DSPex V3 Pooler Design Document 3: Dynamic Pool Scaling and Adaptive Resource Management
Document ID: 20250716_v3_pooler_design_03
Version: 1.0
Date: July 16, 2025
Status: Design Phase
๐ฏ Executive Summary
This document designs Dynamic Pool Scaling and Adaptive Resource Management for DSPex V3 Pooler. It introduces intelligent auto-scaling capabilities that dynamically adjust pool sizes, worker counts, and resource allocations based on real-time demand patterns, predictive analytics, and machine learning optimization.
๐๏ธ Current Scaling Limitations
Current V3 Pool Characteristics
- Static Pool Size: Fixed number of workers per pool (configured at startup)
- Manual Resource Management: No automatic resource adjustment
- Reactive Scaling: No predictive capacity planning
- Uniform Worker Allocation: All workers have identical resource allocations
- No Load Prediction: Cannot anticipate traffic spikes
Scaling Challenges Identified
- Traffic Spike Handling: Cannot scale up quickly for sudden load increases
- Resource Waste: Over-provisioned resources during low-traffic periods
- Cost Inefficiency: No automatic scale-down during idle periods
- Manual Intervention: Requires human intervention for capacity changes
- Limited Elasticity: Cannot adapt to changing workload characteristics
๐ Dynamic Scaling Architecture
1. Scaling Controller and Decision Engine
1.1 Scaling Controller
defmodule DSPex.Python.ScalingController do
@moduledoc """
Central controller for dynamic pool scaling decisions.
Features:
- Real-time load monitoring
- Predictive scaling based on patterns
- ML-driven scaling decisions
- Multi-dimensional scaling (workers, resources, pools)
"""
use GenServer
require Logger
defstruct [
:scaling_policies, # Map of pool_id -> scaling_policy
:metrics_collector, # Real-time metrics collection
:predictor, # Load prediction ML model
:scaling_history, # Historical scaling decisions
:active_scaling_ops, # Currently active scaling operations
:constraints # System and business constraints
]
@scaling_intervals %{
fast: 15_000, # 15 seconds for critical scaling
normal: 60_000, # 1 minute for standard scaling
slow: 300_000 # 5 minutes for predictive scaling
}
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def trigger_scaling_evaluation(pool_id, reason \\ :periodic) do
GenServer.cast(__MODULE__, {:evaluate_scaling, pool_id, reason})
end
def get_scaling_recommendations(pool_id) do
GenServer.call(__MODULE__, {:get_recommendations, pool_id})
end
def apply_scaling_decision(pool_id, scaling_decision) do
GenServer.call(__MODULE__, {:apply_scaling, pool_id, scaling_decision}, 30_000)
end
# Real-time scaling evaluation
def handle_cast({:evaluate_scaling, pool_id, reason}, state) do
scaling_decision = evaluate_scaling_need(pool_id, reason, state)
case scaling_decision do
{:scale_up, config} ->
execute_scale_up(pool_id, config)
{:scale_down, config} ->
execute_scale_down(pool_id, config)
{:optimize_resources, config} ->
execute_resource_optimization(pool_id, config)
:no_action ->
:ok
end
{:noreply, update_scaling_history(state, pool_id, scaling_decision)}
end
end
1.2 Scaling Policies
defmodule DSPex.Python.ScalingPolicy do
@moduledoc """
Defines scaling policies for different pool types and scenarios.
"""
defstruct [
:pool_id,
:min_workers, # Minimum number of workers
:max_workers, # Maximum number of workers
:target_utilization, # Target utilization percentage (0.0-1.0)
:scale_up_threshold, # Utilization threshold to trigger scale-up
:scale_down_threshold, # Utilization threshold to trigger scale-down
:scale_up_cooldown, # Cooldown period after scale-up (ms)
:scale_down_cooldown, # Cooldown period after scale-down (ms)
:scaling_increment, # Number of workers to add/remove per scaling event
:predictive_enabled, # Enable predictive scaling
:cost_optimization, # Enable cost-based scaling decisions
:time_based_rules, # Schedule-based scaling rules
:emergency_scaling # Emergency scaling configuration
]
@policy_templates %{
conservative: %__MODULE__{
scale_up_threshold: 0.8,
scale_down_threshold: 0.3,
scale_up_cooldown: 300_000, # 5 minutes
scale_down_cooldown: 600_000, # 10 minutes
scaling_increment: 1,
predictive_enabled: false
},
aggressive: %__MODULE__{
scale_up_threshold: 0.6,
scale_down_threshold: 0.2,
scale_up_cooldown: 60_000, # 1 minute
scale_down_cooldown: 180_000, # 3 minutes
scaling_increment: 2,
predictive_enabled: true
},
cost_optimized: %__MODULE__{
scale_up_threshold: 0.9,
scale_down_threshold: 0.1,
scale_up_cooldown: 180_000, # 3 minutes
scale_down_cooldown: 300_000, # 5 minutes
scaling_increment: 1,
cost_optimization: true,
predictive_enabled: true
},
high_performance: %__MODULE__{
scale_up_threshold: 0.5,
scale_down_threshold: 0.4,
scale_up_cooldown: 30_000, # 30 seconds
scale_down_cooldown: 120_000, # 2 minutes
scaling_increment: 3,
emergency_scaling: %{
threshold: 0.95,
max_emergency_workers: 10,
emergency_timeout: 15_000
}
}
}
def create_policy(pool_id, template, overrides \\ %{}) do
base_policy = Map.get(@policy_templates, template, @policy_templates.conservative)
%{base_policy | pool_id: pool_id}
|> Map.merge(overrides)
end
end
2. Predictive Load Forecasting
2.1 Load Prediction Engine
defmodule DSPex.Python.LoadPredictor do
@moduledoc """
ML-based load prediction for proactive scaling decisions.
"""
use GenServer
defstruct [
:model, # Trained ML model for prediction
:feature_extractors, # Functions to extract features from metrics
:prediction_cache, # Cache of recent predictions
:training_data, # Historical data for model training
:accuracy_metrics # Model accuracy tracking
]
def predict_load(pool_id, time_horizon_minutes) do
GenServer.call(__MODULE__, {:predict_load, pool_id, time_horizon_minutes})
end
def train_model(pool_id, historical_data) do
GenServer.cast(__MODULE__, {:train_model, pool_id, historical_data})
end
# Feature extraction for ML model
defp extract_features(pool_metrics, time_context) do
%{
# Current state features
current_utilization: pool_metrics.utilization,
current_queue_length: pool_metrics.queue_length,
current_response_time: pool_metrics.avg_response_time,
current_error_rate: pool_metrics.error_rate,
# Temporal features
hour_of_day: time_context.hour,
day_of_week: time_context.day_of_week,
day_of_month: time_context.day_of_month,
is_weekend: time_context.is_weekend,
is_holiday: time_context.is_holiday,
# Historical trend features
utilization_trend_1h: calculate_trend(pool_metrics.utilization_history, 60),
utilization_trend_24h: calculate_trend(pool_metrics.utilization_history, 1440),
request_rate_trend: calculate_trend(pool_metrics.request_rate_history, 60),
# Seasonal features
seasonal_factor: calculate_seasonal_factor(time_context),
weekly_pattern: get_weekly_pattern(time_context),
daily_pattern: get_daily_pattern(time_context),
# External context features
system_load: get_system_load(),
memory_pressure: get_memory_pressure(),
network_latency: get_network_latency()
}
end
# Load prediction using trained model
defp predict_future_load(features, time_horizon) do
# Simplified prediction logic - in practice, use proper ML library
base_prediction = features.current_utilization
# Apply trend adjustment
trend_adjustment = features.utilization_trend_1h * (time_horizon / 60)
# Apply seasonal adjustment
seasonal_adjustment = features.seasonal_factor
# Apply external factors
external_adjustment = calculate_external_adjustment(features)
predicted_utilization = base_prediction + trend_adjustment +
seasonal_adjustment + external_adjustment
# Clamp to valid range
max(0.0, min(1.0, predicted_utilization))
end
end
2.2 Pattern Recognition
defmodule DSPex.Python.PatternRecognition do
@moduledoc """
Identifies recurring load patterns for predictive scaling.
"""
def analyze_historical_patterns(pool_id, days_back \\ 30) do
historical_data = fetch_historical_metrics(pool_id, days_back)
patterns = %{
daily_patterns: identify_daily_patterns(historical_data),
weekly_patterns: identify_weekly_patterns(historical_data),
traffic_spikes: identify_traffic_spikes(historical_data),
maintenance_windows: identify_low_traffic_periods(historical_data),
seasonal_trends: identify_seasonal_trends(historical_data)
}
# Score pattern reliability
Enum.map(patterns, fn {pattern_type, pattern_data} ->
reliability_score = calculate_pattern_reliability(pattern_data)
{pattern_type, Map.put(pattern_data, :reliability, reliability_score)}
end)
|> Enum.into(%{})
end
defp identify_daily_patterns(data) do
# Group data by hour of day
hourly_data =
data
|> Enum.group_by(fn point -> point.timestamp |> DateTime.from_unix!() |> Map.get(:hour) end)
|> Enum.map(fn {hour, points} ->
avg_utilization = Enum.reduce(points, 0, & &1.utilization + &2) / length(points)
{hour, avg_utilization}
end)
|> Enum.into(%{})
# Identify peak and low traffic hours
{peak_hours, low_hours} = categorize_traffic_hours(hourly_data)
%{
hourly_averages: hourly_data,
peak_hours: peak_hours,
low_traffic_hours: low_hours,
pattern_strength: calculate_daily_pattern_strength(hourly_data)
}
end
defp identify_traffic_spikes(data) do
# Define spike as >2 standard deviations above mean
mean_utilization = calculate_mean_utilization(data)
std_deviation = calculate_std_deviation(data)
spike_threshold = mean_utilization + (2 * std_deviation)
spikes =
data
|> Enum.filter(fn point -> point.utilization > spike_threshold end)
|> Enum.map(fn spike ->
%{
timestamp: spike.timestamp,
peak_utilization: spike.utilization,
duration: estimate_spike_duration(spike, data),
preceding_conditions: analyze_spike_preconditions(spike, data)
}
end)
%{
spike_events: spikes,
average_spike_magnitude: calculate_average_spike_magnitude(spikes),
spike_frequency: calculate_spike_frequency(spikes),
common_spike_triggers: identify_common_spike_triggers(spikes)
}
end
end
3. Intelligent Resource Scaling
3.1 Worker Pool Auto-Scaling
defmodule DSPex.Python.WorkerAutoScaler do
@moduledoc """
Handles automatic scaling of worker pools based on demand.
"""
def scale_pool(pool_id, scaling_decision) do
case scaling_decision do
{:scale_up, worker_count} ->
scale_up_workers(pool_id, worker_count)
{:scale_down, worker_count} ->
scale_down_workers(pool_id, worker_count)
{:optimize_existing, optimization} ->
optimize_existing_workers(pool_id, optimization)
end
end
defp scale_up_workers(pool_id, worker_count) do
Logger.info("Scaling up pool #{pool_id} by #{worker_count} workers")
# Pre-warm workers concurrently for faster startup
warm_up_tasks = for i <- 1..worker_count do
Task.async(fn ->
worker_id = generate_worker_id(pool_id, i)
case DSPex.Python.WorkerSupervisor.start_worker(worker_id) do
{:ok, worker_pid} ->
# Apply resource limits and monitoring
apply_scaling_optimizations(worker_id, worker_pid)
{:ok, worker_id}
{:error, reason} ->
Logger.error("Failed to start worker #{worker_id}: #{inspect(reason)}")
{:error, reason}
end
end)
end
# Wait for all workers to start
results = Task.await_many(warm_up_tasks, 30_000)
successful_workers = Enum.filter(results, &match?({:ok, _}, &1))
# Update pool configuration
update_pool_size(pool_id, length(successful_workers))
# Record scaling metrics
record_scaling_event(pool_id, :scale_up, length(successful_workers))
{:ok, length(successful_workers)}
end
defp scale_down_workers(pool_id, worker_count) do
Logger.info("Scaling down pool #{pool_id} by #{worker_count} workers")
# Select workers for termination based on criteria
workers_to_remove = select_workers_for_removal(pool_id, worker_count)
# Graceful shutdown with request completion
shutdown_tasks = Enum.map(workers_to_remove, fn worker_id ->
Task.async(fn ->
graceful_worker_shutdown(worker_id)
end)
end)
# Wait for graceful shutdowns
Task.await_many(shutdown_tasks, 60_000)
# Update pool configuration
update_pool_size(pool_id, -worker_count)
# Record scaling metrics
record_scaling_event(pool_id, :scale_down, worker_count)
{:ok, worker_count}
end
defp select_workers_for_removal(pool_id, count) do
workers = DSPex.Python.Pool.list_workers(pool_id)
# Score workers for removal based on:
# - Current workload (prefer idle workers)
# - Health status (prefer degraded workers)
# - Age (prefer older workers that might have accumulated issues)
# - Resource usage (prefer high-resource workers if downsizing)
worker_scores = Enum.map(workers, fn worker_id ->
score = calculate_removal_score(worker_id)
{worker_id, score}
end)
worker_scores
|> Enum.sort_by(fn {_id, score} -> score end, :desc) # Highest score = best candidate for removal
|> Enum.take(count)
|> Enum.map(fn {worker_id, _score} -> worker_id end)
end
defp graceful_worker_shutdown(worker_id) do
# Wait for current requests to complete
wait_for_worker_idle(worker_id, timeout: 30_000)
# Remove from pool availability
DSPex.Python.Pool.remove_worker(worker_id)
# Stop worker process
DSPex.Python.WorkerSupervisor.stop_worker(worker_id)
# Clean up monitoring
DSPex.Python.ResourceMonitor.stop_monitoring(worker_id)
end
end
3.2 Resource-Aware Scaling
defmodule DSPex.Python.ResourceAwareScaling do
@moduledoc """
Considers system resources when making scaling decisions.
"""
def evaluate_scaling_feasibility(scaling_request) do
current_resources = get_current_resource_usage()
required_resources = estimate_required_resources(scaling_request)
available_resources = calculate_available_resources(current_resources)
feasibility = %{
memory_feasible: available_resources.memory >= required_resources.memory,
cpu_feasible: available_resources.cpu >= required_resources.cpu,
network_feasible: available_resources.network >= required_resources.network,
storage_feasible: available_resources.storage >= required_resources.storage
}
overall_feasible = Enum.all?(Map.values(feasibility))
case overall_feasible do
true ->
{:ok, scaling_request}
false ->
# Suggest alternative scaling approach
alternative = suggest_alternative_scaling(scaling_request, feasibility)
{:limited, alternative}
end
end
defp estimate_required_resources(scaling_request) do
case scaling_request do
{:scale_up, worker_count} ->
per_worker_resources = get_average_worker_resource_usage()
%{
memory: per_worker_resources.memory * worker_count,
cpu: per_worker_resources.cpu * worker_count,
network: per_worker_resources.network * worker_count,
storage: per_worker_resources.storage * worker_count
}
{:scale_down, worker_count} ->
# Negative values indicate resource reclamation
per_worker_resources = get_average_worker_resource_usage()
%{
memory: -per_worker_resources.memory * worker_count,
cpu: -per_worker_resources.cpu * worker_count,
network: -per_worker_resources.network * worker_count,
storage: -per_worker_resources.storage * worker_count
}
end
end
defp suggest_alternative_scaling(original_request, feasibility_constraints) do
case original_request do
{:scale_up, requested_count} ->
# Calculate maximum feasible worker count
max_feasible = calculate_max_feasible_workers(feasibility_constraints)
if max_feasible > 0 do
{:scale_up, max_feasible}
else
# Suggest resource optimization instead
{:optimize_resources, %{
target: :memory_efficiency,
expected_capacity_gain: 0.2
}}
end
{:scale_down, _} ->
# Scale down is usually feasible
original_request
end
end
end
4. Schedule-Based and Event-Driven Scaling
4.1 Time-Based Scaling Rules
defmodule DSPex.Python.ScheduledScaling do
@moduledoc """
Handles pre-planned scaling based on time schedules and known events.
"""
use GenServer
defstruct [
:scaling_schedules, # Map of pool_id -> list of scheduled scaling events
:active_timers, # Currently active timers
:timezone, # Timezone for schedule interpretation
:override_policies # Override policies for emergency situations
]
def schedule_scaling_event(pool_id, schedule, scaling_action) do
GenServer.call(__MODULE__, {:schedule_event, pool_id, schedule, scaling_action})
end
def add_recurring_schedule(pool_id, cron_expression, scaling_action) do
GenServer.call(__MODULE__, {:add_recurring, pool_id, cron_expression, scaling_action})
end
# Example scheduled scaling configurations
@default_schedules %{
business_hours: %{
scale_up: %{
time: "08:00",
days: [:monday, :tuesday, :wednesday, :thursday, :friday],
action: {:scale_to, 8}
},
scale_down: %{
time: "18:00",
days: [:monday, :tuesday, :wednesday, :thursday, :friday],
action: {:scale_to, 4}
}
},
weekend_schedule: %{
weekend_scale_down: %{
time: "22:00",
days: [:friday],
action: {:scale_to, 2}
},
weekend_scale_up: %{
time: "08:00",
days: [:monday],
action: {:scale_to, 6}
}
},
maintenance_window: %{
pre_maintenance: %{
time: "02:00",
days: [:sunday],
action: {:scale_to, 1},
duration: 120 # 2 hours
}
}
}
defp evaluate_scheduled_scaling(pool_id, current_time) do
schedules = get_active_schedules(pool_id, current_time)
# Find applicable schedules for current time
applicable_schedules =
schedules
|> Enum.filter(fn schedule -> schedule_applies?(schedule, current_time) end)
|> Enum.sort_by(fn schedule -> schedule.priority end, :desc)
# Apply highest priority schedule
case applicable_schedules do
[schedule | _] ->
execute_scheduled_scaling(pool_id, schedule)
[] ->
:no_scheduled_scaling
end
end
end
4.2 Event-Driven Scaling
defmodule DSPex.Python.EventDrivenScaling do
@moduledoc """
Responds to external events and triggers for scaling decisions.
"""
def handle_scaling_trigger(trigger_type, trigger_data) do
case trigger_type do
:load_spike_detected ->
handle_load_spike(trigger_data)
:api_rate_limit_approached ->
handle_rate_limit_pressure(trigger_data)
:error_rate_increase ->
handle_error_rate_spike(trigger_data)
:external_event ->
handle_external_event(trigger_data)
:cost_threshold_exceeded ->
handle_cost_optimization(trigger_data)
end
end
defp handle_load_spike(spike_data) do
pool_id = spike_data.pool_id
current_utilization = spike_data.utilization
spike_magnitude = spike_data.magnitude
# Calculate required scaling
required_capacity_increase = calculate_spike_capacity_requirement(spike_magnitude)
additional_workers = calculate_workers_needed(required_capacity_increase)
# Apply emergency scaling if spike is severe
if spike_magnitude > 0.8 do
apply_emergency_scaling(pool_id, additional_workers)
else
apply_standard_scaling(pool_id, additional_workers)
end
end
defp handle_rate_limit_pressure(rate_limit_data) do
# When approaching API rate limits, scale down or implement backoff
pool_id = rate_limit_data.pool_id
current_rate = rate_limit_data.current_rate
limit = rate_limit_data.limit
utilization_ratio = current_rate / limit
cond do
utilization_ratio > 0.9 ->
# Emergency: scale down workers to reduce API calls
scale_down_count = calculate_rate_limit_scale_down(pool_id, utilization_ratio)
DSPex.Python.WorkerAutoScaler.scale_pool(pool_id, {:scale_down, scale_down_count})
utilization_ratio > 0.7 ->
# Warning: implement request throttling
implement_request_throttling(pool_id)
true ->
:no_action_needed
end
end
defp apply_emergency_scaling(pool_id, worker_count) do
Logger.warn("Applying emergency scaling: +#{worker_count} workers for pool #{pool_id}")
# Use fastest possible scaling method
scaling_opts = [
priority: :emergency,
timeout: 15_000, # Faster timeout
parallel_startup: true, # Start all workers in parallel
skip_warmup: true # Skip non-essential warmup steps
]
DSPex.Python.WorkerAutoScaler.scale_pool(
pool_id,
{:scale_up, worker_count},
scaling_opts
)
# Set auto-scale-down timer to prevent over-provisioning
schedule_auto_scale_down(pool_id, worker_count, after: 600_000) # 10 minutes
end
end
๐ง Configuration and Integration
1. Dynamic Scaling Configuration
# config/config.exs
config :dspex, DSPex.Python.DynamicScaling,
# Global scaling settings
enabled: true,
evaluation_interval: 60_000, # Evaluate scaling every minute
# Predictive scaling
predictive_scaling: %{
enabled: true,
prediction_horizon: 30, # Predict 30 minutes ahead
confidence_threshold: 0.8, # Only act on >80% confidence predictions
model_retraining_interval: 86400 # Retrain model daily
},
# Resource constraints
resource_limits: %{
max_total_workers: 100, # System-wide worker limit
max_memory_usage: 16_000, # 16GB max memory
max_cpu_cores: 32, # 32 cores max
emergency_reserve: 0.1 # Keep 10% resources in reserve
},
# Scaling policies by pool type
scaling_policies: %{
general: :conservative,
embedding: :aggressive,
generation: :high_performance,
classification: :cost_optimized
},
# Time-based scaling
scheduled_scaling: %{
enabled: true,
timezone: "UTC",
default_schedules: [:business_hours, :weekend_schedule]
},
# Event-driven scaling
event_scaling: %{
enabled: true,
spike_detection_threshold: 0.7, # Detect spikes at 70% utilization
emergency_scaling_threshold: 0.9, # Emergency scaling at 90%
auto_scale_down_delay: 300_000 # Auto scale down after 5 minutes
}
2. Integration with Multi-Pool System
defmodule DSPex.Python.IntegratedScalingManager do
@moduledoc """
Integrates dynamic scaling with multi-pool load balancing.
"""
def coordinate_scaling_across_pools(scaling_demand) do
# Consider scaling impact across all pools
pools = DSPex.Python.PoolRegistry.get_all_pools()
# Calculate optimal scaling distribution
scaling_plan = create_multi_pool_scaling_plan(pools, scaling_demand)
# Execute coordinated scaling
scaling_results = Enum.map(scaling_plan, fn {pool_id, scaling_action} ->
Task.async(fn ->
DSPex.Python.WorkerAutoScaler.scale_pool(pool_id, scaling_action)
end)
end)
# Wait for all scaling operations to complete
Task.await_many(scaling_results, 60_000)
# Update load balancing weights based on new pool sizes
update_load_balancing_weights(scaling_plan)
end
defp create_multi_pool_scaling_plan(pools, demand) do
# Distribute scaling across pools based on:
# 1. Pool specialization and demand type
# 2. Current pool utilization
# 3. Scaling policies and constraints
# 4. Resource availability
pools
|> Enum.map(fn pool ->
pool_demand = calculate_pool_specific_demand(pool, demand)
scaling_action = determine_optimal_scaling(pool, pool_demand)
{pool.pool_id, scaling_action}
end)
|> Enum.filter(fn {_pool_id, action} -> action != :no_scaling end)
end
end
๐ Monitoring and Analytics
1. Scaling Metrics Dashboard
defmodule DSPex.Python.ScalingMetrics do
def get_scaling_dashboard_data do
%{
current_scaling_status: get_current_scaling_status(),
scaling_history: get_scaling_history(24), # Last 24 hours
prediction_accuracy: get_prediction_accuracy_metrics(),
resource_efficiency: get_resource_efficiency_metrics(),
cost_metrics: get_scaling_cost_metrics(),
upcoming_scaling_events: get_upcoming_scheduled_scaling()
}
end
defp get_current_scaling_status do
pools = DSPex.Python.PoolRegistry.get_all_pools()
Enum.map(pools, fn pool ->
stats = DSPex.Python.Pool.get_stats(pool.pool_id)
policy = get_scaling_policy(pool.pool_id)
%{
pool_id: pool.pool_id,
current_workers: stats.workers,
target_utilization: policy.target_utilization,
current_utilization: stats.busy / max(stats.workers, 1),
scaling_headroom: policy.max_workers - stats.workers,
last_scaling_event: get_last_scaling_event(pool.pool_id),
next_evaluation: get_next_evaluation_time(pool.pool_id)
}
end)
end
defp get_resource_efficiency_metrics do
%{
average_utilization: calculate_average_utilization(),
resource_waste_percentage: calculate_resource_waste(),
scaling_accuracy: calculate_scaling_accuracy(),
cost_efficiency: calculate_cost_efficiency(),
predictive_scaling_success_rate: calculate_prediction_success_rate()
}
end
end
2. Telemetry Events
# Scaling operation events
:telemetry.execute(
[:dspex, :scaling, :operation, :completed],
%{
pool_id: pool_id,
operation: :scale_up,
workers_added: count,
duration: duration_ms,
success_rate: success_rate
},
%{trigger: trigger_reason, strategy: scaling_strategy}
)
# Prediction accuracy events
:telemetry.execute(
[:dspex, :scaling, :prediction, :accuracy],
%{
pool_id: pool_id,
predicted_load: predicted,
actual_load: actual,
accuracy_score: accuracy,
prediction_horizon: horizon_minutes
},
%{model_version: version, confidence: confidence}
)
# Resource efficiency events
:telemetry.execute(
[:dspex, :scaling, :efficiency, :measured],
%{
pool_id: pool_id,
resource_utilization: utilization,
cost_efficiency: efficiency,
waste_percentage: waste
},
%{measurement_period: period, scaling_events: events}
)
๐งช Testing Strategy
1. Load Pattern Simulation
defmodule DSPex.Python.ScalingSimulationTest do
use ExUnit.Case, async: false
test "handles traffic spike with predictive scaling" do
pool_id = :test_scaling_pool
# Enable predictive scaling
configure_predictive_scaling(pool_id, enabled: true)
# Simulate gradual load increase leading to spike
simulate_load_pattern(pool_id, [
{0, 0.2}, # Start at 20% utilization
{60, 0.4}, # Increase to 40% after 1 minute
{120, 0.8}, # Jump to 80% after 2 minutes (spike)
{180, 0.9}, # Peak at 90%
{240, 0.3} # Return to 30%
])
# Verify scaling responded appropriately
scaling_events = get_scaling_events(pool_id)
# Should have scaled up before hitting peak
pre_spike_scaling = Enum.find(scaling_events, fn event ->
event.timestamp < 180 and event.action == :scale_up
end)
assert pre_spike_scaling != nil, "Should have scaled up before traffic spike"
# Should have scaled down after traffic returned to normal
post_spike_scaling = Enum.find(scaling_events, fn event ->
event.timestamp > 240 and event.action == :scale_down
end)
assert post_spike_scaling != nil, "Should have scaled down after traffic spike"
end
test "respects resource constraints during scaling" do
# Set low resource limits
configure_resource_limits(max_memory: 1000, max_workers: 5)
# Request large scaling operation
scaling_request = {:scale_up, 10}
# Should be limited by resource constraints
{:limited, actual_scaling} = DSPex.Python.ResourceAwareScaling.evaluate_scaling_feasibility(scaling_request)
{:scale_up, actual_count} = actual_scaling
assert actual_count <= 5, "Should respect max worker limit"
end
end
๐ Expected Benefits
1. Performance Improvements
- 50% reduction in response time during traffic spikes through predictive scaling
- 30% improvement in resource utilization through intelligent scaling decisions
- 25% faster scaling response time through optimized worker startup
2. Cost Optimization
- 40% reduction in infrastructure costs through efficient scale-down
- 20% reduction in over-provisioning through accurate load prediction
- Eliminate manual scaling overhead through automation
3. Reliability Enhancements
- 99.9% availability during traffic spikes through proactive scaling
- Graceful degradation during resource constraints
- Automated recovery from scaling failures
Next Document: Enhanced Monitoring, Observability, and Analytics