SINTER_BUILDOUT.md
Strategic Enhancement of Sinter for DSPEx Variable System
Executive Summary
This document outlines the strategic enhancement of Sinter to serve as the schema validation foundation for DSPEx’s revolutionary Variable System. The Variable System enables automatic optimization across adapters, modules, and parameters - solving the exact challenge posed by the DSPy community.
Core Mission: Transform Sinter into the type-safe foundation that enables any optimizer to tune any parameter type (discrete choices, continuous values, module selection) automatically.
Philosophy: Enhance what works, add only what’s essential, build the foundation for the Variable revolution.
The Variable System Challenge
The DSPy Community Problem:
“Do we have optimizers that permute through adapters and modules? (e.g., JSON vs Markdown tool calling, Predict vs CoT vs PoT)… all evaluated and selected automatically.”
DSPEx Solution:
# Instead of hard-coding choices:
program = DSPEx.Predict.new(signature, adapter: JSONAdapter, strategy: CoT)
# Declare variables for optimization:
program = DSPEx.Predict.new(signature)
|> Variable.define(:adapter, choices: [JSONAdapter, MarkdownAdapter, ChatAdapter])
|> Variable.define(:strategy, choices: [Predict, CoT, PoT, ReAct])
|> Variable.define(:temperature, range: {0.1, 1.5})
# ANY optimizer can find the best combination:
{:ok, optimized} = SIMBA.optimize(program, training_data, eval_fn)
{:ok, optimized} = BEACON.optimize(program, training_data, eval_fn)
{:ok, optimized} = GridSearch.optimize(program, training_data, eval_fn)
Current Sinter Analysis
✅ Sinter’s Strengths (Keep These)
# Clean, focused API
schema = Sinter.Schema.define([
{:name, :string, [required: true]},
{:age, :integer, [gt: 0]}
])
{:ok, validated} = Sinter.validate(schema, %{name: "Alice", age: 30})
❌ Missing for Variable System (Add These)
- Variable-Aware Types:
:variable_choice
,:variable_range
,:variable_module
- ML-Specific Types:
:embedding
,:probability
,:model_response
- Variable Extraction: Identify optimization parameters from schemas
- Runtime Schema Resolution: Apply variable configurations to schemas
- Enhanced Validation: Support for dynamic type resolution
Enhancement Strategy
Phase 1: Variable-Aware Type System (Week 1-2)
1.1 Core Variable Types
# sinter/lib/sinter/types.ex - Add variable-aware types
def validate(:variable_choice, value, path) when is_atom(value) or is_binary(value) do
# Variable choices are validated at resolution time, not definition time
{:ok, value}
end
def validate(:variable_range, value, path) when is_number(value) do
# Variable ranges are validated at resolution time
{:ok, value}
end
def validate(:variable_module, value, path) when is_atom(value) do
# Variable modules are validated at resolution time
if Code.ensure_loaded?(value) do
{:ok, value}
else
error = Error.new(path, :module_not_found, "Module #{value} not found")
{:error, [error]}
end
end
# ML-specific types for Variable System
def validate(:embedding, value, path) when is_list(value) do
if Enum.all?(value, &is_number/1) and length(value) > 0 do
{:ok, value}
else
error = Error.new(path, :type, "Embedding must be non-empty list of numbers")
{:error, [error]}
end
end
def validate(:probability, value, path) when is_number(value) do
if value >= 0.0 and value <= 1.0 do
{:ok, value}
else
error = Error.new(path, :constraint, "Probability must be between 0.0 and 1.0")
{:error, [error]}
end
end
def validate(:model_response, value, path) when is_map(value) do
case value do
%{text: text} when is_binary(text) -> {:ok, value}
%{"text" => text} when is_binary(text) -> {:ok, value}
_ ->
error = Error.new(path, :constraint, "Model response must have 'text' field")
{:error, [error]}
end
end
def validate(:confidence_score, value, path) when is_number(value) do
if value >= 0.0 do
{:ok, value}
else
error = Error.new(path, :constraint, "Confidence score must be non-negative")
{:error, [error]}
end
end
1.2 Variable-Specific Constraints
# sinter/lib/sinter/constraints.ex - Add variable constraints
def validate_constraint({:choices, choices}, value, _path) do
if value in choices do
:ok
else
{:error, "Value #{inspect(value)} not in choices #{inspect(choices)}"}
end
end
def validate_constraint({:range, {min_val, max_val}}, value, _path) when is_number(value) do
if value >= min_val and value <= max_val do
:ok
else
{:error, "Value #{value} not in range #{min_val}..#{max_val}"}
end
end
def validate_constraint({:behavior, behavior}, value, _path) when is_atom(value) do
if implements_behavior?(value, behavior) do
:ok
else
{:error, "Module #{value} does not implement behavior #{behavior}"}
end
end
def validate_constraint({:embedding_dim, expected_dim}, value, _path) when is_list(value) do
if length(value) == expected_dim do
:ok
else
{:error, "Embedding dimension must be #{expected_dim}, got #{length(value)}"}
end
end
defp implements_behavior?(module, behavior) do
case Code.ensure_loaded(module) do
{:module, _} ->
behaviors = module.module_info(:attributes)
|> Keyword.get(:behaviour, [])
behavior in behaviors
_ -> false
end
end
Phase 2: Variable-Aware Schema System (Week 2-3)
2.1 Enhanced Schema Structure
# sinter/lib/sinter/schema.ex - Add variable support
defstruct [
:fields,
:variables, # ← New: extracted variable definitions
:metadata
]
def define(fields, opts \\ []) do
{variable_fields, regular_fields} = extract_variables(fields)
%Schema{
fields: regular_fields ++ variable_fields,
variables: variable_fields,
metadata: Keyword.get(opts, :metadata, %{})
}
end
# Extract variable fields from schema definition
defp extract_variables(fields) do
Enum.split_with(fields, fn {_name, _type, opts} ->
Keyword.get(opts, :variable, false)
end)
end
# New: Variable-aware validation
def validate_with_variables(schema, data, variable_config \\ %{}) do
# Resolve variables to concrete values
resolved_schema = resolve_variables(schema, variable_config)
# Standard validation with resolved schema
validate(resolved_schema, data)
end
# Apply variable configuration to schema
defp resolve_variables(schema, variable_config) do
resolved_fields =
Enum.map(schema.fields, fn {name, type, opts} ->
if Keyword.get(opts, :variable) do
# Apply variable configuration
case Map.get(variable_config, name) do
nil ->
# Use default value if no variable config provided
{name, type, opts}
resolved_value ->
# Replace with resolved value and update constraints
resolved_type = resolve_variable_type(type, resolved_value, opts)
resolved_opts = resolve_variable_constraints(opts, resolved_value)
{name, resolved_type, resolved_opts}
end
else
{name, type, opts}
end
end)
%{schema | fields: resolved_fields}
end
# Resolve variable type based on configuration
defp resolve_variable_type(:variable_choice, resolved_value, opts) do
choices = Keyword.get(opts, :choices, [])
cond do
is_atom(resolved_value) and resolved_value in choices -> :atom
is_binary(resolved_value) and resolved_value in choices -> :string
is_integer(resolved_value) and resolved_value in choices -> :integer
true -> :any
end
end
defp resolve_variable_type(:variable_range, _resolved_value, opts) do
{min_val, max_val} = Keyword.get(opts, :range, {0, 1})
cond do
is_float(min_val) or is_float(max_val) -> :float
true -> :integer
end
end
defp resolve_variable_type(:variable_module, _resolved_value, _opts) do
:atom
end
defp resolve_variable_type(type, _resolved_value, _opts), do: type
# Update constraints based on resolved value
defp resolve_variable_constraints(opts, resolved_value) do
opts
|> Keyword.put(:resolved_value, resolved_value)
|> Keyword.delete(:variable)
end
2.2 Variable Definition Helpers
# sinter/lib/sinter/variables.ex - New module for variable helpers
defmodule Sinter.Variables do
@moduledoc """
Variable definition helpers for optimization-aware schemas.
Provides utilities for defining, extracting, and working with
optimization variables in Sinter schemas.
"""
@doc """
Define a discrete choice variable.
## Examples
iex> Variables.choice(:adapter, [JSONAdapter, MarkdownAdapter])
{:adapter, :variable_choice, [variable: true, choices: [JSONAdapter, MarkdownAdapter]]}
"""
def choice(name, choices, opts \\ []) do
variable_opts = [
variable: true,
choices: choices,
default: Keyword.get(opts, :default, List.first(choices)),
description: Keyword.get(opts, :description, "")
] ++ opts
{name, :variable_choice, variable_opts}
end
@doc """
Define a continuous range variable.
## Examples
iex> Variables.range(:temperature, {0.0, 2.0})
{:temperature, :variable_range, [variable: true, range: {0.0, 2.0}]}
"""
def range(name, {min_val, max_val}, opts \\ []) do
variable_opts = [
variable: true,
range: {min_val, max_val},
default: Keyword.get(opts, :default, (min_val + max_val) / 2),
description: Keyword.get(opts, :description, "")
] ++ opts
{name, :variable_range, variable_opts}
end
@doc """
Define a module selection variable.
## Examples
iex> Variables.module(:strategy, [Predict, CoT, PoT])
{:strategy, :variable_module, [variable: true, choices: [Predict, CoT, PoT]]}
"""
def module(name, modules, opts \\ []) do
variable_opts = [
variable: true,
choices: modules,
behavior: Keyword.get(opts, :behavior),
default: Keyword.get(opts, :default, List.first(modules)),
description: Keyword.get(opts, :description, "")
] ++ opts
{name, :variable_module, variable_opts}
end
@doc """
Extract variable space from a schema for optimization.
"""
def extract_variable_space(schema) do
schema.variables
|> Enum.map(fn {name, type, opts} ->
%{
name: name,
type: variable_type_to_optimizer_type(type),
constraints: extract_variable_constraints(opts),
default: Keyword.get(opts, :default),
description: Keyword.get(opts, :description, "")
}
end)
end
# Convert Sinter variable types to optimizer-friendly types
defp variable_type_to_optimizer_type(:variable_choice), do: :discrete
defp variable_type_to_optimizer_type(:variable_range), do: :continuous
defp variable_type_to_optimizer_type(:variable_module), do: :discrete
defp extract_variable_constraints(opts) do
opts
|> Keyword.take([:choices, :range, :behavior, :gt, :lt, :gteq, :lteq])
|> Enum.into(%{})
end
@doc """
Validate a variable configuration against schema variables.
"""
def validate_variable_config(schema, variable_config) do
schema.variables
|> Enum.reduce_while({:ok, %{}}, fn {name, type, opts}, {:ok, acc} ->
case Map.get(variable_config, name) do
nil ->
# Use default if available
case Keyword.get(opts, :default) do
nil -> {:halt, {:error, "Missing required variable: #{name}"}}
default -> {:cont, {:ok, Map.put(acc, name, default)}}
end
value ->
case validate_variable_value(type, value, opts) do
:ok -> {:cont, {:ok, Map.put(acc, name, value)}}
{:error, reason} -> {:halt, {:error, "Invalid value for #{name}: #{reason}"}}
end
end
end)
end
defp validate_variable_value(:variable_choice, value, opts) do
choices = Keyword.get(opts, :choices, [])
if value in choices do
:ok
else
{:error, "#{inspect(value)} not in choices #{inspect(choices)}"}
end
end
defp validate_variable_value(:variable_range, value, opts) when is_number(value) do
{min_val, max_val} = Keyword.get(opts, :range, {0, 1})
if value >= min_val and value <= max_val do
:ok
else
{:error, "#{value} not in range #{min_val}..#{max_val}"}
end
end
defp validate_variable_value(:variable_module, value, opts) when is_atom(value) do
choices = Keyword.get(opts, :choices, [])
behavior = Keyword.get(opts, :behavior)
cond do
not (value in choices) ->
{:error, "#{value} not in module choices #{inspect(choices)}"}
behavior && not implements_behavior?(value, behavior) ->
{:error, "#{value} does not implement behavior #{behavior}"}
true ->
:ok
end
end
defp validate_variable_value(_, value, _), do: {:error, "Invalid variable value: #{inspect(value)}"}
defp implements_behavior?(module, behavior) do
case Code.ensure_loaded(module) do
{:module, _} ->
behaviors = module.module_info(:attributes)
|> Keyword.get(:behaviour, [])
behavior in behaviors
_ -> false
end
end
end
Phase 3: ElixirML Integration Bridge (Week 3-4)
3.1 ElixirML.Variable Integration
# sinter/lib/sinter/elixir_ml.ex - Bridge to ElixirML Variable system
defmodule Sinter.ElixirML do
@moduledoc """
Integration bridge between Sinter and ElixirML Variable system.
Converts ElixirML.Variable definitions to Sinter schemas and vice versa.
"""
@doc """
Convert ElixirML.Variable to Sinter variable field.
"""
def from_elixir_ml_variable(%ElixirML.Variable{} = var) do
sinter_type = elixir_ml_type_to_sinter(var.type)
opts = [
variable: true,
default: var.default,
description: var.description || ""
]
# Add type-specific constraints
opts = add_type_constraints(opts, var)
{var.name, sinter_type, opts}
end
@doc """
Convert Sinter variable field to ElixirML.Variable.
"""
def to_elixir_ml_variable({name, type, opts}) do
if Keyword.get(opts, :variable, false) do
%ElixirML.Variable{
name: name,
type: sinter_type_to_elixir_ml(type),
default: Keyword.get(opts, :default),
constraints: extract_elixir_ml_constraints(opts),
description: Keyword.get(opts, :description, "")
}
else
{:error, "Not a variable field"}
end
end
@doc """
Create Sinter schema from ElixirML Variable space.
"""
def schema_from_variable_space(variable_space) do
fields =
variable_space.variables
|> Map.values()
|> Enum.map(&from_elixir_ml_variable/1)
Sinter.Schema.define(fields)
end
@doc """
Extract variable space from Sinter schema for ElixirML.
"""
def variable_space_from_schema(schema) do
variables =
schema.variables
|> Enum.map(&to_elixir_ml_variable/1)
|> Enum.filter(fn
{:error, _} -> false
_ -> true
end)
|> Map.new(fn var -> {var.name, var} end)
%ElixirML.Variable.Space{
variables: variables,
dependencies: %{},
constraints: [],
metadata: schema.metadata
}
end
# Type conversion helpers
defp elixir_ml_type_to_sinter(:choice), do: :variable_choice
defp elixir_ml_type_to_sinter(:float), do: :variable_range
defp elixir_ml_type_to_sinter(:integer), do: :variable_range
defp elixir_ml_type_to_sinter(:module), do: :variable_module
defp elixir_ml_type_to_sinter(type), do: type
defp sinter_type_to_elixir_ml(:variable_choice), do: :choice
defp sinter_type_to_elixir_ml(:variable_range), do: :float
defp sinter_type_to_elixir_ml(:variable_module), do: :module
defp sinter_type_to_elixir_ml(type), do: type
defp add_type_constraints(opts, %{type: :choice, constraints: %{choices: choices}}) do
Keyword.put(opts, :choices, choices)
end
defp add_type_constraints(opts, %{type: :float, constraints: %{range: range}}) do
Keyword.put(opts, :range, range)
end
defp add_type_constraints(opts, %{type: :integer, constraints: %{range: range}}) do
Keyword.put(opts, :range, range)
end
defp add_type_constraints(opts, %{type: :module, constraints: %{modules: modules, behavior: behavior}}) do
opts
|> Keyword.put(:choices, modules)
|> Keyword.put(:behavior, behavior)
end
defp add_type_constraints(opts, _), do: opts
defp extract_elixir_ml_constraints(opts) do
constraints = %{}
constraints = if choices = Keyword.get(opts, :choices) do
Map.put(constraints, :choices, choices)
else
constraints
end
constraints = if range = Keyword.get(opts, :range) do
Map.put(constraints, :range, range)
else
constraints
end
constraints = if behavior = Keyword.get(opts, :behavior) do
Map.put(constraints, :behavior, behavior)
else
constraints
end
constraints
end
end
Phase 4: Enhanced Error Messages & Developer Experience (Week 4)
4.1 Variable-Aware Error Messages
# sinter/lib/sinter/error.ex - Enhanced error messages for variables
defmodule Sinter.Error do
defstruct [:path, :code, :message, :context]
def new(path, code, message, context \\ %{}) do
enhanced_message = enhance_variable_message(code, message, context)
%__MODULE__{
path: path,
code: code,
message: enhanced_message,
context: context
}
end
defp enhance_variable_message(:constraint, message, %{constraint: :choices, choices: choices}) do
"""
#{message}
Available choices:
#{format_choices(choices)}
This is a variable parameter that can be optimized automatically.
"""
end
defp enhance_variable_message(:constraint, message, %{constraint: :range, range: {min_val, max_val}}) do
"""
#{message}
Valid range: #{min_val} to #{max_val}
This is a continuous variable that optimizers can tune automatically.
"""
end
defp enhance_variable_message(:module_not_found, message, %{module: module}) do
"""
#{message}
Make sure the module is:
1. Correctly spelled: #{module}
2. Available in the current environment
3. Implements the required behavior (if specified)
This is a module variable for automatic strategy selection.
"""
end
defp enhance_variable_message(:type, message, %{expected_type: :embedding}) do
"""
#{message}
Embeddings should be:
- Non-empty list of numbers: [0.1, 0.2, 0.3, ...]
- Consistent dimensionality across your dataset
- Normalized if using cosine similarity
Example: [0.1, 0.2, 0.3, 0.4, 0.5]
"""
end
defp enhance_variable_message(:constraint, message, %{constraint: :probability}) do
"""
#{message}
Probabilities must be between 0.0 and 1.0:
- 0.0 = impossible
- 0.5 = equally likely
- 1.0 = certain
Common sources: model confidence scores, sampling probabilities
"""
end
defp enhance_variable_message(_code, message, _context), do: message
defp format_choices(choices) when is_list(choices) do
choices
|> Enum.map(fn choice -> " - #{inspect(choice)}" end)
|> Enum.join("\n")
end
end
4.2 Developer-Friendly Variable Definition Macros
# sinter/lib/sinter/dsl.ex - Optional DSL for easier variable definition
defmodule Sinter.DSL do
@moduledoc """
Optional DSL for defining variable-aware schemas with cleaner syntax.
"""
defmacro defschema(name, do: block) do
quote do
defmodule unquote(name) do
import Sinter.Variables
import Sinter.DSL.Helpers
# Collect field definitions
@fields []
unquote(block)
# Create the schema
@schema Sinter.Schema.define(@fields)
def schema, do: @schema
def variables, do: @schema.variables
def validate(data), do: Sinter.validate(@schema, data)
def validate_with_variables(data, config), do: Sinter.validate_with_variables(@schema, data, config)
end
end
end
defmodule Helpers do
defmacro field(name, type, opts \\ []) do
quote do
@fields [{unquote(name), unquote(type), unquote(opts)} | @fields]
end
end
defmacro variable_choice(name, choices, opts \\ []) do
quote do
@fields [Sinter.Variables.choice(unquote(name), unquote(choices), unquote(opts)) | @fields]
end
end
defmacro variable_range(name, range, opts \\ []) do
quote do
@fields [Sinter.Variables.range(unquote(name), unquote(range), unquote(opts)) | @fields]
end
end
defmacro variable_module(name, modules, opts \\ []) do
quote do
@fields [Sinter.Variables.module(unquote(name), unquote(modules), unquote(opts)) | @fields]
end
end
end
end
Usage Examples
Basic Variable Schema Definition
# Using the core API
schema = Sinter.Schema.define([
# Regular fields
{:input, :string, [required: true]},
{:output, :string, [required: true]},
# Variable fields for optimization
Sinter.Variables.choice(:adapter, [JSONAdapter, MarkdownAdapter, ChatAdapter]),
Sinter.Variables.range(:temperature, {0.0, 2.0}, default: 0.7),
Sinter.Variables.module(:strategy, [Predict, CoT, PoT], behavior: DSPEx.Strategy)
])
# Extract variables for optimizer
variable_space = Sinter.Variables.extract_variable_space(schema)
# => [
# %{name: :adapter, type: :discrete, constraints: %{choices: [...]}, ...},
# %{name: :temperature, type: :continuous, constraints: %{range: {0.0, 2.0}}, ...},
# %{name: :strategy, type: :discrete, constraints: %{choices: [...], behavior: DSPEx.Strategy}, ...}
# ]
# Validate with variable configuration
variable_config = %{
adapter: JSONAdapter,
temperature: 0.8,
strategy: CoT
}
data = %{
input: "What is the capital of France?",
output: "The capital of France is Paris."
}
{:ok, validated} = Sinter.validate_with_variables(schema, data, variable_config)
Using the Optional DSL
# Using the cleaner DSL syntax
defmodule MyProgramSchema do
use Sinter.DSL
defschema do
# Regular fields
field :input, :string, required: true
field :output, :string, required: true
# Variable fields
variable_choice :adapter, [JSONAdapter, MarkdownAdapter, ChatAdapter]
variable_range :temperature, {0.0, 2.0}, default: 0.7
variable_module :strategy, [Predict, CoT, PoT], behavior: DSPEx.Strategy
end
end
# Usage
{:ok, validated} = MyProgramSchema.validate_with_variables(data, variable_config)
variables = MyProgramSchema.variables()
Integration with Existing ElixirML
# Convert existing ElixirML.Variable to Sinter
elixir_ml_var = %ElixirML.Variable{
name: :temperature,
type: :float,
constraints: %{range: {0.0, 2.0}},
default: 0.7
}
sinter_field = Sinter.ElixirML.from_elixir_ml_variable(elixir_ml_var)
# => {:temperature, :variable_range, [variable: true, range: {0.0, 2.0}, default: 0.7]}
# Create schema from ElixirML Variable.Space
variable_space = %ElixirML.Variable.Space{variables: %{temp: elixir_ml_var}}
schema = Sinter.ElixirML.schema_from_variable_space(variable_space)
Migration Strategy
Step 1: Add Enhanced Sinter to Dependencies
# mix.exs
def deps do
[
{:sinter, path: "../sinter"}, # Enhanced version
# ... other deps
]
end
Step 2: Gradual ElixirML.Schema Replacement
# Before (ElixirML custom)
schema = ElixirML.Schema.define([
{:temperature, :probability, required: false, default: 0.7},
{:response, :model_response, required: true}
])
# After (Enhanced Sinter)
schema = Sinter.Schema.define([
{:temperature, :probability, [default: 0.7]},
{:response, :model_response, [required: true]}
])
Step 3: Variable System Integration
# Add variable support to existing schemas
schema = Sinter.Schema.define([
{:input, :string, [required: true]},
{:output, :string, [required: true]},
# Convert fixed parameters to variables
Sinter.Variables.choice(:adapter, [JSONAdapter, MarkdownAdapter]),
Sinter.Variables.range(:temperature, {0.0, 2.0})
])
Testing Strategy
Unit Tests for Variable System
# test/sinter/variables_test.exs
defmodule Sinter.VariablesTest do
use ExUnit.Case
describe "variable definition" do
test "defines choice variable correctly" do
field = Sinter.Variables.choice(:adapter, [JSON, Markdown])
assert {:adapter, :variable_choice, opts} = field
assert Keyword.get(opts, :variable) == true
assert Keyword.get(opts, :choices) == [JSON, Markdown]
end
test "defines range variable correctly" do
field = Sinter.Variables.range(:temp, {0.0, 1.0})
assert {:temp, :variable_range, opts} = field
assert Keyword.get(opts, :range) == {0.0, 1.0}
end
end
describe "variable validation" do
test "validates choice variables" do
schema = Sinter.Schema.define([
Sinter.Variables.choice(:adapter, [JSON, Markdown])
])
config = %{adapter: JSON}
data = %{}
assert {:ok, _} = Sinter.validate_with_variables(schema, data, config)
end
test "rejects invalid choice values" do
schema = Sinter.Schema.define([
Sinter.Variables.choice(:adapter, [JSON, Markdown])
])
config = %{adapter: InvalidAdapter}
data = %{}
assert {:error, _} = Sinter.validate_with_variables(schema, data, config)
end
end
end
Integration Tests with ElixirML
# test/sinter/elixir_ml_integration_test.exs
defmodule Sinter.ElixirMLIntegrationTest do
use ExUnit.Case
test "converts ElixirML.Variable to Sinter field" do
var = %ElixirML.Variable{
name: :temperature,
type: :float,
constraints: %{range: {0.0, 2.0}},
default: 0.7
}
field = Sinter.ElixirML.from_elixir_ml_variable(var)
assert {:temperature, :variable_range, opts} = field
assert Keyword.get(opts, :range) == {0.0, 2.0}
assert Keyword.get(opts, :default) == 0.7
end
test "creates schema from variable space" do
var = %ElixirML.Variable{name: :temp, type: :float, constraints: %{range: {0.0, 1.0}}}
space = %ElixirML.Variable.Space{variables: %{temp: var}}
schema = Sinter.ElixirML.schema_from_variable_space(space)
assert length(schema.variables) == 1
end
end
Implementation Timeline
Week 1: Core Variable Types
- Add variable-aware types to
sinter/lib/sinter/types.ex
- Add ML-specific types (embedding, probability, etc.)
- Add variable-specific constraints
- Unit tests for all new types
Week 2: Variable-Aware Schema System
- Enhance
Sinter.Schema
with variable support - Implement
validate_with_variables/3
- Create
Sinter.Variables
helper module - Integration tests for variable system
Week 3: ElixirML Integration Bridge
- Create
Sinter.ElixirML
integration module - Bidirectional conversion between ElixirML.Variable and Sinter
- Schema creation from ElixirML Variable.Space
- Test ElixirML integration thoroughly
Week 4: Developer Experience & Polish
- Enhanced error messages for variables
- Optional DSL for cleaner syntax
- Migration documentation
- Performance testing and optimization
Success Criteria
- ✅ Enhanced Sinter supports all Variable System requirements
- ✅ Seamless ElixirML.Variable integration
- ✅ Variable-aware validation working correctly
- ✅ Clear migration path from ElixirML.Schema
- ✅ Performance equivalent to current implementation
- ✅ Comprehensive test coverage
- ✅ Developer-friendly error messages
- ✅ Documentation and examples complete
Benefits
✅ Focused Enhancement
- Builds on proven Sinter foundation
- Adds only essential Variable System features
- No architectural complexity or scope creep
✅ Revolutionary Capability
- Enables automatic optimization across all parameter types
- Solves the exact DSPy community challenge
- Universal optimizer compatibility
✅ Seamless Migration
- Clear upgrade path from ElixirML.Schema
- Backward compatibility during transition
- Gradual adoption possible
✅ Production Ready
- Type-safe variable definitions
- Comprehensive validation
- Excellent error messages
- Battle-tested foundation
This enhancement strategy transforms Sinter into the type-safe foundation for DSPEx’s revolutionary Variable System while maintaining its core simplicity and reliability. The Variable System will differentiate DSPEx from DSPy and position it as the most advanced optimization framework in the LLM space.