DSPex V3 Pooler Design Document 4: Enhanced Monitoring, Observability, and Analytics
Document ID: 20250716_v3_pooler_design_04
Version: 1.0
Date: July 16, 2025
Status: Design Phase
🎯 Executive Summary
This document designs Enhanced Monitoring, Observability, and Analytics for DSPex V3 Pooler. It introduces comprehensive telemetry, real-time dashboards, predictive analytics, and intelligent alerting systems that provide deep insights into pool performance, worker health, and system optimization opportunities.
🏗️ Current Monitoring Landscape
Current V3 Pool Monitoring
- Basic Pool Stats: Worker counts, utilization, queue lengths
- Simple Health Checks: Binary worker health status
- Manual Metrics Collection: Ad-hoc performance measurement
- Limited Telemetry: Basic success/failure tracking
- No Predictive Analytics: Reactive monitoring only
Monitoring Gaps Identified
- Lack of Deep Insights: No understanding of performance patterns
- No Proactive Alerting: Only reacts to failures after they occur
- Limited Historical Data: No long-term trend analysis
- Manual Troubleshooting: No automated diagnosis capabilities
- Fragmented Metrics: No unified observability platform
🚀 Comprehensive Observability Architecture
1. Multi-Dimensional Telemetry System
1.1 Telemetry Collection Engine
defmodule DSPex.Python.TelemetryEngine do
@moduledoc """
Central telemetry collection and processing engine for V3 pooler.
Features:
- Multi-dimensional metric collection
- Real-time metric streaming
- Metric aggregation and correlation
- Event-driven telemetry
- Performance impact minimization
"""
use GenServer
require Logger
defstruct [
:collectors, # Active metric collectors
:processors, # Metric processing pipelines
:exporters, # Metric export destinations
:buffer, # Metric buffering for batch processing
:sampling_rules, # Sampling configuration to reduce overhead
:correlation_engine # Cross-metric correlation analysis
]
@metric_dimensions [
:pool_metrics, # Pool-level performance metrics
:worker_metrics, # Individual worker performance
:request_metrics, # Request-level tracing
:resource_metrics, # System resource utilization
:business_metrics, # Business KPIs and outcomes
:security_metrics # Security and compliance metrics
]
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def emit_metric(dimension, metric_name, value, metadata \\ %{}) do
metric = create_metric(dimension, metric_name, value, metadata)
GenServer.cast(__MODULE__, {:emit_metric, metric})
end
def emit_event(event_type, event_data, context \\ %{}) do
event = create_event(event_type, event_data, context)
GenServer.cast(__MODULE__, {:emit_event, event})
end
def register_collector(collector_module, collector_config) do
GenServer.call(__MODULE__, {:register_collector, collector_module, collector_config})
end
defp create_metric(dimension, name, value, metadata) do
%{
dimension: dimension,
name: name,
value: value,
timestamp: System.system_time(:microsecond),
metadata: Map.merge(metadata, %{
node: Node.self(),
pid: self(),
trace_id: get_trace_id()
})
}
end
end
1.2 Intelligent Metric Collectors
defmodule DSPex.Python.MetricCollectors do
@moduledoc """
Specialized metric collectors for different aspects of the system.
"""
defmodule PoolMetricsCollector do
@moduledoc "Collects comprehensive pool-level metrics"
use GenServer
@collection_interval 5_000 # Collect every 5 seconds
def start_link(pool_id) do
GenServer.start_link(__MODULE__, pool_id, name: via_tuple(pool_id))
end
def handle_info(:collect_metrics, pool_id) do
metrics = collect_comprehensive_pool_metrics(pool_id)
Enum.each(metrics, fn {metric_name, value, metadata} ->
DSPex.Python.TelemetryEngine.emit_metric(
:pool_metrics,
metric_name,
value,
Map.put(metadata, :pool_id, pool_id)
)
end)
# Schedule next collection
Process.send_after(self(), :collect_metrics, @collection_interval)
{:noreply, pool_id}
end
defp collect_comprehensive_pool_metrics(pool_id) do
base_stats = DSPex.Python.Pool.get_stats(pool_id)
workers = DSPex.Python.Pool.list_workers(pool_id)
[
# Core pool metrics
{"pool.workers.total", base_stats.workers, %{type: :gauge}},
{"pool.workers.available", base_stats.available, %{type: :gauge}},
{"pool.workers.busy", base_stats.busy, %{type: :gauge}},
{"pool.queue.length", length(base_stats.queued || []), %{type: :gauge}},
# Performance metrics
{"pool.requests.total", base_stats.requests, %{type: :counter}},
{"pool.requests.errors", base_stats.errors, %{type: :counter}},
{"pool.requests.rate", calculate_request_rate(pool_id), %{type: :gauge}},
{"pool.response_time.avg", calculate_avg_response_time(pool_id), %{type: :gauge}},
{"pool.response_time.p95", calculate_p95_response_time(pool_id), %{type: :gauge}},
{"pool.response_time.p99", calculate_p99_response_time(pool_id), %{type: :gauge}},
# Utilization metrics
{"pool.utilization.current", base_stats.busy / max(base_stats.workers, 1), %{type: :gauge}},
{"pool.utilization.peak_1h", get_peak_utilization(pool_id, 3600), %{type: :gauge}},
{"pool.efficiency.worker", calculate_worker_efficiency(pool_id), %{type: :gauge}},
# Health metrics
{"pool.health.score", calculate_pool_health_score(pool_id), %{type: :gauge}},
{"pool.workers.healthy", count_healthy_workers(workers), %{type: :gauge}},
{"pool.workers.degraded", count_degraded_workers(workers), %{type: :gauge}},
# Advanced metrics
{"pool.session_affinity.hit_rate", calculate_affinity_hit_rate(pool_id), %{type: :gauge}},
{"pool.load_balancing.distribution_score", calculate_distribution_score(pool_id), %{type: :gauge}}
]
end
end
defmodule WorkerMetricsCollector do
@moduledoc "Collects detailed worker-level metrics"
def collect_worker_metrics(worker_id) do
health_data = DSPex.Python.ResourceMonitor.check_health(worker_id)
resource_usage = DSPex.Python.ResourceMonitor.get_resource_usage(worker_id)
[
# Resource metrics
{"worker.memory.usage", resource_usage.memory_usage, %{worker_id: worker_id, unit: :mb}},
{"worker.memory.peak", resource_usage.memory_peak, %{worker_id: worker_id, unit: :mb}},
{"worker.cpu.usage", resource_usage.cpu_usage, %{worker_id: worker_id, unit: :percent}},
{"worker.uptime", resource_usage.uptime, %{worker_id: worker_id, unit: :seconds}},
# Health metrics
{"worker.health.score", health_data.score, %{worker_id: worker_id}},
{"worker.health.state", encode_health_state(health_data.state), %{worker_id: worker_id}},
# Performance metrics
{"worker.requests.processed", get_worker_request_count(worker_id), %{worker_id: worker_id}},
{"worker.requests.active", get_worker_active_requests(worker_id), %{worker_id: worker_id}},
{"worker.response_time.avg", get_worker_avg_response_time(worker_id), %{worker_id: worker_id}},
# API-specific metrics
{"worker.api_calls.total", resource_usage.api_calls_count, %{worker_id: worker_id}},
{"worker.api_calls.rate", resource_usage.api_calls_rate, %{worker_id: worker_id}},
{"worker.api_errors.count", get_worker_api_errors(worker_id), %{worker_id: worker_id}}
]
end
end
defmodule RequestMetricsCollector do
@moduledoc "Collects request-level tracing and performance metrics"
def trace_request(request_id, pool_id, command, args) do
trace_context = %{
request_id: request_id,
pool_id: pool_id,
command: command,
args_size: calculate_args_size(args),
started_at: System.system_time(:microsecond),
trace_id: generate_trace_id()
}
# Emit request start event
DSPex.Python.TelemetryEngine.emit_event(
:request_started,
%{request_id: request_id, command: command},
trace_context
)
trace_context
end
def complete_request_trace(trace_context, result, worker_id) do
completed_at = System.system_time(:microsecond)
duration = completed_at - trace_context.started_at
# Emit detailed request metrics
DSPex.Python.TelemetryEngine.emit_metric(
:request_metrics,
"request.duration",
duration,
Map.merge(trace_context, %{
worker_id: worker_id,
result_type: classify_result(result),
completed_at: completed_at
})
)
# Emit request completion event
DSPex.Python.TelemetryEngine.emit_event(
:request_completed,
%{
request_id: trace_context.request_id,
duration: duration,
success: is_success(result)
},
trace_context
)
end
end
end
2. Real-Time Analytics and Insights
2.1 Performance Analytics Engine
defmodule DSPex.Python.PerformanceAnalytics do
@moduledoc """
Real-time performance analysis and pattern detection.
"""
use GenServer
defstruct [
:metric_buffer, # Sliding window of recent metrics
:pattern_detectors, # Pattern detection algorithms
:anomaly_detectors, # Anomaly detection systems
:trend_analyzers, # Trend analysis engines
:correlation_matrix, # Cross-metric correlation tracking
:insights_cache # Cached insights and recommendations
]
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def get_real_time_insights(pool_id) do
GenServer.call(__MODULE__, {:get_insights, pool_id})
end
def detect_performance_anomalies(pool_id, time_window \\ 3600) do
GenServer.call(__MODULE__, {:detect_anomalies, pool_id, time_window})
end
def analyze_performance_trends(pool_id, metric_name, lookback_hours \\ 24) do
GenServer.call(__MODULE__, {:analyze_trends, pool_id, metric_name, lookback_hours})
end
# Real-time insight generation
defp generate_real_time_insights(pool_id) do
current_metrics = get_current_pool_metrics(pool_id)
historical_metrics = get_historical_metrics(pool_id, 3600) # Last hour
insights = %{
performance_score: calculate_performance_score(current_metrics),
efficiency_insights: analyze_efficiency(current_metrics, historical_metrics),
capacity_insights: analyze_capacity(current_metrics, historical_metrics),
cost_insights: analyze_cost_efficiency(current_metrics, historical_metrics),
optimization_opportunities: identify_optimization_opportunities(pool_id),
predicted_issues: predict_potential_issues(pool_id),
recommendations: generate_recommendations(pool_id)
}
insights
end
defp analyze_efficiency(current_metrics, historical_metrics) do
%{
current_efficiency: calculate_current_efficiency(current_metrics),
efficiency_trend: calculate_efficiency_trend(historical_metrics),
efficiency_percentile: calculate_efficiency_percentile(current_metrics),
bottlenecks: identify_efficiency_bottlenecks(current_metrics),
improvement_potential: estimate_improvement_potential(current_metrics)
}
end
defp identify_optimization_opportunities(pool_id) do
opportunities = []
# Worker utilization optimization
if worker_utilization_imbalanced?(pool_id) do
opportunities = [
%{
type: :worker_rebalancing,
description: "Worker load is imbalanced, consider rebalancing",
potential_improvement: "10-15% efficiency gain",
priority: :medium
} | opportunities
]
end
# Resource allocation optimization
if resource_allocation_suboptimal?(pool_id) do
opportunities = [
%{
type: :resource_reallocation,
description: "Resource allocation can be optimized",
potential_improvement: "20-25% cost reduction",
priority: :high
} | opportunities
]
end
# Scaling optimization
if scaling_pattern_suboptimal?(pool_id) do
opportunities = [
%{
type: :scaling_optimization,
description: "Scaling patterns can be improved",
potential_improvement: "30% faster scaling response",
priority: :medium
} | opportunities
]
end
opportunities
end
defp predict_potential_issues(pool_id) do
predictions = []
# Memory leak prediction
if memory_trend_concerning?(pool_id) do
time_to_issue = estimate_memory_issue_time(pool_id)
predictions = [
%{
issue_type: :memory_leak,
severity: :warning,
estimated_time: time_to_issue,
description: "Memory usage trending upward, potential leak detected",
recommended_action: "Monitor closely, prepare for worker restart"
} | predictions
]
end
# Performance degradation prediction
if performance_degradation_trend?(pool_id) do
predictions = [
%{
issue_type: :performance_degradation,
severity: :info,
estimated_time: 3600, # 1 hour
description: "Performance slowly degrading, may need intervention",
recommended_action: "Consider worker refresh or load reduction"
} | predictions
]
end
# Capacity saturation prediction
if approaching_capacity_limit?(pool_id) do
time_to_saturation = estimate_saturation_time(pool_id)
predictions = [
%{
issue_type: :capacity_saturation,
severity: :critical,
estimated_time: time_to_saturation,
description: "Approaching capacity limits based on current trend",
recommended_action: "Scale up proactively or implement load shedding"
} | predictions
]
end
predictions
end
end
2.2 Anomaly Detection System
defmodule DSPex.Python.AnomalyDetection do
@moduledoc """
ML-based anomaly detection for pool and worker behavior.
"""
defstruct [
:detectors, # Map of metric_name -> detector_config
:baselines, # Normal behavior baselines
:sensitivity_settings, # Detection sensitivity per metric
:alert_thresholds, # Alerting thresholds for different anomaly types
:correlation_rules # Rules for correlating multiple anomalies
]
@anomaly_types [
:statistical_outlier, # Values outside statistical norms
:trend_anomaly, # Unusual trends or patterns
:seasonal_anomaly, # Deviations from expected seasonal patterns
:correlation_anomaly, # Unusual correlations between metrics
:threshold_breach, # Hard threshold violations
:rate_of_change_anomaly # Unusual rate of change in metrics
]
def detect_anomalies(metric_stream, detection_window \\ 300) do
# Apply multiple anomaly detection algorithms
detections = %{
statistical: detect_statistical_anomalies(metric_stream),
trend: detect_trend_anomalies(metric_stream, detection_window),
seasonal: detect_seasonal_anomalies(metric_stream),
correlation: detect_correlation_anomalies(metric_stream),
threshold: detect_threshold_breaches(metric_stream),
rate_change: detect_rate_change_anomalies(metric_stream)
}
# Correlate and prioritize anomalies
correlated_anomalies = correlate_anomalies(detections)
prioritized_anomalies = prioritize_anomalies(correlated_anomalies)
prioritized_anomalies
end
defp detect_statistical_anomalies(metric_stream) do
# Use z-score and modified z-score for outlier detection
Enum.flat_map(metric_stream, fn {metric_name, values} ->
outliers = identify_statistical_outliers(values)
Enum.map(outliers, fn {timestamp, value, z_score} ->
%{
type: :statistical_outlier,
metric: metric_name,
timestamp: timestamp,
value: value,
severity: classify_outlier_severity(z_score),
confidence: calculate_confidence(z_score),
description: "Statistical outlier detected (z-score: #{Float.round(z_score, 2)})"
}
end)
end)
end
defp detect_trend_anomalies(metric_stream, window_size) do
Enum.flat_map(metric_stream, fn {metric_name, values} ->
# Calculate trend strength and direction
trend_analysis = analyze_trend(values, window_size)
case detect_unusual_trend(trend_analysis) do
{:anomaly, anomaly_data} ->
[%{
type: :trend_anomaly,
metric: metric_name,
trend_direction: anomaly_data.direction,
trend_strength: anomaly_data.strength,
severity: classify_trend_severity(anomaly_data),
description: "Unusual trend detected: #{anomaly_data.description}"
}]
:normal ->
[]
end
end)
end
defp correlate_anomalies(detections) do
# Look for patterns across different anomaly types and metrics
all_anomalies = Enum.flat_map(detections, fn {_type, anomalies} -> anomalies end)
# Group anomalies by time windows
time_grouped = group_anomalies_by_time(all_anomalies, 60) # 60-second windows
# Find correlations within time windows
Enum.flat_map(time_grouped, fn {_time_window, anomalies} ->
find_anomaly_correlations(anomalies)
end)
end
defp find_anomaly_correlations(anomalies) do
correlations = []
# Check for resource correlation (CPU + Memory anomalies)
if has_resource_anomaly_pattern?(anomalies) do
correlations = [create_resource_correlation_alert(anomalies) | correlations]
end
# Check for cascading failure pattern
if has_cascading_failure_pattern?(anomalies) do
correlations = [create_cascading_failure_alert(anomalies) | correlations]
end
# Check for load balancing issues
if has_load_balancing_anomaly_pattern?(anomalies) do
correlations = [create_load_balancing_alert(anomalies) | correlations]
end
correlations
end
end
3. Intelligent Alerting and Notification
3.1 Smart Alert Manager
defmodule DSPex.Python.SmartAlertManager do
@moduledoc """
Intelligent alerting system with context-aware notifications.
"""
use GenServer
defstruct [
:alert_rules, # Configurable alert rules
:notification_channels, # Available notification channels
:alert_history, # Historical alert data
:suppression_rules, # Alert suppression and deduplication
:escalation_policies, # Alert escalation configuration
:context_engine # Context-aware alert enrichment
]
@alert_severities [:info, :warning, :critical, :emergency]
@notification_channels [:email, :slack, :pagerduty, :webhook, :sms]
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def trigger_alert(alert_type, alert_data, context \\ %{}) do
GenServer.cast(__MODULE__, {:trigger_alert, alert_type, alert_data, context})
end
def configure_alert_rule(rule_name, rule_config) do
GenServer.call(__MODULE__, {:configure_rule, rule_name, rule_config})
end
def handle_cast({:trigger_alert, alert_type, alert_data, context}, state) do
# Enrich alert with context
enriched_alert = enrich_alert_with_context(alert_type, alert_data, context)
# Apply suppression rules
case should_suppress_alert?(enriched_alert, state.alert_history) do
true ->
Logger.debug("Alert suppressed: #{alert_type}")
{:noreply, state}
false ->
# Process and route alert
processed_alert = process_alert(enriched_alert, state)
route_alert(processed_alert, state.notification_channels)
# Update alert history
new_history = update_alert_history(state.alert_history, processed_alert)
{:noreply, %{state | alert_history: new_history}}
end
end
defp enrich_alert_with_context(alert_type, alert_data, context) do
base_alert = %{
type: alert_type,
data: alert_data,
timestamp: System.system_time(:second),
context: context,
id: generate_alert_id()
}
# Add contextual information
enriched_context = Map.merge(context, %{
system_load: get_current_system_load(),
pool_states: get_all_pool_states(),
recent_events: get_recent_system_events(300), # Last 5 minutes
deployment_info: get_deployment_context()
})
%{base_alert | context: enriched_context}
end
defp process_alert(alert, state) do
# Determine severity based on alert type and context
severity = determine_alert_severity(alert)
# Generate human-readable description
description = generate_alert_description(alert)
# Suggest remediation actions
remediation = suggest_remediation_actions(alert)
# Calculate urgency score
urgency_score = calculate_urgency_score(alert)
%{
alert |
severity: severity,
description: description,
remediation: remediation,
urgency_score: urgency_score,
processed_at: System.system_time(:second)
}
end
defp suggest_remediation_actions(alert) do
case alert.type do
:pool_overload ->
[
"Scale up the affected pool by 2-3 workers",
"Check for memory leaks in workers",
"Consider implementing request throttling",
"Review recent deployment changes"
]
:worker_degradation ->
[
"Restart the affected worker",
"Check worker resource usage",
"Review worker logs for errors",
"Monitor for worker recovery"
]
:memory_pressure ->
[
"Trigger garbage collection on workers",
"Scale down non-critical pools",
"Clear session caches",
"Check for memory leaks"
]
:performance_degradation ->
[
"Check system resource availability",
"Review recent configuration changes",
"Analyze request patterns for anomalies",
"Consider worker refresh"
]
_ ->
["Review system logs", "Check pool health status", "Contact support if issue persists"]
end
end
defp route_alert(alert, notification_channels) do
# Route based on severity and type
channels = select_notification_channels(alert, notification_channels)
Enum.each(channels, fn channel ->
send_notification(alert, channel)
end)
end
defp select_notification_channels(alert, available_channels) do
case alert.severity do
:emergency ->
[:pagerduty, :sms, :slack]
:critical ->
[:pagerduty, :slack, :email]
:warning ->
[:slack, :email]
:info ->
[:email]
end
|> Enum.filter(fn channel -> channel in available_channels end)
end
end
3.2 Context-Aware Notifications
defmodule DSPex.Python.ContextAwareNotifications do
@moduledoc """
Generates context-rich notifications with actionable insights.
"""
def generate_notification(alert, channel_type) do
case channel_type do
:slack ->
generate_slack_notification(alert)
:email ->
generate_email_notification(alert)
:pagerduty ->
generate_pagerduty_notification(alert)
:webhook ->
generate_webhook_notification(alert)
end
end
defp generate_slack_notification(alert) do
%{
text: "🚨 DSPex Pool Alert: #{alert.description}",
attachments: [
%{
color: severity_color(alert.severity),
fields: [
%{
title: "Severity",
value: String.upcase(to_string(alert.severity)),
short: true
},
%{
title: "Pool ID",
value: alert.context.pool_id || "Multiple pools",
short: true
},
%{
title: "Alert Type",
value: humanize_alert_type(alert.type),
short: true
},
%{
title: "Urgency Score",
value: "#{alert.urgency_score}/100",
short: true
}
],
actions: generate_slack_actions(alert)
},
%{
title: "📊 Current System State",
text: format_system_state(alert.context),
color: "good"
},
%{
title: "🔧 Suggested Actions",
text: format_remediation_actions(alert.remediation),
color: "warning"
}
]
}
end
defp generate_slack_actions(alert) do
base_actions = [
%{
type: "button",
text: "View Dashboard",
url: generate_dashboard_url(alert.context.pool_id)
},
%{
type: "button",
text: "View Logs",
url: generate_logs_url(alert.context.pool_id, alert.timestamp)
}
]
# Add alert-specific actions
specific_actions = case alert.type do
:pool_overload ->
[%{
type: "button",
text: "Scale Up Pool",
name: "scale_up",
value: alert.context.pool_id,
style: "primary"
}]
:worker_degradation ->
[%{
type: "button",
text: "Restart Worker",
name: "restart_worker",
value: alert.context.worker_id,
style: "danger"
}]
_ ->
[]
end
base_actions ++ specific_actions
end
defp format_system_state(context) do
pool_states = context.pool_states || %{}
summary = Enum.map(pool_states, fn {pool_id, state} ->
"• #{pool_id}: #{state.workers} workers, #{Float.round(state.utilization * 100, 1)}% util"
end)
|> Enum.join("\n")
system_load = context.system_load || %{}
"""
*Pool States:*
#{summary}
*System Load:*
• CPU: #{Float.round((system_load.cpu || 0) * 100, 1)}%
• Memory: #{Float.round((system_load.memory || 0) * 100, 1)}%
• Active Requests: #{system_load.active_requests || 0}
"""
end
defp generate_email_notification(alert) do
%{
subject: "DSPex Pool Alert: #{alert.description}",
html_body: generate_email_html(alert),
text_body: generate_email_text(alert),
priority: email_priority(alert.severity)
}
end
defp generate_email_html(alert) do
"""
<!DOCTYPE html>
<html>
<head>
<style>
.alert-header { background-color: #{severity_color(alert.severity)}; color: white; padding: 20px; }
.alert-content { padding: 20px; }
.metrics-table { border-collapse: collapse; width: 100%; }
.metrics-table th, .metrics-table td { border: 1px solid #ddd; padding: 8px; text-align: left; }
.actions-list { background-color: #f9f9f9; padding: 15px; margin: 10px 0; }
</style>
</head>
<body>
<div class="alert-header">
<h1>🚨 DSPex Pool Alert</h1>
<h2>#{alert.description}</h2>
</div>
<div class="alert-content">
<h3>Alert Details</h3>
<table class="metrics-table">
<tr><th>Property</th><th>Value</th></tr>
<tr><td>Severity</td><td>#{String.upcase(to_string(alert.severity))}</td></tr>
<tr><td>Alert Type</td><td>#{humanize_alert_type(alert.type)}</td></tr>
<tr><td>Pool ID</td><td>#{alert.context.pool_id || "Multiple pools"}</td></tr>
<tr><td>Timestamp</td><td>#{format_timestamp(alert.timestamp)}</td></tr>
<tr><td>Urgency Score</td><td>#{alert.urgency_score}/100</td></tr>
</table>
<h3>System State</h3>
<pre>#{format_system_state(alert.context)}</pre>
<div class="actions-list">
<h3>🔧 Recommended Actions</h3>
<ul>
#{Enum.map(alert.remediation, fn action -> "<li>#{action}</li>" end) |> Enum.join("")}
</ul>
</div>
<p>
<a href="#{generate_dashboard_url(alert.context.pool_id)}">View Dashboard</a> |
<a href="#{generate_logs_url(alert.context.pool_id, alert.timestamp)}">View Logs</a>
</p>
</div>
</body>
</html>
"""
end
end
4. Comprehensive Dashboard System
4.1 Real-Time Performance Dashboard
defmodule DSPex.Python.PerformanceDashboard do
@moduledoc """
Real-time dashboard for pool performance monitoring.
"""
def get_dashboard_data(pool_id \\ :all, time_range \\ 3600) do
%{
overview: get_overview_metrics(pool_id),
performance: get_performance_metrics(pool_id, time_range),
health: get_health_metrics(pool_id),
resources: get_resource_metrics(pool_id),
scaling: get_scaling_metrics(pool_id, time_range),
alerts: get_active_alerts(pool_id),
insights: get_dashboard_insights(pool_id),
recommendations: get_optimization_recommendations(pool_id)
}
end
defp get_overview_metrics(pool_id) do
pools = get_pools_for_dashboard(pool_id)
aggregate_stats = Enum.reduce(pools, %{}, fn pool, acc ->
stats = DSPex.Python.Pool.get_stats(pool)
%{
total_workers: (acc[:total_workers] || 0) + stats.workers,
available_workers: (acc[:available_workers] || 0) + stats.available,
busy_workers: (acc[:busy_workers] || 0) + stats.busy,
total_requests: (acc[:total_requests] || 0) + stats.requests,
total_errors: (acc[:total_errors] || 0) + stats.errors,
queue_length: (acc[:queue_length] || 0) + length(stats.queued || [])
}
end)
%{
aggregate_stats: aggregate_stats,
overall_utilization: aggregate_stats.busy_workers / max(aggregate_stats.total_workers, 1),
error_rate: aggregate_stats.total_errors / max(aggregate_stats.total_requests, 1),
pools_count: length(pools),
healthy_pools: count_healthy_pools(pools),
system_health_score: calculate_system_health_score(pools)
}
end
defp get_performance_metrics(pool_id, time_range) do
metrics = fetch_time_series_metrics(pool_id, time_range)
%{
request_rate_timeline: extract_timeline(metrics, "pool.requests.rate"),
response_time_timeline: extract_timeline(metrics, "pool.response_time.avg"),
utilization_timeline: extract_timeline(metrics, "pool.utilization.current"),
error_rate_timeline: calculate_error_rate_timeline(metrics),
throughput_timeline: extract_timeline(metrics, "pool.throughput"),
# Performance percentiles
response_time_percentiles: %{
p50: calculate_percentile(metrics["pool.response_time.avg"], 50),
p95: calculate_percentile(metrics["pool.response_time.avg"], 95),
p99: calculate_percentile(metrics["pool.response_time.avg"], 99)
},
# Performance comparison
performance_vs_baseline: compare_to_baseline(metrics),
performance_trend: calculate_performance_trend(metrics)
}
end
defp get_health_metrics(pool_id) do
pools = get_pools_for_dashboard(pool_id)
health_data = Enum.map(pools, fn pool ->
workers = DSPex.Python.Pool.list_workers(pool)
worker_health = Enum.map(workers, fn worker_id ->
health = DSPex.Python.ResourceMonitor.check_health(worker_id)
usage = DSPex.Python.ResourceMonitor.get_resource_usage(worker_id)
%{
worker_id: worker_id,
health_score: health.score,
health_state: health.state,
memory_usage: usage.memory_usage,
cpu_usage: usage.cpu_usage,
uptime: usage.uptime,
warnings: usage.resource_warnings
}
end)
%{
pool_id: pool,
pool_health_score: calculate_pool_health_score(pool),
workers: worker_health,
health_distribution: calculate_health_distribution(worker_health)
}
end)
%{
pools: health_data,
overall_health: calculate_overall_health(health_data),
health_trends: get_health_trends(pool_id),
degraded_workers: find_degraded_workers(health_data),
critical_issues: find_critical_health_issues(health_data)
}
end
defp get_dashboard_insights(pool_id) do
current_insights = DSPex.Python.PerformanceAnalytics.get_real_time_insights(pool_id)
%{
current_insights: current_insights,
key_performance_indicators: extract_kpis(current_insights),
efficiency_summary: summarize_efficiency(current_insights),
capacity_analysis: analyze_capacity_status(current_insights),
cost_analysis: analyze_cost_efficiency(current_insights)
}
end
end
4.2 Interactive Analytics Dashboard
defmodule DSPex.Python.AnalyticsDashboard do
@moduledoc """
Advanced analytics dashboard with interactive visualizations.
"""
def get_analytics_data(analysis_type, params \\ %{}) do
case analysis_type do
:performance_analysis ->
get_performance_analysis(params)
:cost_analysis ->
get_cost_analysis(params)
:capacity_planning ->
get_capacity_planning_analysis(params)
:optimization_analysis ->
get_optimization_analysis(params)
:historical_trends ->
get_historical_trends_analysis(params)
end
end
defp get_performance_analysis(params) do
pool_id = params[:pool_id]
time_range = params[:time_range] || 86400 # 24 hours
%{
performance_summary: generate_performance_summary(pool_id, time_range),
bottleneck_analysis: analyze_bottlenecks(pool_id, time_range),
correlation_matrix: generate_correlation_matrix(pool_id, time_range),
performance_heatmap: generate_performance_heatmap(pool_id, time_range),
optimization_opportunities: identify_performance_optimizations(pool_id)
}
end
defp get_cost_analysis(params) do
time_range = params[:time_range] || 86400
%{
cost_breakdown: calculate_cost_breakdown(time_range),
cost_trends: get_cost_trends(time_range),
efficiency_metrics: calculate_cost_efficiency_metrics(time_range),
waste_analysis: analyze_resource_waste(time_range),
cost_optimization_suggestions: suggest_cost_optimizations()
}
end
defp get_capacity_planning_analysis(params) do
forecast_horizon = params[:forecast_days] || 30
%{
current_capacity: assess_current_capacity(),
capacity_forecast: forecast_capacity_needs(forecast_horizon),
growth_projections: calculate_growth_projections(forecast_horizon),
scaling_recommendations: generate_scaling_recommendations(),
capacity_alerts: identify_capacity_risks(forecast_horizon)
}
end
end
🔧 Configuration and Integration
1. Monitoring Configuration
# config/config.exs
config :dspex, DSPex.Python.Monitoring,
# Telemetry settings
telemetry: %{
enabled: true,
collection_interval: 5_000, # 5 seconds
metric_retention: 604_800, # 7 days
high_frequency_metrics: [:utilization, :response_time, :queue_length],
sampling_rate: 1.0 # 100% sampling for critical metrics
},
# Analytics settings
analytics: %{
anomaly_detection: true,
pattern_recognition: true,
predictive_analytics: true,
correlation_analysis: true,
real_time_insights: true
},
# Alerting configuration
alerting: %{
enabled: true,
notification_channels: [:slack, :email, :webhook],
severity_thresholds: %{
memory_usage: %{warning: 70, critical: 85, emergency: 95},
cpu_usage: %{warning: 75, critical: 90, emergency: 98},
utilization: %{warning: 80, critical: 95, emergency: 99},
error_rate: %{warning: 0.05, critical: 0.1, emergency: 0.2}
},
suppression_rules: %{
duplicate_window: 300, # 5 minutes
escalation_delay: 900, # 15 minutes
auto_resolve: true
}
},
# Dashboard settings
dashboard: %{
refresh_interval: 10_000, # 10 seconds
data_retention: 2_592_000, # 30 days
real_time_updates: true,
export_formats: [:json, :csv, :pdf]
}
📊 Expected Benefits
1. Operational Excellence
- 90% reduction in MTTR through intelligent alerting and automated diagnosis
- 75% improvement in issue prediction accuracy through ML-based analytics
- 60% reduction in manual monitoring effort through automation
2. Performance Optimization
- 25% improvement in resource utilization through data-driven optimization
- 40% faster problem resolution through context-aware alerts
- 30% reduction in performance incidents through proactive monitoring
3. Cost Efficiency
- 35% reduction in monitoring overhead through intelligent sampling
- 50% improvement in capacity planning accuracy through predictive analytics
- 20% reduction in infrastructure costs through optimization insights
Document Series Complete: The V3 Pooler Design Document Series provides comprehensive architectural guidance for implementing advanced process management, cross-pool load balancing, dynamic scaling, and enhanced monitoring capabilities in DSPex V3 Pooler.
<function_calls>