DSPEx Unified Master Integration Plan
Synthesizing Ash Framework, Jido Actions, and Variable System for a Revolutionary LLM Optimization Platform
Executive Summary
After analyzing the comprehensive documentation across three major integration approaches, this unified plan combines the best innovations from:
- Ash Framework Integration: Declarative resource modeling and enterprise-grade features
- Jido Actions Integration: Robust execution patterns and agent-based architecture
- Variable System: Revolutionary universal parameter optimization
The result is a composable, flexible, and innovative platform that will establish DSPEx as the definitive standard for LLM optimization and prompt engineering.
Strategic Vision: The Three Pillars
🏛️ Pillar 1: Ash-Powered Foundation (Enterprise-Grade Declarative Framework)
- Core Resources: Programs, optimizations, and evaluations as first-class Ash resources
- Declarative Programming: Define complex LLM workflows through simple resource definitions
- Enterprise Features: Automatic APIs, real-time subscriptions, policy-based access control
- Data Intelligence: Rich querying and analytics across optimization history
⚡ Pillar 2: Jido-Driven Execution (Battle-Tested Runtime Excellence)
- Robust Execution: Fault-tolerant, supervised program execution
- Event-Driven Architecture: Real-time optimization monitoring through signal bus
- Agent Evolution: DSPEx programs can evolve into stateful, conversational agents
- Production Ready: Battle-tested patterns for high-availability deployments
🎯 Pillar 3: Variable-Enabled Optimization (Revolutionary Parameter Discovery)
- Universal Variables: Any optimizer can tune any parameter type (adapters, modules, hyperparameters)
- Multi-Objective Intelligence: Automatic discovery of optimal cost/performance/latency trade-offs
- Adaptive Selection: AI-driven choice between JSON vs Markdown, Predict vs CoT vs PoT
- Continuous Learning: System improves optimization strategies based on usage patterns
Unified Architecture
DSPEx Unified Platform Architecture
├── 🏛️ Ash Declarative Layer
│ ├── Resource Modeling (Programs, Variables, Optimizations)
│ ├── Policy Engine (Access Control & Governance)
│ ├── Query Intelligence (Rich Analytics & Reporting)
│ └── API Generation (GraphQL, REST, LiveView)
│
├── 🎯 Variable Optimization Engine
│ ├── Universal Variable Abstraction
│ ├── Multi-Objective Evaluator (Pareto Optimization)
│ ├── Adaptive Strategy Selection
│ └── Continuous Learning System
│
├── ⚡ Jido Execution Runtime
│ ├── Action-Based Program Execution
│ ├── Signal Bus (Event-Driven Communication)
│ ├── Agent Management (Stateful Programs)
│ └── Supervision Trees (Fault Tolerance)
│
├── 🔌 Integration Foundation
│ ├── ExLLM Client Abstraction
│ ├── Nx-Powered Analytics
│ ├── GenStage Streaming Pipeline
│ └── Sinter Type Safety
│
└── 🌐 Application Ecosystem
├── LiveView Dashboard (Real-time Monitoring)
├── CLI Tools (Developer Experience)
├── SDK Libraries (Easy Integration)
└── Plugin Architecture (Extensibility)
Phase 1: Foundation Synthesis (Months 1-3)
Month 1: Ash Resource Foundation
Goal: Establish Ash as the data modeling and configuration foundation
# Core Ash Resources for DSPEx
defmodule DSPEx.Resources.Program do
use Ash.Resource, domain: DSPEx.Domain
attributes do
uuid_primary_key :id
attribute :name, :string, allow_nil?: false
attribute :signature_config, DSPEx.Types.SignatureConfig
attribute :variable_space_id, :uuid
attribute :optimization_metadata, :map, default: %{}
attribute :execution_stats, :map, default: %{}
end
relationships do
belongs_to :variable_space, DSPEx.Resources.VariableSpace
has_many :optimization_runs, DSPEx.Resources.OptimizationRun
has_many :executions, DSPEx.Resources.Execution
end
actions do
defaults [:create, :read, :update, :destroy]
action :execute_with_jido, :map do
argument :inputs, :map, allow_nil?: false
argument :variable_config, :map, default: %{}
run DSPEx.Actions.ExecuteWithJido
end
action :optimize_variables, DSPEx.Resources.Program do
argument :training_data, {:array, :map}, allow_nil?: false
argument :optimization_strategy, :atom, default: :adaptive
run DSPEx.Actions.OptimizeVariables
end
end
calculations do
calculate :current_performance, :float do
DSPEx.Calculations.CurrentPerformance
end
calculate :variable_importance, {:array, :map} do
DSPEx.Calculations.VariableImportance
end
calculate :cost_efficiency, :float do
DSPEx.Calculations.CostEfficiency
end
end
end
defmodule DSPEx.Resources.VariableSpace do
use Ash.Resource, domain: DSPEx.Domain
attributes do
uuid_primary_key :id
attribute :name, :string
attribute :variables, {:array, DSPEx.Types.Variable}
attribute :constraints, {:array, :map}, default: []
attribute :optimization_hints, :map, default: %{}
end
relationships do
has_many :programs, DSPEx.Resources.Program
has_many :configurations, DSPEx.Resources.VariableConfiguration
has_many :optimization_runs, DSPEx.Resources.OptimizationRun
end
actions do
action :generate_configuration, DSPEx.Resources.VariableConfiguration do
argument :strategy, :atom, default: :adaptive
argument :context, :map, default: %{}
run DSPEx.Actions.GenerateVariableConfiguration
end
action :evaluate_configuration, :map do
argument :configuration, :map, allow_nil?: false
argument :program_id, :uuid, allow_nil?: false
argument :evaluation_data, {:array, :map}, allow_nil?: false
run DSPEx.Actions.EvaluateConfiguration
end
end
end
Month 2: Jido Integration Layer
Goal: Integrate Jido actions for robust execution and event-driven architecture
# Jido-Powered Program Execution
defmodule DSPEx.Actions.ExecuteWithJido do
use Jido.Action,
name: "dspex_execute_program",
description: "Execute DSPEx program with variable resolution and robust error handling",
schema: [
program_id: [type: :uuid, required: true],
inputs: [type: :map, required: true],
variable_config: [type: :map, default: %{}],
execution_options: [type: :map, default: %{}]
]
@impl Jido.Action
def run(params, context) do
# Load program with Ash
program = DSPEx.Resources.Program.get!(params.program_id, load: [:variable_space])
# Resolve variables to concrete configuration
resolved_config = resolve_variables(program.variable_space, params.variable_config)
# Execute with Jido's robust error handling
case execute_program_with_config(program, params.inputs, resolved_config, context) do
{:ok, outputs} ->
# Record execution via Ash
record_execution(program, params.inputs, outputs, resolved_config)
# Emit Jido signal for real-time monitoring
emit_execution_signal(program.id, outputs, context)
{:ok, outputs}
{:error, reason} ->
# Record failure and emit signal
record_failure(program, params.inputs, reason, resolved_config)
emit_failure_signal(program.id, reason, context)
{:error, reason}
end
end
defp resolve_variables(variable_space, config) do
# Use Variable system to resolve configuration
DSPEx.Variables.Resolver.resolve(variable_space.variables, config)
end
defp execute_program_with_config(program, inputs, config, context) do
# Apply configuration to program
configured_program = DSPEx.Configuration.apply_config(program, config)
# Execute with timeout and retry
case DSPEx.Program.forward(configured_program, inputs) do
{:ok, outputs} -> {:ok, outputs}
{:error, reason} -> handle_execution_error(reason, configured_program, inputs, context)
end
end
end
# Event-Driven Optimization Monitoring
defmodule DSPEx.OptimizationSignalBus do
use Jido.Signal.Bus,
name: :dspex_optimization_bus,
adapters: [
{Jido.Signal.Adapters.Logger, level: :info},
{Jido.Signal.Adapters.Telemetry, prefix: [:dspex]},
{DSPEx.Signal.Adapters.LiveView, topic: "optimization"},
{DSPEx.Signal.Adapters.Database, store: DSPEx.Repo}
]
def optimization_started(run_id, program_id, variable_space) do
emit(%Jido.Signal{
type: "dspex.optimization.started",
data: %{
run_id: run_id,
program_id: program_id,
variable_count: length(variable_space.variables),
timestamp: DateTime.utc_now()
}
})
end
def configuration_evaluated(run_id, configuration, evaluation_result) do
emit(%Jido.Signal{
type: "dspex.optimization.configuration.evaluated",
data: %{
run_id: run_id,
configuration: configuration,
performance_score: evaluation_result.performance_score,
cost_score: evaluation_result.cost_score,
latency_score: evaluation_result.latency_score,
pareto_rank: evaluation_result.pareto_rank,
timestamp: DateTime.utc_now()
}
})
end
def optimization_completed(run_id, best_configuration, pareto_frontier) do
emit(%Jido.Signal{
type: "dspex.optimization.completed",
data: %{
run_id: run_id,
best_configuration: best_configuration,
pareto_frontier_size: length(pareto_frontier),
optimization_duration: calculate_duration(run_id),
timestamp: DateTime.utc_now()
}
})
end
end
Month 3: Variable System Integration
Goal: Implement revolutionary variable abstraction with multi-objective optimization
# Universal Variable System with Ash Integration
defmodule DSPEx.Variables.Variable do
use Ash.Resource, domain: DSPEx.Variables.Domain
attributes do
uuid_primary_key :id
attribute :name, :atom, allow_nil?: false
attribute :type, DSPEx.Types.VariableType, allow_nil?: false
attribute :choices, {:array, :union, types: [:string, :atom, :module]}, default: []
attribute :range, DSPEx.Types.Range
attribute :default_value, :union, types: [:string, :integer, :float, :boolean, :atom]
attribute :constraints, :map, default: %{}
attribute :description, :string
attribute :cost_weight, :float, default: 1.0
attribute :performance_weight, :float, default: 1.0
attribute :metadata, :map, default: %{}
end
relationships do
belongs_to :variable_space, DSPEx.Resources.VariableSpace
has_many :evaluations, DSPEx.Variables.Evaluation
has_many :performance_records, DSPEx.Variables.PerformanceRecord
end
actions do
action :sample_value, :union do
argument :strategy, :atom, default: :uniform
argument :context, :map, default: %{}
run DSPEx.Variables.Actions.SampleValue
end
action :validate_value, :boolean do
argument :value, :union, allow_nil?: false
run DSPEx.Variables.Actions.ValidateValue
end
action :record_performance, DSPEx.Variables.PerformanceRecord do
argument :configuration, :map, allow_nil?: false
argument :performance_metrics, :map, allow_nil?: false
run DSPEx.Variables.Actions.RecordPerformance
end
end
calculations do
calculate :optimal_value_estimate, :union do
DSPEx.Variables.Calculations.OptimalValueEstimate
end
calculate :performance_correlation, :float do
DSPEx.Variables.Calculations.PerformanceCorrelation
end
end
end
# Multi-Objective Optimization with Pareto Analysis
defmodule DSPEx.Optimization.MultiObjectiveOptimizer do
use Ash.Resource, domain: DSPEx.Domain
attributes do
uuid_primary_key :id
attribute :objectives, {:array, :map}, default: []
attribute :pareto_frontier, {:array, :map}, default: []
attribute :optimization_strategy, :atom, default: :adaptive
attribute :convergence_criteria, :map, default: %{}
end
actions do
action :optimize, :map do
argument :program_id, :uuid, allow_nil?: false
argument :variable_space_id, :uuid, allow_nil?: false
argument :training_data, {:array, :map}, allow_nil?: false
argument :budget, :integer, default: 100
run DSPEx.Optimization.Actions.MultiObjectiveOptimize
end
end
calculations do
calculate :convergence_status, :atom do
DSPEx.Optimization.Calculations.ConvergenceStatus
end
calculate :best_trade_offs, {:array, :map} do
DSPEx.Optimization.Calculations.BestTradeOffs
end
end
end
Phase 2: Advanced Integration (Months 4-6)
Month 4: Agent Evolution Framework
Goal: Enable DSPEx programs to evolve into stateful, conversational agents
# DSPEx Agent Framework using Jido
defmodule DSPEx.Agents.ProgramAgent do
use Jido.Agent,
name: "dspex_program_agent",
description: "Stateful DSPEx program with conversation memory and adaptive behavior"
def initial_state(config) do
%{
program_id: config.program_id,
variable_configuration: config.variable_configuration,
conversation_history: [],
performance_metrics: %{},
adaptive_learning_enabled: config.adaptive_learning || false,
optimization_budget: config.optimization_budget || 10
}
end
def handle_signal(%Jido.Signal{type: "dspex.execute"} = signal, state) do
# Execute DSPEx program with current configuration
execution_result = execute_program(state.program_id, signal.data.inputs, state.variable_configuration)
# Update conversation history
updated_state = update_conversation_history(state, signal.data.inputs, execution_result)
# Adaptive learning: adjust configuration based on performance
final_state = if state.adaptive_learning_enabled do
adapt_configuration(updated_state, execution_result)
else
updated_state
end
response_signal = %Jido.Signal{
type: "dspex.execution.completed",
data: execution_result,
correlation_id: signal.correlation_id
}
{:ok, [response_signal], final_state}
end
def handle_signal(%Jido.Signal{type: "dspex.optimize"} = signal, state) do
# Trigger background optimization
optimization_task = Task.Supervisor.async_nolink(DSPEx.TaskSupervisor, fn ->
DSPEx.Optimization.optimize_configuration(
state.program_id,
signal.data.training_data,
state.optimization_budget
)
end)
# Continue processing while optimization runs in background
updated_state = %{state | current_optimization: optimization_task}
{:ok, [], updated_state}
end
defp adapt_configuration(state, execution_result) do
# Simple adaptation: if performance is poor, trigger mini-optimization
if execution_result.performance_score < 0.7 do
# Trigger adaptive optimization with small budget
new_config = DSPEx.Variables.AdaptiveOptimizer.quick_optimize(
state.program_id,
state.variable_configuration,
[execution_result],
budget: 5
)
%{state | variable_configuration: new_config}
else
state
end
end
end
Month 5: Enterprise Dashboard and APIs
Goal: Complete enterprise-grade features with real-time monitoring
# Enterprise API with Automatic GraphQL Generation
defmodule DSPExWeb.Schema do
use Absinthe.Schema
use AshGraphql, domains: [DSPEx.Domain, DSPEx.Variables.Domain]
query do
# Automatically generated queries for all Ash resources
end
mutation do
# Automatically generated mutations
end
subscription do
field :optimization_progress, :optimization_run do
arg :run_id, non_null(:id)
config fn args, _info ->
{:ok, topic: "optimization:#{args.run_id}"}
end
end
field :variable_performance_updates, :variable_performance_record do
arg :variable_id, non_null(:id)
config fn args, _info ->
{:ok, topic: "variable:#{args.variable_id}"}
end
end
field :pareto_frontier_updates, :pareto_point do
arg :optimization_id, non_null(:id)
config fn args, _info ->
{:ok, topic: "pareto:#{args.optimization_id}"}
end
end
end
end
# Real-Time Optimization Dashboard
defmodule DSPExWeb.OptimizationLive do
use DSPExWeb, :live_view
def mount(_params, _session, socket) do
# Subscribe to optimization signals
DSPEx.OptimizationSignalBus.subscribe("dspex.optimization.*")
DSPEx.OptimizationSignalBus.subscribe("dspex.variable.*")
{:ok, assign(socket,
optimizations: load_active_optimizations(),
pareto_frontiers: %{},
variable_performance: %{},
real_time_updates: true
)}
end
def handle_info({:signal, %Jido.Signal{type: "dspex.optimization.configuration.evaluated"} = signal}, socket) do
# Update Pareto frontier visualization in real-time
updated_frontiers = update_pareto_visualization(socket.assigns.pareto_frontiers, signal)
{:noreply, assign(socket, pareto_frontiers: updated_frontiers)}
end
def handle_info({:signal, %Jido.Signal{type: "dspex.variable.performance.updated"} = signal}, socket) do
# Update variable performance metrics
updated_performance = update_variable_performance(socket.assigns.variable_performance, signal)
{:noreply, assign(socket, variable_performance: updated_performance)}
end
def render(assigns) do
~H"""
<div class="optimization-dashboard">
<.live_component module={DSPExWeb.ParetoFrontierComponent}
id="pareto-frontier"
frontiers={@pareto_frontiers} />
<.live_component module={DSPExWeb.VariableImportanceComponent}
id="variable-importance"
performance_data={@variable_performance} />
<.live_component module={DSPExWeb.OptimizationProgressComponent}
id="optimization-progress"
optimizations={@optimizations} />
</div>
"""
end
end
Month 6: Advanced Variable Learning
Goal: Implement continuous learning and adaptation
# Continuous Learning System for Variables
defmodule DSPEx.Variables.ContinuousLearner do
use GenServer
use Jido.Signal.Handler
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(_opts) do
# Subscribe to performance signals
DSPEx.OptimizationSignalBus.subscribe("dspex.execution.*")
DSPEx.OptimizationSignalBus.subscribe("dspex.optimization.*")
{:ok, %{
performance_models: %{},
learning_rate: 0.1,
adaptation_threshold: 0.05,
model_update_frequency: 100
}}
end
def handle_signal(%Jido.Signal{type: "dspex.execution.completed"} = signal, state) do
# Extract variable configuration and performance
config = signal.data.variable_configuration
performance = signal.data.performance_metrics
# Update performance models for each variable
updated_models = update_variable_performance_models(
state.performance_models,
config,
performance,
state.learning_rate
)
# Check if any variable needs recalibration
variables_to_recalibrate = identify_recalibration_candidates(
updated_models,
state.adaptation_threshold
)
# Trigger recalibration if needed
if length(variables_to_recalibrate) > 0 do
trigger_variable_recalibration(variables_to_recalibrate)
end
{:ok, %{state | performance_models: updated_models}}
end
defp update_variable_performance_models(models, config, performance, learning_rate) do
Enum.reduce(config, models, fn {variable_name, value}, acc_models ->
current_model = Map.get(acc_models, variable_name, %{values: %{}, performance_history: []})
# Update value performance tracking
updated_values = Map.update(current_model.values, value, [performance], fn existing ->
# Exponential moving average
[performance | Enum.take(existing, 99)]
end)
# Update overall performance history
updated_history = [performance | Enum.take(current_model.performance_history, 999)]
# Calculate performance trends
trends = calculate_performance_trends(updated_history)
updated_model = %{
values: updated_values,
performance_history: updated_history,
trends: trends,
last_updated: DateTime.utc_now()
}
Map.put(acc_models, variable_name, updated_model)
end)
end
defp identify_recalibration_candidates(models, threshold) do
models
|> Enum.filter(fn {_variable_name, model} ->
# Check if performance trend indicates need for recalibration
performance_variance = calculate_performance_variance(model.performance_history)
trend_slope = Map.get(model.trends, :slope, 0)
# Recalibrate if high variance or declining performance
performance_variance > threshold or trend_slope < -threshold
end)
|> Enum.map(fn {variable_name, _model} -> variable_name end)
end
defp trigger_variable_recalibration(variable_names) do
# Launch background recalibration tasks
Enum.each(variable_names, fn variable_name ->
Task.Supervisor.start_child(DSPEx.TaskSupervisor, fn ->
DSPEx.Variables.Recalibrator.recalibrate_variable(variable_name)
end)
end)
end
end
Phase 3: Innovation Layer (Months 7-9)
Month 7: BAML-Inspired Static Analysis
Goal: Compile-time validation and IDE integration
# Static Analysis for DSPEx Programs
defmodule DSPEx.StaticAnalysis.Compiler do
@moduledoc """
BAML-inspired static analysis for DSPEx programs.
Provides compile-time validation and IDE integration.
"""
defmacro defprogram(name, do: block) do
quote do
@program_name unquote(name)
@before_compile DSPEx.StaticAnalysis.Compiler
unquote(block)
end
end
defmacro __before_compile__(env) do
program_ast = Module.get_attribute(env.module, :program_definition)
# Perform static analysis
analysis_result = analyze_program(program_ast, env)
# Generate optimized code
optimized_code = optimize_program(program_ast, analysis_result)
# Generate validation functions
validation_code = generate_validations(program_ast, analysis_result)
quote do
unquote(optimized_code)
unquote(validation_code)
def __program_analysis__, do: unquote(Macro.escape(analysis_result))
end
end
defp analyze_program(ast, env) do
%{
variable_dependencies: analyze_variable_dependencies(ast),
performance_characteristics: estimate_performance(ast),
cost_analysis: analyze_cost_profile(ast),
optimization_opportunities: identify_optimizations(ast),
type_safety_analysis: analyze_type_safety(ast, env),
compatibility_matrix: analyze_compatibility(ast)
}
end
defp generate_validations(ast, analysis) do
quote do
def validate_configuration(config) do
# Generated validation based on static analysis
with {:ok, _} <- validate_variable_types(config),
{:ok, _} <- validate_dependencies(config),
{:ok, _} <- validate_constraints(config) do
{:ok, config}
end
end
def estimate_performance(config) do
# Generated performance estimation
base_performance = unquote(analysis.performance_characteristics.base_score)
variable_impact = calculate_variable_impact(config, unquote(Macro.escape(analysis.variable_dependencies)))
base_performance * variable_impact
end
def estimate_cost(config) do
# Generated cost estimation
unquote(generate_cost_estimation(analysis.cost_analysis))
end
end
end
end
# Usage Example
defmodule MyApp.IntelligentQA do
use DSPEx.StaticAnalysis.Compiler
defprogram :intelligent_qa do
signature MySignatures.QuestionAnswering
variables do
discrete :adapter, choices: [:json, :markdown, :chat]
discrete :reasoning, choices: [:predict, :cot, :pot]
continuous :temperature, range: {0.1, 1.5}
discrete :provider, choices: [:openai, :anthropic, :groq]
end
constraints do
# Provider-specific constraints
constraint :provider_model_compatibility do
if variable(:provider) == :groq do
variable(:reasoning) in [:predict, :cot] # PoT not supported on Groq
end
end
# Performance constraints
constraint :latency_optimization do
if variable(:reasoning) == :pot do
variable(:provider) != :groq # Avoid high-latency combination
end
end
end
optimization do
objectives [:accuracy, :cost, :latency]
weights %{accuracy: 0.5, cost: 0.3, latency: 0.2}
# Static analysis can determine optimal strategies
prefer_strategy :bayesian_optimization when variable_count() > 5
prefer_strategy :grid_search when discrete_space_size() < 50
end
end
end
Month 8: Distributed Optimization
Goal: Multi-node optimization with fault tolerance
# Distributed Optimization Coordinator
defmodule DSPEx.Distributed.OptimizationCoordinator do
use GenServer
use Jido.Agent, name: "distributed_optimization_coordinator"
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(opts) do
# Connect to other nodes in the cluster
cluster_nodes = Keyword.get(opts, :cluster_nodes, [])
Enum.each(cluster_nodes, &Node.connect/1)
# Subscribe to node events
:net_kernel.monitor_nodes(true)
{:ok, %{
active_optimizations: %{},
node_capabilities: %{},
work_distribution: %{},
fault_tolerance_config: Keyword.get(opts, :fault_tolerance, %{})
}}
end
def distribute_optimization(program_id, variable_space, training_data, budget) do
GenServer.call(__MODULE__, {
:distribute_optimization,
program_id,
variable_space,
training_data,
budget
})
end
def handle_call({:distribute_optimization, program_id, variable_space, training_data, budget}, _from, state) do
# Analyze cluster capabilities
available_nodes = [Node.self() | Node.list()]
node_capabilities = assess_node_capabilities(available_nodes)
# Partition optimization space
optimization_partitions = partition_optimization_space(
variable_space,
budget,
length(available_nodes)
)
# Distribute work across nodes
distributed_tasks =
optimization_partitions
|> Enum.zip(available_nodes)
|> Enum.map(fn {partition, node} ->
start_distributed_optimization_task(node, program_id, partition, training_data)
end)
# Track optimization
optimization_id = generate_optimization_id()
updated_state = %{state |
active_optimizations: Map.put(state.active_optimizations, optimization_id, %{
program_id: program_id,
tasks: distributed_tasks,
started_at: DateTime.utc_now(),
partitions: optimization_partitions
})
}
{:reply, {:ok, optimization_id}, updated_state}
end
defp start_distributed_optimization_task(node, program_id, partition, training_data) do
# Start remote optimization task with fault tolerance
Task.Supervisor.async({DSPEx.TaskSupervisor, node}, fn ->
try do
DSPEx.Optimization.LocalOptimizer.optimize(
program_id,
partition.variable_space,
training_data,
partition.budget
)
rescue
error ->
# Report error back to coordinator
DSPEx.Distributed.OptimizationCoordinator.report_task_failure(
Node.self(),
program_id,
error
)
{:error, error}
end
end)
end
def handle_info({:nodedown, node}, state) do
# Handle node failure - redistribute work
failed_optimizations = find_optimizations_on_node(state.active_optimizations, node)
updated_state = Enum.reduce(failed_optimizations, state, fn optimization_id, acc_state ->
redistribute_failed_optimization(optimization_id, node, acc_state)
end)
{:noreply, updated_state}
end
defp redistribute_failed_optimization(optimization_id, failed_node, state) do
optimization = Map.get(state.active_optimizations, optimization_id)
# Find partition that was running on failed node
failed_partition = find_partition_on_node(optimization.partitions, failed_node)
# Redistribute to available node
available_nodes = [Node.self() | Node.list()] -- [failed_node]
if length(available_nodes) > 0 do
backup_node = Enum.random(available_nodes)
# Start replacement task
replacement_task = start_distributed_optimization_task(
backup_node,
optimization.program_id,
failed_partition,
[] # Use cached training data
)
# Update optimization tracking
updated_tasks = optimization.tasks
|> Enum.reject(fn task -> task.node == failed_node end)
|> Kernel.++([replacement_task])
updated_optimization = %{optimization | tasks: updated_tasks}
%{state |
active_optimizations: Map.put(state.active_optimizations, optimization_id, updated_optimization)
}
else
# No available nodes - optimization fails
state
end
end
end
Month 9: Continuous Integration & Production Readiness
Goal: Complete production deployment capabilities
# Production Deployment Manager
defmodule DSPEx.Production.DeploymentManager do
use Ash.Resource, domain: DSPEx.Production.Domain
attributes do
uuid_primary_key :id
attribute :name, :string, allow_nil?: false
attribute :program_id, :uuid, allow_nil?: false
attribute :optimized_configuration, :map, allow_nil?: false
attribute :deployment_strategy, :atom, default: :blue_green
attribute :auto_scaling_config, :map, default: %{}
attribute :monitoring_config, :map, default: %{}
attribute :rollback_config, :map, default: %{}
attribute :status, :atom, default: :pending
end
relationships do
belongs_to :program, DSPEx.Resources.Program
has_many :deployment_instances, DSPEx.Production.DeploymentInstance
has_many :performance_metrics, DSPEx.Production.PerformanceMetric
end
actions do
action :deploy, DSPEx.Production.DeploymentManager do
argument :environment, :atom, allow_nil?: false
argument :deployment_options, :map, default: %{}
run DSPEx.Production.Actions.Deploy
end
action :scale, DSPEx.Production.DeploymentManager do
argument :target_capacity, :integer, allow_nil?: false
argument :scaling_strategy, :atom, default: :gradual
run DSPEx.Production.Actions.Scale
end
action :rollback, DSPEx.Production.DeploymentManager do
argument :reason, :string, allow_nil?: false
run DSPEx.Production.Actions.Rollback
end
end
calculations do
calculate :health_score, :float do
DSPEx.Production.Calculations.HealthScore
end
calculate :performance_trend, :map do
DSPEx.Production.Calculations.PerformanceTrend
end
calculate :cost_efficiency, :float do
DSPEx.Production.Calculations.CostEfficiency
end
end
end
# Health Monitoring System
defmodule DSPEx.Production.HealthMonitor do
use GenServer
use Jido.Signal.Handler
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(_opts) do
# Subscribe to production signals
DSPEx.OptimizationSignalBus.subscribe("dspex.production.*")
# Schedule periodic health checks
:timer.send_interval(30_000, :health_check) # Every 30 seconds
{:ok, %{
deployment_health: %{},
alert_thresholds: %{
error_rate: 0.05,
latency_p95: 5000,
cost_spike: 2.0
},
alert_history: []
}}
end
def handle_info(:health_check, state) do
# Check health of all active deployments
active_deployments = DSPEx.Production.DeploymentManager.list_active!()
health_results =
active_deployments
|> Task.async_stream(fn deployment ->
check_deployment_health(deployment)
end, max_concurrency: 10)
|> Enum.map(fn {:ok, result} -> result end)
# Update health state
updated_health =
health_results
|> Enum.reduce(state.deployment_health, fn {deployment_id, health}, acc ->
Map.put(acc, deployment_id, health)
end)
# Check for alerts
alerts = check_for_alerts(health_results, state.alert_thresholds)
# Send alerts if needed
if length(alerts) > 0 do
send_alerts(alerts)
end
{:noreply, %{state |
deployment_health: updated_health,
alert_history: alerts ++ Enum.take(state.alert_history, 100)
}}
end
defp check_deployment_health(deployment) do
# Collect comprehensive health metrics
health_metrics = %{
error_rate: calculate_error_rate(deployment),
latency_p95: calculate_latency_p95(deployment),
throughput: calculate_throughput(deployment),
cost_per_request: calculate_cost_per_request(deployment),
memory_usage: get_memory_usage(deployment),
cpu_usage: get_cpu_usage(deployment),
active_connections: get_active_connections(deployment)
}
# Calculate overall health score
health_score = calculate_health_score(health_metrics)
{deployment.id, %{
metrics: health_metrics,
health_score: health_score,
status: determine_health_status(health_score),
last_checked: DateTime.utc_now()
}}
end
defp send_alerts(alerts) do
# Send alerts through multiple channels
Enum.each(alerts, fn alert ->
# Slack notification
DSPEx.Notifications.Slack.send_alert(alert)
# Email notification for critical alerts
if alert.severity == :critical do
DSPEx.Notifications.Email.send_alert(alert)
end
# Database logging
DSPEx.Production.Alert.create!(alert)
# Signal bus notification
DSPEx.OptimizationSignalBus.emit(%Jido.Signal{
type: "dspex.production.alert",
data: alert
})
end)
end
end
Success Metrics & KPIs
Technical Excellence Metrics
- Zero Downtime Deployments: 99.9% success rate for production deployments
- Optimization Performance: 3-5x faster convergence vs manual tuning
- Cost Efficiency: 20-40% cost reduction through intelligent configuration
- Accuracy Improvements: 10-25% accuracy gains through variable optimization
Developer Experience Metrics
- Time to Value: <30 minutes from setup to first optimization
- API Usability: <5 lines of code for basic optimization setup
- Documentation Quality: <2 support tickets per 100 users
- Learning Curve: 80% of developers productive within 1 week
Platform Adoption Metrics
- Enterprise Readiness: Support for 1000+ concurrent optimizations
- Community Growth: 500+ GitHub stars within 6 months
- Integration Ecosystem: 10+ official adapters and integrations
- Performance Benchmarks: 2x performance vs DSPy Python baseline
Strategic Differentiation
vs DSPy Python
- Concurrency: Native BEAM VM advantages for parallel optimization
- Fault Tolerance: Built-in supervisor trees and error recovery
- Variable System: Revolutionary universal parameter optimization
- Production Ready: Enterprise-grade monitoring and deployment tools
vs Other Frameworks
- Declarative Power: Ash-powered resource modeling and automatic APIs
- Agent Evolution: Stateful programs with conversational memory
- Real-time Intelligence: Live optimization monitoring and adaptation
- Multi-Objective Mastery: Pareto optimization across competing objectives
Conclusion
This unified master integration plan synthesizes the best innovations from Ash Framework, Jido Actions, and Variable System approaches to create a revolutionary LLM optimization platform. The result is:
- Composable: Mix and match components based on needs
- Flexible: Support for simple scripts to complex enterprise deployments
- Innovative: Revolutionary features not available elsewhere
- Feature-Rich: Comprehensive tooling for the entire optimization lifecycle
By combining Ash’s declarative power, Jido’s execution excellence, and the Variable system’s optimization intelligence, DSPEx will establish itself as the definitive platform for LLM optimization and prompt engineering.
The phased 9-month implementation ensures manageable complexity while delivering incremental value, positioning DSPEx to capture and lead the rapidly growing LLM optimization market.