Ash as a First-Class Citizen in DSPex: A Comprehensive Integration Strategy
Executive Summary
This document outlines how Ash Framework will be integrated as a first-class citizen in DSPex V2, transforming it from a simple Python bridge into a production-grade cognitive orchestration platform. By leveraging Ash’s declarative resource modeling, action-oriented architecture, and extensive extension system, DSPex can achieve unprecedented levels of maintainability, observability, and developer experience while maintaining full compatibility with Python DSPy’s capabilities.
Table of Contents
- Vision: Why Ash for DSPex
- Core Integration Architecture
- DSPex Resources as Ash Resources
- Custom Data Layer for Python Bridge
- Ash.Reactor for Cognitive Orchestration
- Extension System for DSPy Concepts
- Production Features Integration
- Implementation Roadmap
- Code Examples
- Performance Implications
- Migration Strategy
Vision: Why Ash for DSPex
The Perfect Match
Ash’s philosophy of declarative, resource-oriented programming aligns perfectly with DSPex’s cognitive orchestration goals:
- Resources = Cognitive Components: Signatures, Modules, Programs map naturally to Ash resources
- Actions = Cognitive Operations: Each DSPy operation becomes a well-defined Ash action
- Domains = Cognitive Domains: Group related cognitive capabilities into logical domains
- Extensions = DSPy Integration: Ash’s extension system enables seamless DSPy integration
Benefits for DSPex
- Production Readiness: Built-in monitoring, security, and error handling
- Developer Experience: Consistent APIs, automatic documentation, GraphQL/REST generation
- Maintainability: Clear separation of concerns, compile-time validations
- Observability: Every cognitive operation is tracked and auditable
- Extensibility: Easy to add new cognitive patterns and optimizers
Core Integration Architecture
Layered Approach
āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā
ā DSPex Public API ā
āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā¤
ā Ash Resource Layer ā
ā (Signatures, Modules, Programs) ā
āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā¤
ā Ash Actions & Manual Actions ā
ā (Native Elixir + Python Bridge) ā
āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā¤
ā Custom Data Layers ā
ā (Memory, Postgres, Python) ā
āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā¤
ā Snakepit Integration ā
ā (Python Process Management) ā
āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā
Key Integration Points
- Resource Definitions: All DSPex concepts become Ash resources
- Action System: Leverage Ash actions for all operations
- Data Layer: Custom data layer for Python bridge
- Reactor: Complex orchestration via Ash.Reactor
- Extensions: DSPy-specific DSL and behaviors
DSPex Resources as Ash Resources
Core Resources
1. Signature Resource
defmodule DSPex.Cognitive.Signature do
use Ash.Resource,
domain: DSPex.Cognitive,
data_layer: DSPex.DataLayer.Memory,
extensions: [DSPex.Extensions.Signature]
attributes do
uuid_primary_key :id
attribute :name, :string, allow_nil?: false
attribute :spec, :string, allow_nil?: false
attribute :parsed_spec, :map, allow_nil?: false
attribute :input_fields, {:array, :map}, default: []
attribute :output_fields, {:array, :map}, default: []
attribute :metadata, :map, default: %{}
timestamps()
end
actions do
defaults [:read, :destroy]
create :parse do
argument :spec, :string, allow_nil?: false
change DSPex.Changes.ParseSignature
change DSPex.Changes.ValidateSignature
end
update :optimize do
argument :optimization_results, :map
change DSPex.Changes.ApplyOptimization
end
read :by_name do
argument :name, :string, allow_nil?: false
filter expr(name == ^arg(:name))
end
end
calculations do
calculate :complexity, :integer, DSPex.Calculations.SignatureComplexity
calculate :usage_stats, :map, DSPex.Calculations.UsageStatistics
end
code_interface do
define :parse, args: [:spec]
define :by_name, args: [:name]
define :optimize, args: [:optimization_results]
end
end
2. Module Resource
defmodule DSPex.Cognitive.Module do
use Ash.Resource,
domain: DSPex.Cognitive,
data_layer: DSPex.DataLayer.Hybrid,
extensions: [DSPex.Extensions.CognitiveModule]
attributes do
uuid_primary_key :id
attribute :name, :string, allow_nil?: false
attribute :type, :atom,
constraints: [one_of: [:predict, :retrieve, :optimize, :custom]],
allow_nil?: false
attribute :implementation, :atom,
constraints: [one_of: [:native, :python, :hybrid]],
default: :python
attribute :config, :map, default: %{}
attribute :performance_metrics, :map, default: %{}
timestamps()
end
relationships do
belongs_to :signature, DSPex.Cognitive.Signature
has_many :executions, DSPex.Cognitive.Execution
end
actions do
defaults [:read]
create :register do
argument :module_spec, :map, allow_nil?: false
change DSPex.Changes.ValidateModule
change DSPex.Changes.RegisterWithRouter
end
update :update_metrics do
argument :new_metrics, :map
change DSPex.Changes.MergeMetrics
end
# Manual action for execution
action :execute, :map do
argument :input, :map, allow_nil?: false
argument :context, :map, default: %{}
run DSPex.Actions.ExecuteModule
end
end
state_machine do
initial_states [:uninitialized]
default_initial_state :uninitialized
state :uninitialized
state :initializing
state :ready
state :executing
state :error
transition :initialize, from: :uninitialized, to: :initializing
transition :mark_ready, from: :initializing, to: :ready
transition :start_execution, from: :ready, to: :executing
transition :complete_execution, from: :executing, to: :ready
transition :fail, from: [:initializing, :executing], to: :error
transition :reset, from: :error, to: :uninitialized
end
end
3. Program Resource
defmodule DSPex.Cognitive.Program do
use Ash.Resource,
domain: DSPex.Cognitive,
data_layer: AshPostgres.DataLayer,
extensions: [DSPex.Extensions.Program]
postgres do
table "cognitive_programs"
repo DSPex.Repo
end
attributes do
uuid_primary_key :id
attribute :name, :string, allow_nil?: false
attribute :description, :string
attribute :pipeline, {:array, :map}, default: []
attribute :variables, :map, default: %{}
attribute :optimization_history, {:array, :map}, default: []
attribute :status, :atom,
constraints: [one_of: [:draft, :active, :optimizing, :archived]],
default: :draft
timestamps()
end
relationships do
has_many :modules, DSPex.Cognitive.Module
has_many :executions, DSPex.Cognitive.Execution
belongs_to :optimizer, DSPex.Cognitive.Optimizer
end
actions do
defaults [:read, :update, :destroy]
create :compose do
argument :modules, {:array, :uuid}, allow_nil?: false
argument :pipeline_spec, :map
change DSPex.Changes.ComposePipeline
change DSPex.Changes.ValidatePipeline
end
update :optimize do
accept []
change DSPex.Changes.StartOptimization
change set_attribute(:status, :optimizing)
end
action :run, :map do
argument :input, :map, allow_nil?: false
argument :options, :map, default: %{}
run DSPex.Actions.RunProgram
end
end
policies do
policy action_type(:read) do
authorize_if expr(status != :archived)
end
policy action(:optimize) do
authorize_if expr(status == :active)
end
end
end
4. Execution Resource
defmodule DSPex.Cognitive.Execution do
use Ash.Resource,
domain: DSPex.Cognitive,
data_layer: AshPostgres.DataLayer
postgres do
table "cognitive_executions"
repo DSPex.Repo
end
attributes do
uuid_primary_key :id
attribute :input, :map, allow_nil?: false
attribute :output, :map
attribute :trace, {:array, :map}, default: []
attribute :metrics, :map, default: %{}
attribute :duration_ms, :integer
attribute :status, :atom,
constraints: [one_of: [:pending, :running, :completed, :failed]],
default: :pending
attribute :error, :map
timestamps()
end
relationships do
belongs_to :program, DSPex.Cognitive.Program
belongs_to :module, DSPex.Cognitive.Module
belongs_to :parent_execution, DSPex.Cognitive.Execution
has_many :child_executions, DSPex.Cognitive.Execution,
destination_attribute: :parent_execution_id
end
calculations do
calculate :success_rate, :float, DSPex.Calculations.SuccessRate
calculate :avg_latency, :integer, DSPex.Calculations.AverageLatency
end
end
Supporting Resources
5. Optimizer Resource
defmodule DSPex.Cognitive.Optimizer do
use Ash.Resource,
domain: DSPex.Cognitive,
extensions: [DSPex.Extensions.Optimizer]
attributes do
uuid_primary_key :id
attribute :name, :string, allow_nil?: false
attribute :type, :atom,
constraints: [one_of: [:simba, :beacon, :bootstrap, :mipro, :custom]]
attribute :config, :map, default: %{}
attribute :state, :map, default: %{}
end
actions do
action :optimize, :map do
argument :program_id, :uuid, allow_nil?: false
argument :training_data, {:array, :map}
argument :validation_data, {:array, :map}
run DSPex.Actions.RunOptimizer
end
end
end
Custom Data Layer for Python Bridge
Hybrid Data Layer Implementation
defmodule DSPex.DataLayer.Hybrid do
@behaviour Ash.DataLayer
use Spark.Dsl.Extension,
sections: [@data_layer],
transformers: [DSPex.DataLayer.Transformers.SetupHybrid]
@impl true
def can?(resource, :read), do: true
def can?(resource, :create), do: true
def can?(resource, :update), do: true
def can?(resource, :destroy), do: true
def can?(resource, :sort), do: true
def can?(resource, :filter), do: true
def can?(resource, :limit), do: true
def can?(resource, :offset), do: true
def can?(resource, :multitenancy), do: false
def can?(resource, :aggregate), do: true
def can?(resource, :calculate), do: true
def can?(_, _), do: false
@impl true
def run_query(query, resource, parent \\ nil) do
case query.action.type do
:read -> handle_read(query, resource)
:create -> handle_create(query, resource)
:update -> handle_update(query, resource)
:destroy -> handle_destroy(query, resource)
end
end
defp handle_read(query, resource) do
# Route to appropriate backend based on implementation type
case get_implementation_type(resource) do
:native -> DSPex.DataLayer.Memory.run_query(query, resource)
:python -> DSPex.DataLayer.Python.run_query(query, resource)
:hybrid -> merge_results(query, resource)
end
end
defp handle_create(query, resource) do
# Store metadata in Elixir, delegate execution to Python if needed
with {:ok, record} <- DSPex.DataLayer.Memory.run_query(query, resource),
{:ok, _} <- maybe_register_with_python(record, resource) do
{:ok, [record]}
end
end
defp merge_results(query, resource) do
# Merge results from multiple backends
with {:ok, native_results} <- DSPex.DataLayer.Memory.run_query(query, resource),
{:ok, python_results} <- DSPex.DataLayer.Python.run_query(query, resource) do
merged = Enum.uniq_by(native_results ++ python_results, & &1.id)
{:ok, merged}
end
end
end
Python Data Layer
defmodule DSPex.DataLayer.Python do
@behaviour Ash.DataLayer
alias DSPex.Python.Bridge
@impl true
def run_query(query, resource, _parent \\ nil) do
request = build_python_request(query, resource)
case Bridge.call_python(:query, request) do
{:ok, results} ->
records = Enum.map(results, &to_ash_record(&1, resource))
{:ok, records}
{:error, reason} ->
{:error, reason}
end
end
defp build_python_request(query, resource) do
%{
resource: resource_to_python_name(resource),
action: query.action.name,
filters: compile_filters(query.filter),
sorts: query.sort,
limit: query.limit,
offset: query.offset,
arguments: query.arguments
}
end
defp to_ash_record(python_data, resource) do
struct(resource, normalize_data(python_data))
end
end
Ash.Reactor for Cognitive Orchestration
Complex Pipeline Definition
defmodule DSPex.Reactors.CognitivePipeline do
use Ash.Reactor
input :query
input :context
# Step 1: Parse and validate input
ash_step :parse_input do
resource DSPex.Cognitive.Signature
action :parse
inputs %{
spec: "query: str -> parsed_query: dict"
}
end
# Step 2: Parallel retrieval from multiple sources
group :retrieval, type: :async do
ash_step :vector_search do
resource DSPex.Cognitive.Module
action :execute
inputs %{
input: result(:parse_input),
module_name: "vector_retriever"
}
end
ash_step :keyword_search do
resource DSPex.Cognitive.Module
action :execute
inputs %{
input: result(:parse_input),
module_name: "keyword_retriever"
}
end
python_step :colbert_search do
module "dspy.ColBERTv2"
inputs %{
query: result(:parse_input),
k: 10
}
end
end
# Step 3: Merge and rank results
step :merge_results do
run fn inputs, _context ->
results = Map.values(inputs.retrieval)
{:ok, DSPex.Utils.merge_and_rank(results)}
end
end
# Step 4: Generate response
ash_step :generate_response do
resource DSPex.Cognitive.Module
action :execute
inputs %{
module_name: "chain_of_thought",
input: %{
query: input(:query),
context: result(:merge_results)
}
}
# Compensation if this fails
compensate :fallback_response
end
# Fallback compensation
step :fallback_response do
run fn _inputs, _context ->
{:ok, %{response: "I apologize, but I'm unable to process this request at the moment."}}
end
end
return :generate_response
end
Usage in Programs
defmodule DSPex.Actions.RunProgram do
use Ash.Resource.ManualAction
def run(input, opts, context) do
program = context.resource
# Build reactor from program pipeline
reactor = build_reactor(program.pipeline)
# Execute with monitoring
case Reactor.run(reactor, input.arguments, context: build_context(opts)) do
{:ok, result} ->
# Record execution
{:ok, execution} = DSPex.Cognitive.Execution.create(%{
program_id: program.id,
input: input.arguments.input,
output: result,
status: :completed,
metrics: collect_metrics(reactor)
})
{:ok, result}
{:error, reason} ->
# Record failure
DSPex.Cognitive.Execution.create(%{
program_id: program.id,
input: input.arguments.input,
status: :failed,
error: %{reason: inspect(reason)}
})
{:error, reason}
end
end
defp build_reactor(pipeline_spec) do
# Dynamic reactor construction from pipeline specification
DSPex.Reactors.Builder.build(pipeline_spec)
end
end
Extension System for DSPy Concepts
Signature Extension
defmodule DSPex.Extensions.Signature do
use Spark.Dsl.Extension,
sections: [
%Spark.Dsl.Section{
name: :signature,
describe: "Configure DSPy signature behavior",
schema: [
parser: [
type: :atom,
default: DSPex.Signature.Parser.Enhanced,
doc: "Parser module for signature specs"
],
strict_mode: [
type: :boolean,
default: true,
doc: "Enforce strict type checking"
],
ml_types: [
type: {:list, :atom},
default: [:embedding, :probability, :tensor],
doc: "Additional ML-specific types to support"
]
],
entities: [
%Spark.Dsl.Entity{
name: :field_type,
describe: "Define custom field types",
target: DSPex.Extensions.Signature.FieldType,
schema: [
name: [type: :atom, required: true],
validator: [type: :mfa, required: true],
converter: [type: :mfa, required: true]
]
}
]
}
],
transformers: [
DSPex.Extensions.Signature.Transformer
]
def parser(resource) do
Spark.Dsl.Extension.get_opt(resource, [:signature, :parser], DSPex.Signature.Parser.Enhanced)
end
def field_types(resource) do
resource
|> Spark.Dsl.Extension.get_entities([:signature, :field_type])
|> Enum.map(&{&1.name, &1})
|> Map.new()
end
end
Module Extension
defmodule DSPex.Extensions.CognitiveModule do
use Spark.Dsl.Extension,
sections: [
%Spark.Dsl.Section{
name: :cognitive,
describe: "Configure cognitive module behavior",
schema: [
python_module: [
type: :string,
doc: "Python DSPy module name"
],
native_module: [
type: :atom,
doc: "Native Elixir implementation module"
],
routing_strategy: [
type: {:in, [:native_first, :python_first, :performance_based]},
default: :performance_based,
doc: "How to route between implementations"
],
cache_ttl: [
type: :pos_integer,
default: 300,
doc: "Cache TTL in seconds"
]
],
entities: [
%Spark.Dsl.Entity{
name: :optimization_hint,
describe: "Hints for optimizer",
target: DSPex.Extensions.CognitiveModule.OptimizationHint,
schema: [
parameter: [type: :string, required: true],
range: [type: {:or, [{:tuple, [:float, :float]}, {:list, :any}]}],
strategy: [type: :atom]
]
}
]
}
]
end
Production Features Integration
1. Monitoring and Telemetry
defmodule DSPex.Telemetry do
use Supervisor
def start_link(arg) do
Supervisor.start_link(__MODULE__, arg, name: __MODULE__)
end
def init(_arg) do
children = [
{Telemetry.Metrics.ConsoleReporter, metrics: metrics()},
{DSPex.Telemetry.LLMReporter, []}
]
Supervisor.init(children, strategy: :one_for_one)
end
def metrics do
[
# Execution metrics
counter("dspex.execution.count"),
summary("dspex.execution.duration", unit: {:native, :millisecond}),
distribution("dspex.execution.token_count"),
# Module metrics
counter("dspex.module.execute.count", tags: [:module_name, :implementation]),
summary("dspex.module.execute.duration", tags: [:module_name]),
# Python bridge metrics
counter("dspex.python.call.count"),
summary("dspex.python.call.duration"),
counter("dspex.python.error.count"),
# Cache metrics
counter("dspex.cache.hit"),
counter("dspex.cache.miss"),
# LLM metrics
counter("dspex.llm.request.count", tags: [:provider]),
summary("dspex.llm.request.duration", tags: [:provider]),
distribution("dspex.llm.request.tokens", tags: [:provider, :type])
]
end
end
2. Authorization Policies
defmodule DSPex.Policies do
defmodule AdminOnly do
use Ash.Policy.SimpleCheck
def match?(_actor, %{action: %{type: type}}, _context)
when type in [:create, :update, :destroy] do
{:ok, false} # Override in production
end
def match?(_, _, _), do: {:ok, true}
end
defmodule RateLimiter do
use Ash.Policy.SimpleCheck
def match?(actor, %{resource: resource, action: action}, _context) do
key = "#{actor.id}:#{resource}:#{action.name}"
case Hammer.check_rate(key, 60_000, 100) do
{:allow, _count} -> {:ok, true}
{:deny, _limit} -> {:ok, false}
end
end
end
end
3. Error Handling and Recovery
defmodule DSPex.ErrorHandler do
def handle_error(%Ash.Error.Invalid{} = error, context) do
# Log validation errors
Logger.warning("Validation error in #{context}", error: error)
# Return user-friendly error
{:error, format_validation_error(error)}
end
def handle_error(%DSPex.Python.BridgeError{} = error, context) do
# Log Python bridge errors
Logger.error("Python bridge error in #{context}", error: error)
# Attempt fallback to native implementation
case fallback_to_native(context) do
{:ok, result} -> {:ok, result}
_ -> {:error, "Service temporarily unavailable"}
end
end
def handle_error(error, context) do
# Log unexpected errors
Logger.error("Unexpected error in #{context}", error: error)
# Report to error tracking
Sentry.capture_exception(error, extra: context)
{:error, "An unexpected error occurred"}
end
end
4. Background Jobs with Oban
defmodule DSPex.Workers.OptimizationWorker do
use Oban.Worker, queue: :optimization, max_attempts: 3
@impl Oban.Worker
def perform(%Oban.Job{args: %{"program_id" => program_id, "config" => config}}) do
with {:ok, program} <- DSPex.Cognitive.Program.get(program_id),
{:ok, optimizer} <- DSPex.Cognitive.Optimizer.get(program.optimizer_id),
{:ok, results} <- run_optimization(program, optimizer, config) do
# Update program with results
DSPex.Cognitive.Program.update(program, %{
optimization_history: [results | program.optimization_history],
variables: merge_optimized_variables(program.variables, results),
status: :active
})
else
error ->
Logger.error("Optimization failed for program #{program_id}", error: error)
{:error, error}
end
end
defp run_optimization(program, optimizer, config) do
# Long-running optimization process
DSPex.Optimizers.run(optimizer.type, program, config)
end
end
Implementation Roadmap
Phase 1: Foundation (Week 1)
- Set up Ash in DSPex project
- Define core resources (Signature, Module, Program)
- Implement memory data layer
- Basic CRUD operations
Phase 2: Python Integration (Week 2)
- Implement hybrid data layer
- Create Python bridge data layer
- Manual actions for module execution
- Integration tests
Phase 3: Orchestration (Week 3)
- Implement Ash.Reactor pipelines
- State machine for execution tracking
- Error handling and compensation
- Performance monitoring
Phase 4: Production Features (Week 4)
- Add authorization policies
- Implement caching layer
- Background job processing
- GraphQL/REST API generation
Phase 5: Advanced Features (Week 5+)
- Custom DSL extensions
- Optimizer integration
- Advanced telemetry
- Distributed execution
Code Examples
Using DSPex with Ash
# Create a new signature
{:ok, signature} = DSPex.Cognitive.Signature.parse(%{
spec: "question: str, context: list[str] -> answer: str, confidence: float"
})
# Register a new module
{:ok, module} = DSPex.Cognitive.Module.register(%{
module_spec: %{
name: "rag_qa",
type: :predict,
signature_id: signature.id,
implementation: :hybrid,
config: %{
retriever: "colbert_v2",
generator: "gpt4"
}
}
})
# Create a program
{:ok, program} = DSPex.Cognitive.Program.compose(%{
modules: [module.id],
pipeline_spec: %{
steps: [
%{type: :retrieve, module: "colbert_v2", k: 10},
%{type: :predict, module: "rag_qa"}
]
}
})
# Run the program
{:ok, result} = DSPex.Cognitive.Program.run(program, %{
input: %{
question: "What is Ash Framework?",
context: []
}
})
# Query executions
executions = DSPex.Cognitive.Execution
|> Ash.Query.filter(program_id == ^program.id)
|> Ash.Query.filter(status == :completed)
|> Ash.Query.sort(inserted_at: :desc)
|> Ash.Query.limit(10)
|> DSPex.Cognitive.read!()
GraphQL API (Auto-generated)
query GetProgram($id: ID!) {
getProgram(id: $id) {
id
name
status
modules {
id
name
type
performanceMetrics
}
executions(first: 10, filter: { status: { eq: COMPLETED } }) {
edges {
node {
id
input
output
duration
metrics
}
}
}
}
}
mutation RunProgram($programId: ID!, $input: JSON!) {
runProgram(programId: $programId, input: $input) {
result {
output
trace
metrics
}
errors {
field
message
}
}
}
Performance Implications
Benefits
- Compile-time Optimizations: Ash transformers optimize at compile time
- Efficient Queries: Ash query engine optimizes across data layers
- Caching: Built-in support for result caching
- Batch Operations: Automatic batching of operations
- Connection Pooling: Managed by data layers
Considerations
- Memory Overhead: Ash metadata adds some memory overhead
- Compilation Time: More complex compile-time due to transformers
- Learning Curve: Developers need to understand Ash concepts
Benchmarks (Projected)
Operation | Without Ash | With Ash | Difference
--------------------------|-------------|----------|------------
Simple Module Execute | 50ms | 55ms | +10%
Complex Pipeline | 500ms | 480ms | -4%
Batch Operations (100) | 5000ms | 2000ms | -60%
With Caching (2nd call) | 50ms | 5ms | -90%
GraphQL Query | N/A | 10ms | N/A
Authorization Check | 5ms | 1ms | -80%
Migration Strategy
From Current DSPex to Ash-based DSPex
- Parallel Implementation: Build Ash layer alongside existing code
- Gradual Migration: Migrate one module at a time
- Compatibility Layer: Maintain backward compatibility
- Feature Parity: Ensure all features work before switching
- Performance Testing: Validate performance improvements
- Documentation: Update all documentation and examples
Migration Code Example
defmodule DSPex.Migration.V2Adapter do
@moduledoc """
Compatibility layer for migrating from DSPex v1 to v2 (Ash-based)
"""
# Old API
def create_signature(spec) do
# Delegate to new Ash-based API
case DSPex.Cognitive.Signature.parse(%{spec: spec}) do
{:ok, signature} -> {:ok, signature.parsed_spec}
error -> error
end
end
# Old API
def run_module(module_name, input, opts \\ []) do
# Find module and execute via Ash
with {:ok, module} <- find_module(module_name),
{:ok, result} <- DSPex.Cognitive.Module.execute(module, %{
input: input,
context: Keyword.get(opts, :context, %{})
}) do
{:ok, result}
end
end
defp find_module(name) do
DSPex.Cognitive.Module
|> Ash.Query.filter(name == ^name)
|> Ash.Query.limit(1)
|> DSPex.Cognitive.read()
|> case do
{:ok, [module]} -> {:ok, module}
{:ok, []} -> {:error, :module_not_found}
error -> error
end
end
end
Conclusion
By making Ash a first-class citizen in DSPex, we transform it from a simple DSPy bridge into a production-grade cognitive orchestration platform. This integration provides:
- Production Readiness: Built-in monitoring, security, and error handling
- Developer Experience: Clean APIs, automatic documentation, type safety
- Scalability: Leverages BEAM concurrency and Ash optimizations
- Maintainability: Clear separation of concerns, declarative design
- Extensibility: Easy to add new cognitive patterns and capabilities
The investment in Ash integration will pay dividends as DSPex evolves from a library into a platform for building cognitive applications. The declarative nature of Ash aligns perfectly with the cognitive orchestration vision, where variables become first-class optimization targets and every operation is observable and optimizable.
This is not just a technical integrationāit’s a philosophical alignment that positions DSPex as the premier platform for cognitive orchestration in the Elixir ecosystem.