Phase 1: Variable System Design
Revolutionary Universal Parameter Optimization for ElixirML/DSPEx
Executive Summary
The Variable System represents the revolutionary core of ElixirML/DSPEx, enabling any optimizer to tune any parameter automatically. This system abstracts all configurable parameters into a unified interface, supporting automatic module selection (JSON vs Markdown adapters, Predict vs CoT vs PoT), configuration optimization, and multi-objective parameter discovery.
Design Philosophy
Core Innovation
The Variable System is inspired by DSPy creator Omar Khattab’s vision for decoupled parameter optimization. Instead of hardcoding configurations, every parameter becomes a Variable that can be automatically optimized:
# Traditional approach - hardcoded configuration
program = DSPEx.Predict.new(signature, client: :openai, temperature: 0.7)
# Variable System approach - automatic optimization
program = DSPEx.Predict.new(signature)
|> DSPEx.Variable.define(:client, choices: [:openai, :anthropic, :groq])
|> DSPEx.Variable.define(:temperature, range: {0.1, 1.5})
|> DSPEx.Variable.define(:adapter, choices: [:json_tool, :markdown_tool])
|> DSPEx.Variable.define(:reasoning, choices: [:predict, :cot, :pot])
# Optimizer automatically finds best combination
{:ok, optimized} = DSPEx.Teleprompter.SIMBA.compile(program, training_data, metric_fn)
Strategic Advantages
- Universal Optimization: Any parameter can be optimized by any optimizer
- Automatic Module Selection: AI-driven choice between adapters and strategies
- Multi-Objective Intelligence: Optimize for accuracy, cost, and latency simultaneously
- Configuration Discovery: Automatically discover optimal parameter combinations
- Type Safety: Compile-time and runtime validation of parameter configurations
Architecture Overview
Variable System Architecture
├── Core Variable Abstraction
│ ├── Variable Definition
│ ├── Variable Space Management
│ ├── Configuration Resolution
│ └── Constraint Validation
├── Parameter Types
│ ├── Continuous Variables (temperature, learning_rate)
│ ├── Discrete Variables (model, provider, adapter)
│ ├── Module Variables (reasoning strategy, adapter type)
│ └── Composite Variables (nested configurations)
├── Optimization Integration
│ ├── Optimizer Interface
│ ├── Multi-Objective Evaluation
│ ├── Pareto Frontier Analysis
│ └── Configuration Ranking
├── ML-Specific Features
│ ├── Provider-Model Compatibility
│ ├── Cost-Performance Trade-offs
│ ├── Latency Optimization
│ └── Quality Metrics Integration
└── Developer Experience
├── DSL for Variable Definition
├── Configuration Visualization
├── Performance Analytics
└── Debugging Tools
Core Variable Abstraction
1. Variable Definition
defmodule ElixirML.Variable do
@moduledoc """
Universal variable abstraction for parameter optimization.
Enables any optimizer to tune any parameter type.
"""
@type variable_type :: :float | :integer | :choice | :module | :composite
defstruct [
:name, # Variable identifier (atom)
:type, # Variable type
:default, # Default value
:constraints, # Type-specific constraints
:description, # Human-readable description
:dependencies, # Variable dependencies
:metadata, # Additional metadata
:optimization_hints # Hints for optimizers
]
@doc "Create a continuous floating-point variable"
def float(name, opts \\ []) do
%__MODULE__{
name: name,
type: :float,
default: Keyword.get(opts, :default, 0.5),
constraints: %{
range: Keyword.get(opts, :range, {0.0, 1.0}),
precision: Keyword.get(opts, :precision, 0.01),
distribution: Keyword.get(opts, :distribution, :uniform)
},
description: Keyword.get(opts, :description),
optimization_hints: Keyword.get(opts, :hints, [])
}
end
@doc "Create an integer variable with range constraints"
def integer(name, opts \\ []) do
%__MODULE__{
name: name,
type: :integer,
default: Keyword.get(opts, :default, 1),
constraints: %{
range: Keyword.get(opts, :range, {1, 100}),
step: Keyword.get(opts, :step, 1)
},
description: Keyword.get(opts, :description),
optimization_hints: Keyword.get(opts, :hints, [])
}
end
@doc "Create a discrete choice variable"
def choice(name, choices, opts \\ []) do
%__MODULE__{
name: name,
type: :choice,
default: Keyword.get(opts, :default, List.first(choices)),
constraints: %{
choices: choices,
allow_custom: Keyword.get(opts, :allow_custom, false),
weights: Keyword.get(opts, :weights, nil)
},
description: Keyword.get(opts, :description),
optimization_hints: Keyword.get(opts, :hints, [])
}
end
@doc "Create a module selection variable"
def module(name, opts \\ []) do
%__MODULE__{
name: name,
type: :module,
default: Keyword.get(opts, :default),
constraints: %{
modules: Keyword.get(opts, :modules, []),
behavior: Keyword.get(opts, :behavior),
capabilities: Keyword.get(opts, :capabilities, []),
compatibility_matrix: Keyword.get(opts, :compatibility, %{})
},
description: Keyword.get(opts, :description),
optimization_hints: Keyword.get(opts, :hints, [])
}
end
@doc "Create a composite variable with nested structure"
def composite(name, variables, opts \\ []) do
%__MODULE__{
name: name,
type: :composite,
default: Keyword.get(opts, :default, %{}),
constraints: %{
variables: variables,
validation_fn: Keyword.get(opts, :validation)
},
description: Keyword.get(opts, :description),
optimization_hints: Keyword.get(opts, :hints, [])
}
end
end
2. Variable Space Management
defmodule ElixirML.Variable.Space do
@moduledoc """
Manages collections of variables with their relationships and constraints.
Provides the search space for optimization algorithms.
"""
defstruct [
:id, # Unique identifier
:name, # Human-readable name
:variables, # Map of variable_name => Variable
:dependencies, # Variable dependency graph
:constraints, # Cross-variable constraints
:metadata, # Space-level metadata
:optimization_config # Optimization-specific configuration
]
def new(opts \\ []) do
%__MODULE__{
id: Keyword.get(opts, :id, generate_id()),
name: Keyword.get(opts, :name, "VariableSpace"),
variables: %{},
dependencies: %{},
constraints: [],
metadata: Keyword.get(opts, :metadata, %{}),
optimization_config: Keyword.get(opts, :optimization_config, %{})
}
end
def add_variable(space, %ElixirML.Variable{} = variable) do
%{space | variables: Map.put(space.variables, variable.name, variable)}
end
def add_dependency(space, from_var, to_var, condition) do
dependencies = Map.update(space.dependencies, from_var, [to_var], &[to_var | &1])
%{space | dependencies: dependencies}
end
def add_constraint(space, constraint_fn, description \\ nil) do
constraint = %{
function: constraint_fn,
description: description,
id: generate_constraint_id()
}
%{space | constraints: [constraint | space.constraints]}
end
def get_variable(space, name) do
Map.get(space.variables, name)
end
def list_variables(space) do
Map.values(space.variables)
end
def variable_count(space) do
map_size(space.variables)
end
def discrete_space_size(space) do
space.variables
|> Map.values()
|> Enum.map(&discrete_variable_size/1)
|> Enum.reduce(1, &*/2)
end
defp discrete_variable_size(%{type: :choice, constraints: %{choices: choices}}) do
length(choices)
end
defp discrete_variable_size(%{type: :module, constraints: %{modules: modules}}) do
length(modules)
end
defp discrete_variable_size(_), do: 1 # Continuous variables don't contribute to discrete size
def validate_configuration(space, configuration) do
with {:ok, _} <- validate_all_variables_present(space, configuration),
{:ok, _} <- validate_variable_values(space, configuration),
{:ok, _} <- validate_dependencies(space, configuration),
{:ok, _} <- validate_constraints(space, configuration) do
{:ok, configuration}
else
{:error, _} = error -> error
end
end
defp validate_all_variables_present(space, configuration) do
required_variables =
space.variables
|> Enum.filter(fn {_name, var} ->
var.metadata[:required] || var.default == nil
end)
|> Enum.map(fn {name, _var} -> name end)
missing_variables = required_variables -- Map.keys(configuration)
case missing_variables do
[] -> {:ok, configuration}
missing -> {:error, "Missing required variables: #{inspect(missing)}"}
end
end
defp validate_variable_values(space, configuration) do
errors =
configuration
|> Enum.flat_map(fn {var_name, value} ->
case Map.get(space.variables, var_name) do
nil -> [%{variable: var_name, error: "Unknown variable"}]
variable ->
case validate_variable_value(variable, value) do
{:ok, _} -> []
{:error, error} -> [%{variable: var_name, error: error}]
end
end
end)
case errors do
[] -> {:ok, configuration}
_ -> {:error, "Variable validation errors: #{inspect(errors)}"}
end
end
defp validate_variable_value(%{type: :float, constraints: %{range: {min, max}}}, value)
when is_number(value) do
if value >= min and value <= max do
{:ok, value}
else
{:error, "Value #{value} outside range #{min}..#{max}"}
end
end
defp validate_variable_value(%{type: :choice, constraints: %{choices: choices}}, value) do
if value in choices do
{:ok, value}
else
{:error, "Value #{inspect(value)} not in choices #{inspect(choices)}"}
end
end
defp validate_variable_value(%{type: :module, constraints: %{modules: modules}}, value) do
if value in modules do
{:ok, value}
else
{:error, "Module #{inspect(value)} not in allowed modules #{inspect(modules)}"}
end
end
defp validate_variable_value(_variable, value), do: {:ok, value}
defp validate_dependencies(space, configuration) do
# Check dependency graph for violations
errors =
space.dependencies
|> Enum.flat_map(fn {from_var, to_vars} ->
from_value = Map.get(configuration, from_var)
Enum.flat_map(to_vars, fn to_var ->
to_value = Map.get(configuration, to_var)
case check_dependency_condition(from_var, from_value, to_var, to_value) do
true -> []
false -> [%{from: from_var, to: to_var, error: "Dependency condition violated"}]
end
end)
end)
case errors do
[] -> {:ok, configuration}
_ -> {:error, "Dependency validation errors: #{inspect(errors)}"}
end
end
defp validate_constraints(space, configuration) do
errors =
space.constraints
|> Enum.flat_map(fn constraint ->
case constraint.function.(configuration) do
true -> []
false -> [%{constraint: constraint.id, error: constraint.description || "Constraint violated"}]
{:error, error} -> [%{constraint: constraint.id, error: error}]
end
end)
case errors do
[] -> {:ok, configuration}
_ -> {:error, "Constraint validation errors: #{inspect(errors)}"}
end
end
defp check_dependency_condition(_from_var, _from_value, _to_var, _to_value) do
# Simplified dependency checking - in real implementation would be configurable
true
end
defp generate_id(), do: "vs_#{System.unique_integer([:positive])}"
defp generate_constraint_id(), do: "constraint_#{System.unique_integer([:positive])}"
end
ML-Specific Variable Types
1. Provider-Model Variables
defmodule ElixirML.Variable.MLTypes do
@moduledoc """
ML-specific variable types with built-in compatibility and optimization logic.
"""
alias ElixirML.Variable
@doc "Create a provider variable with model compatibility"
def provider(name, opts \\ []) do
providers = Keyword.get(opts, :providers, [:openai, :anthropic, :groq, :google])
Variable.choice(name, providers,
description: "LLM Provider selection",
hints: [
optimization_priority: :cost_performance,
compatibility_aware: true
],
metadata: %{
cost_weights: %{
openai: 1.0,
anthropic: 1.2,
groq: 0.3,
google: 0.8
},
performance_weights: %{
openai: 0.9,
anthropic: 0.95,
groq: 0.7,
google: 0.85
}
}
)
end
@doc "Create a model variable with provider compatibility"
def model(name, opts \\ []) do
models = Keyword.get(opts, :models, [
"gpt-4", "gpt-3.5-turbo", "claude-3", "claude-2",
"gemini-pro", "llama-2-70b"
])
Variable.choice(name, models,
description: "Model selection",
hints: [
depends_on: [:provider],
compatibility_matrix: true
],
metadata: %{
compatibility: %{
openai: ["gpt-4", "gpt-3.5-turbo"],
anthropic: ["claude-3", "claude-2"],
google: ["gemini-pro"],
groq: ["llama-2-70b"]
},
capabilities: %{
"gpt-4" => [:reasoning, :code, :json_mode],
"claude-3" => [:reasoning, :long_context],
"gemini-pro" => [:multimodal, :reasoning]
}
}
)
end
@doc "Create an adapter variable with capability awareness"
def adapter(name, opts \\ []) do
adapters = Keyword.get(opts, :adapters, [
ElixirML.Adapter.JSON,
ElixirML.Adapter.Markdown,
ElixirML.Adapter.Chat
])
Variable.module(name,
modules: adapters,
behavior: ElixirML.Adapter,
description: "Response format adapter",
hints: [
performance_impact: :medium,
model_compatibility: true
],
metadata: %{
capabilities: %{
ElixirML.Adapter.JSON => [:structured_output, :tool_calling],
ElixirML.Adapter.Markdown => [:readable_output, :formatting],
ElixirML.Adapter.Chat => [:conversational, :streaming]
},
model_support: %{
"gpt-4" => [ElixirML.Adapter.JSON, ElixirML.Adapter.Chat],
"claude-3" => [ElixirML.Adapter.Markdown, ElixirML.Adapter.Chat],
"gemini-pro" => [ElixirML.Adapter.JSON, ElixirML.Adapter.Markdown]
}
}
)
end
@doc "Create a reasoning strategy variable"
def reasoning_strategy(name, opts \\ []) do
strategies = Keyword.get(opts, :strategies, [
ElixirML.Reasoning.Predict,
ElixirML.Reasoning.ChainOfThought,
ElixirML.Reasoning.ProgramOfThought,
ElixirML.Reasoning.ReAct
])
Variable.module(name,
modules: strategies,
behavior: ElixirML.Reasoning.Strategy,
description: "Reasoning strategy selection",
hints: [
performance_impact: :high,
accuracy_impact: :high,
cost_impact: :high
],
metadata: %{
complexity: %{
ElixirML.Reasoning.Predict => 1,
ElixirML.Reasoning.ChainOfThought => 3,
ElixirML.Reasoning.ProgramOfThought => 5,
ElixirML.Reasoning.ReAct => 4
},
use_cases: %{
ElixirML.Reasoning.Predict => [:simple_qa, :classification],
ElixirML.Reasoning.ChainOfThought => [:complex_reasoning, :math],
ElixirML.Reasoning.ProgramOfThought => [:code_generation, :computation],
ElixirML.Reasoning.ReAct => [:research, :multi_step]
}
}
)
end
@doc "Create temperature variable with model-specific ranges"
def temperature(name, opts \\ []) do
Variable.float(name,
range: Keyword.get(opts, :range, {0.0, 2.0}),
default: 0.7,
precision: 0.1,
description: "Model temperature for response randomness",
hints: [
optimization_priority: :accuracy,
model_dependent: true
],
metadata: %{
model_ranges: %{
"gpt-4" => {0.0, 2.0},
"claude-3" => {0.0, 1.0},
"gemini-pro" => {0.0, 1.0}
},
recommended_ranges: %{
reasoning: {0.1, 0.3},
creative: {0.7, 1.2},
factual: {0.0, 0.3}
}
}
)
end
end
2. Multi-Objective Configuration
defmodule ElixirML.Variable.MultiObjective do
@moduledoc """
Multi-objective optimization support for variable configurations.
Enables optimization across accuracy, cost, and latency simultaneously.
"""
defstruct [
:objectives, # List of optimization objectives
:weights, # Objective weights
:constraints, # Hard constraints
:pareto_config # Pareto frontier configuration
]
def new(opts \\ []) do
%__MODULE__{
objectives: Keyword.get(opts, :objectives, [:accuracy, :cost, :latency]),
weights: Keyword.get(opts, :weights, %{accuracy: 0.5, cost: 0.3, latency: 0.2}),
constraints: Keyword.get(opts, :constraints, []),
pareto_config: Keyword.get(opts, :pareto_config, %{})
}
end
def evaluate_configuration(multi_objective, variable_space, configuration, evaluation_results) do
objective_scores =
multi_objective.objectives
|> Enum.map(fn objective ->
{objective, calculate_objective_score(objective, variable_space, configuration, evaluation_results)}
end)
|> Map.new()
weighted_score = calculate_weighted_score(objective_scores, multi_objective.weights)
%{
objective_scores: objective_scores,
weighted_score: weighted_score,
pareto_rank: calculate_pareto_rank(objective_scores, multi_objective.pareto_config),
configuration: configuration,
metadata: %{
evaluated_at: DateTime.utc_now(),
variable_space_id: variable_space.id
}
}
end
defp calculate_objective_score(:accuracy, _variable_space, _configuration, evaluation_results) do
Map.get(evaluation_results, :accuracy, 0.0)
end
defp calculate_objective_score(:cost, variable_space, configuration, evaluation_results) do
# Calculate cost based on variable configuration
base_cost = Map.get(evaluation_results, :cost, 0.0)
# Factor in provider costs
provider_cost_multiplier = case Map.get(configuration, :provider) do
:openai -> 1.0
:anthropic -> 1.2
:groq -> 0.3
:google -> 0.8
_ -> 1.0
end
# Factor in model costs
model_cost_multiplier = case Map.get(configuration, :model) do
"gpt-4" -> 3.0
"gpt-3.5-turbo" -> 1.0
"claude-3" -> 2.5
"gemini-pro" -> 1.5
_ -> 1.0
end
# Factor in reasoning complexity
reasoning_cost_multiplier = case Map.get(configuration, :reasoning_strategy) do
ElixirML.Reasoning.Predict -> 1.0
ElixirML.Reasoning.ChainOfThought -> 2.5
ElixirML.Reasoning.ProgramOfThought -> 4.0
ElixirML.Reasoning.ReAct -> 3.5
_ -> 1.0
end
total_cost = base_cost * provider_cost_multiplier * model_cost_multiplier * reasoning_cost_multiplier
# Normalize to 0-1 scale (lower is better, so invert)
1.0 - min(total_cost / 100.0, 1.0)
end
defp calculate_objective_score(:latency, _variable_space, configuration, evaluation_results) do
base_latency = Map.get(evaluation_results, :latency_ms, 1000.0)
# Factor in provider latency
provider_latency_multiplier = case Map.get(configuration, :provider) do
:groq -> 0.3 # Very fast
:openai -> 1.0 # Baseline
:google -> 1.2 # Slightly slower
:anthropic -> 1.5 # Slower
_ -> 1.0
end
# Factor in reasoning complexity latency
reasoning_latency_multiplier = case Map.get(configuration, :reasoning_strategy) do
ElixirML.Reasoning.Predict -> 1.0
ElixirML.Reasoning.ChainOfThought -> 3.0
ElixirML.Reasoning.ProgramOfThought -> 5.0
ElixirML.Reasoning.ReAct -> 4.0
_ -> 1.0
end
total_latency = base_latency * provider_latency_multiplier * reasoning_latency_multiplier
# Normalize to 0-1 scale (lower is better, so invert)
1.0 - min(total_latency / 10000.0, 1.0)
end
defp calculate_weighted_score(objective_scores, weights) do
objective_scores
|> Enum.map(fn {objective, score} ->
weight = Map.get(weights, objective, 0.0)
score * weight
end)
|> Enum.sum()
end
defp calculate_pareto_rank(objective_scores, _pareto_config) do
# Simplified Pareto ranking - in real implementation would compare against frontier
objective_scores
|> Map.values()
|> Enum.sum()
|> Float.round(3)
end
def update_pareto_frontier(multi_objective, new_evaluation) do
# Implementation for maintaining Pareto frontier
# This would track the set of non-dominated solutions
multi_objective
end
end
Integration with DSPEx Components
1. Program Variable Integration
defmodule ElixirML.Variable.ProgramIntegration do
@moduledoc """
Integration layer for adding variable support to DSPEx programs.
"""
defmacro __using__(_opts) do
quote do
import ElixirML.Variable.ProgramIntegration
@variable_space ElixirML.Variable.Space.new()
@before_compile ElixirML.Variable.ProgramIntegration
end
end
defmacro __before_compile__(env) do
variable_space = Module.get_attribute(env.module, :variable_space)
quote do
def __variable_space__, do: unquote(Macro.escape(variable_space))
def variable_space, do: __variable_space__()
def with_variable_configuration(configuration) do
case ElixirML.Variable.Space.validate_configuration(__variable_space__(), configuration) do
{:ok, validated_config} ->
{:ok, apply_variable_configuration(__MODULE__, validated_config)}
{:error, _} = error ->
error
end
end
end
end
defmacro variable(name, type, opts \\ []) do
quote do
variable_def = ElixirML.Variable.unquote(type)(unquote(name), unquote(opts))
@variable_space ElixirML.Variable.Space.add_variable(@variable_space, variable_def)
end
end
defmacro variable_constraint(constraint_fn, description \\ nil) do
quote do
@variable_space ElixirML.Variable.Space.add_constraint(@variable_space, unquote(constraint_fn), unquote(description))
end
end
def apply_variable_configuration(program_module, configuration) do
# Apply variable configuration to program
# This would modify the program struct based on variable values
program_module
end
end
2. Optimizer Integration
defmodule ElixirML.Variable.OptimizerIntegration do
@moduledoc """
Integration interface for optimizers to work with variable systems.
"""
@callback sample_configuration(variable_space :: ElixirML.Variable.Space.t(), opts :: keyword()) ::
{:ok, map()} | {:error, term()}
@callback evaluate_configuration(variable_space :: ElixirML.Variable.Space.t(),
configuration :: map(),
evaluation_results :: map()) ::
{:ok, map()} | {:error, term()}
@callback update_optimization_state(optimizer_state :: term(),
evaluation :: map()) ::
{:ok, term()} | {:error, term()}
def random_configuration(variable_space, _opts \\ []) do
configuration =
variable_space.variables
|> Enum.map(fn {name, variable} ->
{name, sample_variable_value(variable)}
end)
|> Map.new()
case ElixirML.Variable.Space.validate_configuration(variable_space, configuration) do
{:ok, validated} -> {:ok, validated}
{:error, _} -> random_configuration(variable_space) # Retry on validation failure
end
end
defp sample_variable_value(%{type: :float, constraints: %{range: {min, max}}}) do
min + :rand.uniform() * (max - min)
end
defp sample_variable_value(%{type: :integer, constraints: %{range: {min, max}}}) do
min + :rand.uniform(max - min + 1) - 1
end
defp sample_variable_value(%{type: :choice, constraints: %{choices: choices}}) do
Enum.random(choices)
end
defp sample_variable_value(%{type: :module, constraints: %{modules: modules}}) do
Enum.random(modules)
end
defp sample_variable_value(%{default: default}) when default != nil do
default
end
defp sample_variable_value(_variable) do
nil
end
def grid_search_configurations(variable_space, opts \\ []) do
max_combinations = Keyword.get(opts, :max_combinations, 1000)
if ElixirML.Variable.Space.discrete_space_size(variable_space) <= max_combinations do
generate_all_combinations(variable_space)
else
# Use sampling for large spaces
sample_count = min(max_combinations, 100)
1..sample_count
|> Enum.map(fn _ -> random_configuration(variable_space) end)
|> Enum.filter(&match?({:ok, _}, &1))
|> Enum.map(fn {:ok, config} -> config end)
end
end
defp generate_all_combinations(variable_space) do
variable_space.variables
|> Map.values()
|> Enum.filter(&discrete_variable?/1)
|> Enum.map(&generate_variable_values/1)
|> cartesian_product()
|> Enum.map(&configuration_from_values(variable_space, &1))
end
defp discrete_variable?(%{type: type}) when type in [:choice, :module], do: true
defp discrete_variable?(_), do: false
defp generate_variable_values(%{type: :choice, constraints: %{choices: choices}, name: name}) do
Enum.map(choices, &{name, &1})
end
defp generate_variable_values(%{type: :module, constraints: %{modules: modules}, name: name}) do
Enum.map(modules, &{name, &1})
end
defp cartesian_product([]), do: [[]]
defp cartesian_product([head | tail]) do
for h <- head, t <- cartesian_product(tail), do: [h | t]
end
defp configuration_from_values(variable_space, values) do
base_config =
values
|> List.flatten()
|> Map.new()
# Add continuous variables with default values
full_config =
variable_space.variables
|> Enum.reduce(base_config, fn {name, variable}, acc ->
if Map.has_key?(acc, name) do
acc
else
Map.put(acc, name, variable.default)
end
end)
full_config
end
end
Implementation Strategy
Week 1: Core Variable System
- Variable definition and types
- Variable Space management
- Basic validation and constraints
- Configuration resolution
Week 2: ML-Specific Features
- Provider-model compatibility
- Multi-objective optimization
- Cost-performance analysis
- Reasoning strategy variables
Week 3: Integration Layer
- Program integration macros
- Optimizer integration interface
- Schema Engine integration
- Resource Framework integration
Week 4: Advanced Features
- Configuration visualization
- Performance analytics
- Debugging tools
- Documentation and examples
Success Metrics
Functional Requirements
- Support for all major variable types (float, integer, choice, module)
- Multi-objective optimization capability
- Provider-model compatibility validation
- Seamless integration with existing DSPEx programs
Performance Requirements
- <10ms configuration validation time
- Support for 100+ variables in a single space
- Efficient sampling for large configuration spaces
- Memory-efficient storage of optimization history
Integration Requirements
- Full Schema Engine compatibility
- Resource Framework integration
- Optimizer interface compliance
- Backward compatibility with existing programs
This Variable System design enables revolutionary parameter optimization capabilities for ElixirML/DSPEx, allowing any optimizer to automatically tune any parameter while maintaining type safety and performance.