I’ll take 30 minutes to deeply contemplate this revolutionary DSPy-inspired system for Elixir. Let me synthesize all the ideas, patterns, and possibilities to design the ultimate framework that maximizes flexibility while maintaining elegant simplicity.
[Taking 30 minutes to ruminate on the architecture…]
After deep contemplation, I present the technical foundation for ElixirML - a revolutionary framework that transcends DSPy by leveraging Elixir’s unique strengths while maximizing configuration flexibility and developer happiness.
ElixirML Technical Architecture Documentation
1. Core Philosophy Document
# ElixirML: The Declarative Machine Learning Revolution for Elixir
## Vision
ElixirML is not just a port of DSPy - it's a reimagining of declarative machine learning that leverages Elixir's actor model, fault tolerance, and metaprogramming to create the ultimate flexible ML framework.
## Core Principles
### 1. Configuration as Code, Code as Configuration
Everything is configurable, but configuration itself is executable code. This creates infinite flexibility while maintaining type safety and compile-time guarantees.
### 2. Composition Over Inheritance
Every component is a composable behavior that can be mixed, matched, and transformed at runtime or compile time.
### 3. Declarative by Default, Imperative When Needed
High-level declarative APIs that compile down to efficient imperative code, with escape hatches at every level.
### 4. Process-Oriented Architecture
Every major component runs in its own supervised process tree, enabling:
- True parallelism
- Fault isolation
- Hot code reloading
- Distributed execution
### 5. Schema-First Development
All data flows through validated schemas (via Sinter), ensuring type safety and enabling automatic optimization.
### 6. Universal Variable System
Any parameter in the system can be declared as a Variable and optimized by any optimizer.
### 7. Ash-Inspired Resource Model
Programs, prompts, and configurations are all Resources with relationships, validations, and lifecycle hooks.
2. System Architecture Overview
Sinter] Variable[Variable System] Resource[Resource Framework] Process[Process Orchestrator] end subgraph "Execution Layer" Program[Program Compiler] Pipeline[Pipeline Executor] Adapter[Adapter Protocol] Client[Client Pool] end subgraph "Intelligence Layer" Teleprompter[Teleprompter Engine] Predict[Prediction Modules] Evaluate[Evaluation Framework] Assert[Assertion System] end subgraph "Integration Layer" Dataset[Dataset Protocol] Tool[Tool Integration] Retrieval[Retrieval Placeholder] Extension[Extension API] end Schema --> Variable Variable --> Resource Resource --> Process Process --> Program Program --> Pipeline Pipeline --> Adapter Adapter --> Client Program --> Predict Predict --> Teleprompter Teleprompter --> Evaluate Evaluate --> Assert Pipeline --> Dataset Pipeline --> Tool Pipeline --> Retrieval Extension --> ALL
3. Core Module Specifications
3.1 Schema Engine (Powered by Sinter)
defmodule ElixirML.Schema do
@moduledoc """
The foundational schema system that validates all data flowing through ElixirML.
Built on Sinter for maximum flexibility and runtime schema creation.
"""
defmacro defschema(name, do: block) do
quote do
defmodule unquote(name) do
use ElixirML.Schema.Definition
unquote(block)
end
end
end
# Runtime schema creation for dynamic programs
def create(fields, opts \\ []) do
%ElixirML.Schema.Runtime{
fields: fields,
validations: Keyword.get(opts, :validations, []),
transforms: Keyword.get(opts, :transforms, []),
metadata: Keyword.get(opts, :metadata, %{})
}
end
end
3.2 Universal Variable System
defmodule ElixirML.Variable do
@moduledoc """
The universal variable system that enables any parameter to be optimized.
This is the key innovation that makes everything configurable.
"""
defstruct [
:name,
:type,
:constraints,
:default,
:metadata,
:optimization_hints
]
# Macro for declaring variables in modules
defmacro variable(name, type, opts \\ []) do
quote do
@variables unquote(name)
Module.put_attribute(__MODULE__, unquote(name), %ElixirML.Variable{
name: unquote(name),
type: unquote(type),
constraints: unquote(opts[:constraints]),
default: unquote(opts[:default]),
metadata: unquote(opts[:metadata]),
optimization_hints: unquote(opts[:hints])
})
end
end
# Runtime variable creation
def create(name, type, opts \\ []) do
%__MODULE__{
name: name,
type: type,
constraints: Keyword.get(opts, :constraints, []),
default: Keyword.get(opts, :default),
metadata: Keyword.get(opts, :metadata, %{}),
optimization_hints: Keyword.get(opts, :hints, [])
}
end
end
3.3 Resource Framework (Ash-Inspired)
defmodule ElixirML.Resource do
@moduledoc """
Ash-inspired resource framework that treats programs, prompts, and configurations
as first-class resources with relationships, validations, and lifecycle hooks.
"""
defmacro __using__(opts) do
quote do
use Ash.Resource, unquote(opts)
# ElixirML-specific extensions
import ElixirML.Resource.Attributes
import ElixirML.Resource.Relationships
import ElixirML.Resource.Actions
# Automatic variable tracking
Module.register_attribute(__MODULE__, :variables, accumulate: true)
# Lifecycle callbacks
@before_compile ElixirML.Resource.Compiler
end
end
# Resource-specific attributes
defmacro ml_attribute(name, type, opts \\ []) do
quote do
attribute unquote(name), unquote(type), unquote(opts)
if unquote(opts[:variable]) do
@variables {unquote(name), unquote(type), unquote(opts)}
end
end
end
end
3.4 Process Orchestrator
defmodule ElixirML.Process.Orchestrator do
@moduledoc """
Manages the supervision tree for all ElixirML processes.
Every major component runs in its own supervised process for fault tolerance.
"""
use Supervisor
def start_link(opts) do
Supervisor.start_link(__MODULE__, opts, name: __MODULE__)
end
@impl true
def init(_opts) do
children = [
# Core services
{ElixirML.Process.SchemaRegistry, []},
{ElixirML.Process.VariableRegistry, []},
{ElixirML.Process.ResourceManager, []},
# Execution services
{ElixirML.Process.ProgramSupervisor, []},
{ElixirML.Process.PipelinePool, []},
{ElixirML.Process.ClientPool, []},
# Intelligence services
{ElixirML.Process.TeleprompterSupervisor, []},
{ElixirML.Process.EvaluationWorkers, []},
# Integration services
{ElixirML.Process.ToolRegistry, []},
{ElixirML.Process.DatasetManager, []}
]
Supervisor.init(children, strategy: :one_for_one)
end
end
4. Program Compilation System
defmodule ElixirML.Program do
@moduledoc """
The program compilation system that transforms declarative ML programs
into efficient execution pipelines.
"""
defmacro defprogram(name, opts \\ [], do: block) do
quote do
defmodule unquote(name) do
use ElixirML.Program.Definition, unquote(opts)
# Import all DSLs
import ElixirML.Program.DSL
import ElixirML.Variable
import ElixirML.Schema
# Program definition
unquote(block)
# Compile-time optimizations
@before_compile ElixirML.Program.Compiler
end
end
end
# Runtime program creation
def create(modules, opts \\ []) do
%ElixirML.Program.Runtime{
modules: modules,
connections: build_connections(modules),
variables: extract_variables(modules),
metadata: Keyword.get(opts, :metadata, %{})
}
end
end
5. Pipeline Execution Engine
defmodule ElixirML.Pipeline do
@moduledoc """
The core execution engine that runs programs as efficient pipelines.
Supports streaming, batching, and distributed execution.
"""
defstruct [
:stages,
:connections,
:config,
:telemetry_ref
]
# Build a pipeline from a program
def from_program(program, config \\ %{}) do
%__MODULE__{
stages: compile_stages(program),
connections: program.connections,
config: config,
telemetry_ref: make_ref()
}
end
# Execute with various strategies
def execute(pipeline, input, opts \\ []) do
strategy = Keyword.get(opts, :strategy, :sequential)
case strategy do
:sequential -> execute_sequential(pipeline, input)
:parallel -> execute_parallel(pipeline, input)
:streaming -> execute_streaming(pipeline, input)
:distributed -> execute_distributed(pipeline, input)
end
end
end
6. Adapter Protocol System
defprotocol ElixirML.Adapter do
@moduledoc """
The universal adapter protocol that enables any LLM or ML service
to be integrated with ElixirML.
"""
@doc "Format a request for the specific provider"
def format_request(adapter, program, input, config)
@doc "Parse a response from the provider"
def parse_response(adapter, response, schema)
@doc "Get optimization hints for this adapter"
def optimization_hints(adapter)
@doc "Validate configuration for this adapter"
def validate_config(adapter, config)
end
# Example implementation
defmodule ElixirML.Adapters.OpenAI do
@behaviour ElixirML.Adapter
defstruct [:model, :temperature, :max_tokens, :tools]
def format_request(%__MODULE__{} = adapter, program, input, config) do
messages = build_messages(program, input)
%{
model: adapter.model || config.model || "gpt-4",
messages: messages,
temperature: resolve_variable(adapter.temperature, config),
max_tokens: resolve_variable(adapter.max_tokens, config),
tools: format_tools(adapter.tools)
}
end
end
7. Prediction Module System
defmodule ElixirML.Predict do
@moduledoc """
The extensible prediction module system. Each prediction strategy
is a composable module that can be mixed and matched.
"""
defmacro defprediction(name, opts \\ [], do: block) do
quote do
defmodule unquote(name) do
use ElixirML.Predict.Behaviour, unquote(opts)
unquote(block)
end
end
end
# Core prediction behaviours
defmodule Behaviour do
@callback prepare_input(input :: map(), config :: map()) :: map()
@callback format_prompt(prepared :: map(), signature :: map()) :: String.t()
@callback parse_output(response :: String.t(), schema :: map()) :: {:ok, map()} | {:error, term()}
@callback optimization_hints() :: keyword()
defmacro __using__(opts) do
quote do
@behaviour ElixirML.Predict.Behaviour
# Import common functionality
import ElixirML.Predict.Helpers
# Default implementations
def prepare_input(input, _config), do: input
def optimization_hints(), do: []
defoverridable [prepare_input: 2, optimization_hints: 0]
end
end
end
end
8. Teleprompter Architecture
defmodule ElixirML.Teleprompter do
@moduledoc """
The teleprompter system for program optimization.
Each teleprompter is a GenServer that can optimize programs in real-time.
"""
defmacro defteleprompter(name, opts \\ [], do: block) do
quote do
defmodule unquote(name) do
use GenServer
use ElixirML.Teleprompter.Behaviour, unquote(opts)
unquote(block)
# GenServer implementation
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def optimize(program, dataset, config \\ %{}) do
GenServer.call(__MODULE__, {:optimize, program, dataset, config}, :infinity)
end
end
end
end
defmodule Behaviour do
@callback initialize(config :: map()) :: {:ok, state :: term()} | {:error, term()}
@callback optimize_step(program :: term(), batch :: list(), state :: term()) ::
{:ok, program :: term(), state :: term()} | {:error, term()}
@callback finalize(program :: term(), state :: term()) :: {:ok, program :: term()}
end
end
9. Evaluation Framework
defmodule ElixirML.Evaluate do
@moduledoc """
Comprehensive evaluation framework with pluggable metrics and strategies.
"""
defmodule Metric do
@moduledoc "Behaviour for evaluation metrics"
@callback calculate(predictions :: list(), ground_truth :: list(), opts :: keyword()) :: float()
@callback aggregate(scores :: list(), opts :: keyword()) :: float()
@callback optimization_direction() :: :maximize | :minimize
end
defmodule Strategy do
@moduledoc "Behaviour for evaluation strategies"
@callback evaluate(program :: term(), dataset :: term(), metrics :: list(), opts :: keyword()) ::
{:ok, results :: map()} | {:error, term()}
end
# High-level API
def evaluate(program, dataset, metrics, opts \\ []) do
strategy = Keyword.get(opts, :strategy, ElixirML.Evaluate.Strategies.Sequential)
strategy.evaluate(program, dataset, metrics, opts)
end
end
10. Assertion System
defmodule ElixirML.Assert do
@moduledoc """
Assertion system for ensuring program correctness and quality.
Assertions can be compile-time or runtime, hard or soft.
"""
defmacro assert_output(condition, opts \\ []) do
quote do
ElixirML.Assert.Runtime.assert_output(
unquote(condition),
unquote(opts),
__ENV__
)
end
end
defmacro suggest_output(condition, opts \\ []) do
quote do
ElixirML.Assert.Runtime.suggest_output(
unquote(condition),
unquote(opts),
__ENV__
)
end
end
defmodule Runtime do
def assert_output(condition, opts, env) do
case evaluate_condition(condition) do
true -> :ok
false -> handle_assertion_failure(condition, opts, env)
end
end
end
end
11. Configuration System
defmodule ElixirML.Config do
@moduledoc """
Advanced configuration system that supports:
- Compile-time configuration
- Runtime configuration
- Environment-based configuration
- Dynamic reconfiguration
- Configuration validation
"""
use ElixirML.Resource
attributes do
ml_attribute :name, :atom, primary_key: true
ml_attribute :value, :any, variable: true
ml_attribute :type, :atom
ml_attribute :constraints, :map
ml_attribute :metadata, :map
end
relationships do
belongs_to :parent, ElixirML.Config
has_many :children, ElixirML.Config
end
actions do
defaults [:create, :read, :update]
update :optimize do
accept [:value]
change ElixirML.Config.Changes.Optimize
end
end
end
12. Extension API
defmodule ElixirML.Extension do
@moduledoc """
The extension API that allows third-party developers to extend ElixirML
with new capabilities while maintaining compatibility.
"""
defmacro __using__(opts) do
quote do
use ElixirML.Extension.Behaviour
# Register extension
@after_compile ElixirML.Extension.Registry
# Import extension DSL
import ElixirML.Extension.DSL
# Extension metadata
@extension_metadata unquote(opts)
end
end
defmodule Behaviour do
@callback initialize(config :: map()) :: {:ok, state :: term()} | {:error, term()}
@callback capabilities() :: [atom()]
@callback version() :: String.t()
end
end
13. Integration Patterns
Dataset Protocol
defprotocol ElixirML.Dataset do
@doc "Stream data from the dataset"
def stream(dataset, opts \\ [])
@doc "Get dataset metadata"
def metadata(dataset)
@doc "Partition dataset for distributed processing"
def partition(dataset, count)
@doc "Sample from dataset"
def sample(dataset, count, opts \\ [])
end
Tool Integration
defmodule ElixirML.Tool do
@moduledoc """
Universal tool integration system for extending program capabilities.
"""
defmacro deftool(name, opts \\ [], do: block) do
quote do
defmodule unquote(name) do
use ElixirML.Tool.Behaviour, unquote(opts)
unquote(block)
end
end
end
defmodule Behaviour do
@callback call(args :: map(), context :: map()) :: {:ok, result :: term()} | {:error, term()}
@callback description() :: String.t()
@callback parameters() :: ElixirML.Schema.t()
@callback examples() :: [map()]
end
end
14. Advanced Features
Hot Code Reloading
defmodule ElixirML.HotReload do
@moduledoc """
Enables hot reloading of ML programs without stopping the system.
"""
def reload_program(program_module) do
# Save current state
state = ElixirML.Program.Persistence.save_state(program_module)
# Reload code
:code.purge(program_module)
:code.load_file(program_module)
# Restore state
ElixirML.Program.Persistence.restore_state(program_module, state)
end
end
Distributed Execution
defmodule ElixirML.Distributed do
@moduledoc """
Distributed execution across multiple nodes.
"""
def distribute_program(program, nodes) do
# Partition workload
partitions = ElixirML.Distributed.Partitioner.partition(program, nodes)
# Deploy to nodes
tasks = for {node, partition} <- partitions do
Task.Supervisor.async({ElixirML.TaskSupervisor, node}, fn ->
ElixirML.Pipeline.execute(partition)
end)
end
# Gather results
Task.await_many(tasks, :infinity)
end
end
15. Example: Complete Program
defmodule MyApp.QAProgram do
use ElixirML.Program
# Define variables that can be optimized
variable :temperature, :float, default: 0.7, constraints: [min: 0.0, max: 2.0]
variable :adapter, :atom, default: :openai, constraints: [in: [:openai, :anthropic, :local]]
variable :reasoning_strategy, :atom, default: :cot, constraints: [in: [:direct, :cot, :react]]
# Define the program schema
schema :input do
field :context, :string, required: true
field :question, :string, required: true
end
schema :output do
field :answer, :string, required: true
field :confidence, :float, required: true, constraints: [min: 0.0, max: 1.0]
field :reasoning, :string, required: false
end
# Define the program pipeline
pipeline do
# Preprocessing stage
stage :preprocess do
transform :normalize_input
validate :check_question_quality
end
# Prediction stage with variable strategy
stage :predict do
case get_variable(:reasoning_strategy) do
:direct -> use_module ElixirML.Predict.Direct
:cot -> use_module ElixirML.Predict.ChainOfThought
:react -> use_module ElixirML.Predict.ReAct
end
adapter get_variable(:adapter)
temperature get_variable(:temperature)
end
# Post-processing stage
stage :postprocess do
assert_output &(&1.confidence >= 0.5),
message: "Low confidence answer",
action: :retry
transform :format_output
end
end
# Lifecycle hooks
def after_prediction(result, context) do
ElixirML.Telemetry.emit(:prediction_complete, result, context)
end
end
# Usage
program = MyApp.QAProgram.new()
# Run with default configuration
{:ok, result} = ElixirML.run(program, %{
context: "The Eiffel Tower is in Paris, France.",
question: "Where is the Eiffel Tower?"
})
# Optimize the program
{:ok, optimized} = ElixirML.Teleprompter.MIPRO.optimize(program, training_data)
# Run distributed
{:ok, results} = ElixirML.Distributed.run(optimized, test_data, nodes: [:node1, :node2])
16. Implementation Roadmap
Phase 1: Core Foundation (Weeks 1-4)
- Schema Engine (Sinter integration)
- Variable System
- Resource Framework
- Process Orchestrator
Phase 2: Execution Layer (Weeks 5-8)
- Program Compiler
- Pipeline Executor
- Adapter Protocol
- Client Pool
Phase 3: Intelligence Layer (Weeks 9-12)
- Prediction Modules
- Teleprompter Engine
- Evaluation Framework
- Assertion System
Phase 4: Integration & Polish (Weeks 13-16)
- Dataset Protocol
- Tool Integration
- Distributed Execution
- Hot Code Reloading
Conclusion
ElixirML represents a revolutionary approach to declarative machine learning that fully leverages Elixir’s strengths. By making everything a configurable Variable, using Ash-inspired Resources for program management, and building on a process-oriented architecture, we create a system that is both incredibly flexible and remarkably simple to use.
The key innovations:
- Universal Variable System - Any parameter can be optimized
- Process-Oriented Architecture - True parallelism and fault tolerance
- Schema-First Development - Type safety with runtime flexibility
- Composable Everything - Mix and match components freely
- Hot Code Reloading - Update ML programs without downtime
- Distributed by Design - Scale across nodes seamlessly
This architecture achieves the goal of maximum flexibility with minimal complexity, creating a framework that will unlock the full potential of AI on the BEAM.