, &(&1 == highest_priority_agent))
winning_value = Enum.at(conflict.requested_values, agent_index)
resolution = %{
variable_id: conflict.variable_id,
resolution_type: :priority_override,
resolved_value: winning_value,
winning_agent: highest_priority_agent,
overridden_agents: conflict.conflicting_agents -- [highest_priority_agent]
}
{:ok, resolution}
end
defp resolve_by_time_sharing(conflict, opts) do
# Create fair time-sharing schedule
time_slot_duration = Keyword.get(opts, :time_slot_duration, 600_000) # 10 minutes
schedule = conflict.conflicting_agents
|> Enum.zip(conflict.requested_values)
|> Enum.with_index()
|> Enum.map(fn {{agent, value}, index} ->
start_time = index * time_slot_duration
end_time = start_time + time_slot_duration
%{
agent: agent,
value: value,
start_time: start_time,
end_time: end_time,
active: index == 0 # First agent starts active
}
end)
resolution = %{
variable_id: conflict.variable_id,
resolution_type: :time_sharing,
schedule: schedule,
rotation_period: length(conflict.conflicting_agents) * time_slot_duration
}
{:ok, resolution}
end
defp resolve_by_negotiation(conflict, opts) do
# Use auction or bargaining to resolve conflict
negotiation_type = Keyword.get(opts, :negotiation_type, :auction)
case negotiation_type do
:auction ->
# Convert conflict to auction format
bids = conflict.conflicting_agents
|> Enum.zip(conflict.requested_values)
|> Enum.map(fn {agent, value} ->
# Generate bid based on agent's urgency/importance
bid_amount = calculate_agent_bid(agent, value, conflict, opts)
{agent, value, [bid: bid_amount]}
end)
case Foundation.MABEAM.Coordination.Auction.run_auction(conflict.variable_id, bids, opts) do
{:ok, auction_result} ->
resolution = %{
variable_id: conflict.variable_id,
resolution_type: :negotiated_auction,
resolved_value: auction_result.winning_value,
winning_agent: auction_result.winner,
payment: auction_result.payment,
auction_efficiency: auction_result.efficiency
}
{:ok, resolution}
{:error, reason} ->
{:error, reason}
end
:bargaining ->
# Implement multi-party bargaining
{:ok, bargaining_result} = run_multi_party_bargaining(conflict, opts)
resolution = %{
variable_id: conflict.variable_id,
resolution_type: :negotiated_bargaining,
resolved_value: bargaining_result.agreed_value,
concessions: bargaining_result.concessions,
satisfaction_scores: bargaining_result.satisfaction_scores
}
{:ok, resolution}
end
end
## Helper Functions
defp calculate_compromise_value(values, agents, opts) when is_list(values) do
compromise_method = Keyword.get(opts, :compromise_method, :weighted_average)
case compromise_method do
:simple_average -> Enum.sum(values) / length(values)
:median -> calculate_median(values)
:weighted_average ->
weights = get_agent_weights(agents, opts)
weighted_sum = values
|> Enum.zip(weights)
|> Enum.map(fn {value, weight} -> value * weight end)
|> Enum.sum()
weighted_sum / Enum.sum(weights)
end
end
defp determine_compromise_method(values) do
# Analyze the distribution of values to suggest best compromise method
range = Enum.max(values) - Enum.min(values)
variance = calculate_variance(values)
cond do
range < 0.1 -> :simple_average # Values are close
variance > 0.5 -> :median # High variance, median is more robust
true -> :weighted_average # Default to weighted average
end
end
defp calculate_agent_bid(agent, value, conflict, opts) do
# Calculate how much an agent should bid based on various factors
base_bid = Keyword.get(opts, :base_bid, 1.0)
urgency_factor = get_agent_urgency(agent, opts)
importance_factor = get_variable_importance(conflict.variable_id, agent, opts)
resource_factor = get_agent_resources(agent, opts)
base_bid * urgency_factor * importance_factor * resource_factor
end
end
Market-Based Coordination
defmodule Foundation.MABEAM.Coordination.Market do
@moduledoc """
Market-based coordination mechanisms using economic principles.
"""
@doc """
Create a market for resource allocation and parameter coordination.
## Examples
# Create a computational resource market
{:ok, market} = Market.create_market(:compute_resources,
participants: [:coder, :reviewer, :tester],
resources: %{cpu: 100, memory: 1000, network: 50},
pricing_mechanism: :double_auction
)
# Run market clearing
{:ok, allocations} = Market.clear_market(market)
"""
@spec create_market(atom(), keyword()) :: {:ok, market()} | {:error, term()}
def create_market(market_id, opts) do
participants = Keyword.get(opts, :participants, [])
resources = Keyword.get(opts, :resources, %{})
pricing_mechanism = Keyword.get(opts, :pricing_mechanism, :double_auction)
market = %{
id: market_id,
participants: participants,
available_resources: resources,
pricing_mechanism: pricing_mechanism,
buy_orders: [],
sell_orders: [],
transaction_history: [],
market_state: :open
}
{:ok, market}
end
@spec clear_market(market()) :: {:ok, [allocation()]} | {:error, term()}
def clear_market(market) do
case market.pricing_mechanism do
:double_auction -> clear_double_auction(market)
:posted_price -> clear_posted_price_market(market)
:combinatorial_auction -> clear_combinatorial_auction(market)
:continuous_trading -> clear_continuous_trading(market)
end
end
defp clear_double_auction(market) do
# Sort buy orders by price (highest first)
sorted_buy_orders = Enum.sort_by(market.buy_orders, & &1.price, :desc)
# Sort sell orders by price (lowest first)
sorted_sell_orders = Enum.sort_by(market.sell_orders, & &1.price, :asc)
# Find matching orders
{transactions, remaining_buy, remaining_sell} = match_orders(sorted_buy_orders, sorted_sell_orders)
# Convert transactions to allocations
allocations = Enum.map(transactions, fn transaction ->
%{
buyer: transaction.buyer,
seller: transaction.seller,
resource: transaction.resource,
quantity: transaction.quantity,
price: transaction.clearing_price,
timestamp: DateTime.utc_now()
}
end)
{:ok, allocations}
end
defp match_orders(buy_orders, sell_orders) do
match_orders_recursive(buy_orders, sell_orders, [])
end
defp match_orders_recursive([], sell_orders, transactions) do
{transactions, [], sell_orders}
end
defp match_orders_recursive(buy_orders, [], transactions) do
{transactions, buy_orders, []}
end
defp match_orders_recursive([buy_order | rest_buy], [sell_order | rest_sell], transactions) do
if buy_order.price >= sell_order.price do
# Match found - create transaction
clearing_price = (buy_order.price + sell_order.price) / 2
quantity = min(buy_order.quantity, sell_order.quantity)
transaction = %{
buyer: buy_order.agent,
seller: sell_order.agent,
resource: buy_order.resource,
quantity: quantity,
clearing_price: clearing_price
}
# Update order quantities
updated_buy = %{buy_order | quantity: buy_order.quantity - quantity}
updated_sell = %{sell_order | quantity: sell_order.quantity - quantity}
# Continue matching with remaining quantities
remaining_buy = if updated_buy.quantity > 0, do: [updated_buy | rest_buy], else: rest_buy
remaining_sell = if updated_sell.quantity > 0, do: [updated_sell | rest_sell], else: rest_sell
match_orders_recursive(remaining_buy, remaining_sell, [transaction | transactions])
else
# No match possible - prices don't cross
{transactions, [buy_order | rest_buy], [sell_order | rest_sell]}
end
end
end
Coordination Patterns
Hierarchical Coordination
defmodule Foundation.MABEAM.Coordination.Hierarchical do
@moduledoc """
Hierarchical coordination with coordinator agents managing subordinates.
"""
@doc """
Set up hierarchical coordination structure.
"""
@spec setup_hierarchy([atom()], keyword()) :: {:ok, hierarchy()} | {:error, term()}
def setup_hierarchy(agents, opts) do
coordinator = Keyword.get(opts, :coordinator)
hierarchy_type = Keyword.get(opts, :type, :tree)
case hierarchy_type do
:tree -> setup_tree_hierarchy(agents, coordinator, opts)
:star -> setup_star_hierarchy(agents, coordinator, opts)
:layered -> setup_layered_hierarchy(agents, opts)
end
end
defp setup_tree_hierarchy(agents, root_coordinator, opts) do
branching_factor = Keyword.get(opts, :branching_factor, 3)
# Build tree structure
tree = build_coordination_tree(agents, root_coordinator, branching_factor)
hierarchy = %{
type: :tree,
root: root_coordinator,
structure: tree,
coordination_protocol: :top_down_with_feedback
}
{:ok, hierarchy}
end
@doc """
Coordinate agents through hierarchical structure.
"""
@spec coordinate_hierarchy(hierarchy(), coordination_request()) ::
{:ok, [coordination_result()]} | {:error, term()}
def coordinate_hierarchy(hierarchy, request) do
case hierarchy.type do
:tree -> coordinate_tree_hierarchy(hierarchy, request)
:star -> coordinate_star_hierarchy(hierarchy, request)
:layered -> coordinate_layered_hierarchy(hierarchy, request)
end
end
end
Benefits of Advanced Coordination
- Sophisticated Decision Making: Beyond simple parameter tuning to intelligent multi-agent decisions
- Conflict Resolution: Handles incompatible agent requirements gracefully
- Economic Efficiency: Market-based mechanisms optimize resource allocation
- Fault Tolerance: Multiple coordination strategies provide redundancy
- Scalability: Hierarchical structures handle large agent populations
Next Steps
- MABEAM_05_DISTRIBUTION.md: Cluster distribution capabilities
- MABEAM_06_IMPLEMENTATION.md: Implementation plan and migration strategy
- Implementation of advanced coordination protocols
- Integration testing with Foundation.MABEAM.Core