DSPex: Comprehensive DSPy Bridge for Elixir
Executive Summary
This document outlines the design for a comprehensive Elixir bridge to DSPy that goes far beyond the current signature-only implementation. Based on analysis of the DSPy codebase, this design covers the complete API surface needed for production ML pipelines in Elixir.
Current Implementation Status
✅ Currently Implemented (Signatures Only)
- Basic signature definition and validation system
- Python bridge with pooled workers (V3 architecture)
- Simple program execution via Python port communication
- Mock adapters for testing
- 3-layer testing infrastructure
🚧 Proposed Comprehensive Bridge
The full DSPy bridge should expose all major DSPy functionality through idiomatic Elixir APIs while maintaining the performance advantages of the current pooling architecture.
Core Architecture Design
Layer 1: Elixir API Surface
# Top-level namespace organization
DSPex # Main configuration and lifecycle
DSPex.Signatures # Type-safe signature system
DSPex.Modules # Prediction and reasoning modules
DSPex.Optimizers # Training and optimization algorithms
DSPex.Clients # Language model and embedding clients
DSPex.Retrievers # Information retrieval systems
DSPex.Evaluation # Evaluation framework and metrics
DSPex.Streaming # Real-time response handling
DSPex.Utils # Caching, serialization, callbacks
Layer 2: Python Bridge Enhancement
DSPex.PythonBridge.Enhanced # Enhanced bridge with full DSPy API support
DSPex.PythonBridge.StateManager # Persistent state management across workers
DSPex.PythonBridge.Serializer # Advanced serialization for complex objects
DSPex.PythonBridge.Cache # Distributed caching layer
Layer 3: Ash Framework Integration
DSPex.Ash.Domain # Ash domain for ML entities
DSPex.Ash.Resources # Resources for Programs, Datasets, Experiments
DSPex.Ash.DataLayer # Custom data layer bridging DSPy state
DSPex.Ash.Actions # Custom actions for ML operations
Detailed API Design
1. Enhanced Signature System
defmodule DSPex.Signatures do
@moduledoc """
Enhanced signature system supporting all DSPy signature features.
"""
# Current basic signature
signature question: :string -> answer: :string
# Enhanced with field descriptions and constraints
signature question: {:string, desc: "The user's question"} ->
answer: {:string, desc: "A comprehensive answer"},
confidence: {:float, desc: "Confidence score 0-1", range: {0.0, 1.0}}
# Complex types with validation
signature document: :string,
context: {:list, :string, min_items: 1} ->
summary: {:string, max_length: 500},
entities: {:list, :entity},
reasoning: :reasoning_chain,
metadata: {:map, optional: true}
end
2. Prediction Modules System
defmodule DSPex.Modules do
@moduledoc """
All DSPy prediction strategies as Elixir modules.
"""
# Basic prediction
defmodule Predict do
use DSPex.Module
def predict(signature, inputs, opts \\ []) do
# Direct prediction without reasoning
end
end
# Chain of thought reasoning
defmodule ChainOfThought do
use DSPex.Module
def predict(signature, inputs, opts \\ []) do
# Step-by-step reasoning
end
end
# ReAct pattern (Reasoning + Acting)
defmodule ReAct do
use DSPex.Module
def predict(signature, inputs, tools \\ [], opts \\ []) do
# Reasoning with tool calling
end
end
# Program of Thought (code-based reasoning)
defmodule ProgramOfThought do
use DSPex.Module
def predict(signature, inputs, opts \\ []) do
# Code generation and execution
end
end
# Multiple chain comparison
defmodule MultiChainComparison do
use DSPex.Module
def predict(signature, inputs, chains \\ 3, opts \\ []) do
# Generate multiple reasoning chains and compare
end
end
# Best of N selection
defmodule BestOfN do
use DSPex.Module
def predict(signature, inputs, n \\ 5, evaluator \\ nil, opts \\ []) do
# Generate N candidates and select best
end
end
# Iterative refinement
defmodule Refine do
use DSPex.Module
def predict(signature, inputs, max_iterations \\ 3, opts \\ []) do
# Iterative improvement of answers
end
end
# Parallel execution
defmodule Parallel do
use DSPex.Module
def predict(signatures, inputs_list, opts \\ []) do
# Parallel execution of multiple predictions
end
end
end
3. Optimization System
defmodule DSPex.Optimizers do
@moduledoc """
DSPy optimization algorithms for automatic prompt improvement.
"""
defmodule BootstrapFewShot do
use DSPex.Optimizer
def optimize(program, trainset, valset \\ nil, opts \\ []) do
# Automatic few-shot example generation
end
end
defmodule MIPRO do
use DSPex.Optimizer
def optimize(program, trainset, valset, num_candidates \\ 10, opts \\ []) do
# Multi-prompt optimization
end
end
defmodule COPRO do
use DSPex.Optimizer
def optimize(program, trainset, depth \\ 3, breadth \\ 10, opts \\ []) do
# Conditional prompt optimization
end
end
defmodule Ensemble do
use DSPex.Optimizer
def create_ensemble(programs, weights \\ nil, opts \\ []) do
# Ensemble multiple optimized programs
end
end
defmodule BootstrapFinetune do
use DSPex.Optimizer
def optimize_and_finetune(program, trainset, model, opts \\ []) do
# Bootstrap examples then finetune model
end
end
end
4. Client System
defmodule DSPex.Clients do
@moduledoc """
Language model and embedding clients with multi-provider support.
"""
defmodule LM do
@doc """
Universal language model client supporting 30+ providers via LiteLLM.
"""
def configure(model, opts \\ []) do
# Configure language model with provider-specific options
end
def generate(prompt, opts \\ []) do
# Generate completion
end
def chat(messages, opts \\ []) do
# Chat-based completion
end
def embed(text, opts \\ []) do
# Generate embeddings
end
end
defmodule Provider do
@doc """
Training and fine-tuning job management.
"""
def start_finetune_job(dataset, model, opts \\ []) do
# Start fine-tuning job
end
def monitor_job(job_id) do
# Monitor training progress
end
end
defmodule Cache do
@doc """
Multi-layer caching system for LM responses.
"""
def configure(strategy, opts \\ []) do
# Configure caching strategy
end
def get(key) do
# Retrieve cached response
end
def put(key, value, ttl \\ nil) do
# Cache response
end
end
end
5. Retrieval System
defmodule DSPex.Retrievers do
@moduledoc """
Information retrieval with support for 25+ vector databases.
"""
defmodule VectorDB do
@doc """
Unified interface for vector databases.
"""
def configure(provider, opts \\ []) do
# Configure vector database connection
end
def index(documents, metadata \\ [], opts \\ []) do
# Index documents for retrieval
end
def search(query, k \\ 5, opts \\ []) do
# Semantic search
end
end
# Specific implementations
defmodule ChromaDB do
use DSPex.Retrievers.VectorDB
end
defmodule Pinecone do
use DSPex.Retrievers.VectorDB
end
defmodule Weaviate do
use DSPex.Retrievers.VectorDB
end
# ... 22 more vector database implementations
defmodule ColBERTv2 do
@doc """
ColBERTv2 retrieval system for dense passage retrieval.
"""
def configure(index_path, opts \\ []) do
# Configure ColBERTv2 index
end
def search(query, k \\ 5, opts \\ []) do
# Multi-vector search
end
end
end
6. Evaluation Framework
defmodule DSPex.Evaluation do
@moduledoc """
Comprehensive evaluation framework for ML programs.
"""
defmodule Evaluate do
@doc """
Main evaluation runner with parallel processing.
"""
def run(program, dataset, metrics, opts \\ []) do
# Run evaluation with multiple metrics
end
def compare(programs, dataset, metrics, opts \\ []) do
# Compare multiple programs
end
end
defmodule Metrics do
@doc """
Built-in and custom metrics for evaluation.
"""
def exact_match(prediction, ground_truth) do
# Exact string matching
end
def semantic_f1(prediction, ground_truth, model \\ nil) do
# Semantic similarity F1 score
end
def passage_match(prediction, passages) do
# Passage-based grounding check
end
def custom_metric(evaluator_fn) do
# Custom evaluation function
end
end
defmodule Reports do
@doc """
Evaluation reporting and analysis.
"""
def generate_report(results, format \\ :html) do
# Generate evaluation report
end
def failure_analysis(results) do
# Analyze failure cases
end
end
end
7. Streaming System
defmodule DSPex.Streaming do
@moduledoc """
Real-time streaming of LM responses and status updates.
"""
defmodule StreamListener do
@doc """
Event-driven streaming interface.
"""
def start_stream(program, inputs, callback, opts \\ []) do
# Start streaming execution
end
def on_token(callback) do
# Token-level streaming callback
end
def on_status(callback) do
# Status update callback
end
end
defmodule StatusMessage do
@doc """
Progress status reporting.
"""
defstruct [:id, :status, :progress, :message, :timestamp]
end
end
8. Advanced Features
defmodule DSPex.Experimental do
@moduledoc """
Experimental and advanced DSPy features.
"""
defmodule Synthesizer do
@doc """
Automatic training data generation.
"""
def synthesize_dataset(task_description, examples \\ [], size \\ 100, opts \\ []) do
# Generate synthetic training data
end
end
defmodule ModuleGraph do
@doc """
Module dependency visualization and analysis.
"""
def analyze_dependencies(program) do
# Analyze module composition
end
def visualize(program, format \\ :mermaid) do
# Generate dependency graph
end
end
defmodule MultiModal do
@doc """
Multi-modal input support (images, audio).
"""
def process_image(image_path, signature, opts \\ []) do
# Process image inputs
end
def process_audio(audio_path, signature, opts \\ []) do
# Process audio inputs
end
end
end
Enhanced Python Bridge Design
State Management
defmodule DSPex.PythonBridge.StateManager do
@moduledoc """
Manages complex DSPy object state across worker processes.
"""
def store_program(program_id, program_state) do
# Serialize and store program state
end
def load_program(program_id) do
# Deserialize and load program state
end
def migrate_state(from_worker, to_worker) do
# Migrate state between workers
end
end
Advanced Serialization
defmodule DSPex.PythonBridge.Serializer do
@moduledoc """
Handles serialization of complex DSPy objects.
"""
def serialize_module(module) do
# Serialize DSPy modules with parameters
end
def deserialize_module(data) do
# Deserialize DSPy modules
end
def serialize_prediction(prediction) do
# Serialize prediction objects with traces
end
end
Ash Framework Integration
Domain Definition
defmodule DSPex.Ash.Domain do
use Ash.Domain
resources do
resource DSPex.Ash.Program
resource DSPex.Ash.Dataset
resource DSPex.Ash.Experiment
resource DSPex.Ash.Evaluation
resource DSPex.Ash.Model
resource DSPex.Ash.Signature
end
end
Core Resources
defmodule DSPex.Ash.Program do
use Ash.Resource,
domain: DSPex.Ash.Domain,
data_layer: DSPex.Ash.DataLayer
attributes do
uuid_primary_key :id
attribute :name, :string, allow_nil?: false
attribute :signature_id, :uuid, allow_nil?: false
attribute :module_type, :atom, allow_nil?: false
attribute :parameters, :map, default: %{}
attribute :optimization_history, {:array, :map}, default: []
attribute :created_at, :utc_datetime_usec, default: &DateTime.utc_now/0
end
relationships do
belongs_to :signature, DSPex.Ash.Signature
has_many :evaluations, DSPex.Ash.Evaluation
has_many :experiments, DSPex.Ash.Experiment
end
actions do
defaults [:read, :create, :update, :destroy]
action :execute, :map do
argument :inputs, :map, allow_nil?: false
argument :options, :map, default: %{}
end
action :optimize, :map do
argument :trainset, {:array, :map}, allow_nil?: false
argument :valset, {:array, :map}
argument :optimizer, :atom, default: :bootstrap_few_shot
argument :options, :map, default: %{}
end
end
end
Custom Data Layer
defmodule DSPex.Ash.DataLayer do
@moduledoc """
Custom Ash data layer that bridges to DSPy Python processes.
"""
use Ash.DataLayer
def can?(_, :create), do: true
def can?(_, :read), do: true
def can?(_, :update), do: true
def can?(_, :destroy), do: true
def can?(_, :sort), do: true
def can?(_, :filter), do: true
def create(resource, changeset) do
# Create DSPy object and store in Python bridge
end
def read(query) do
# Read from Python bridge state
end
def update(resource, changeset) do
# Update DSPy object state
end
def destroy(resource, %{data: record}) do
# Clean up DSPy object
end
end
Migration Strategy
Phase 1: Core Module System (Weeks 1-2)
- Implement enhanced signature system with field constraints
- Add basic prediction modules (Predict, ChainOfThought, ReAct)
- Enhance Python bridge for complex object serialization
- Update pooling system for stateful operations
Phase 2: Optimization & Evaluation (Weeks 3-4)
- Implement key optimizers (BootstrapFewShot, MIPRO)
- Add evaluation framework with built-in metrics
- Implement state persistence across worker restarts
- Add experiment tracking capabilities
Phase 3: Advanced Features (Weeks 5-6)
- Implement retrieval system with vector database support
- Add streaming response handling
- Implement multi-modal input support
- Add comprehensive caching layer
Phase 4: Ash Integration (Weeks 7-8)
- Complete Ash domain and resource definitions
- Implement custom data layer for DSPy bridge
- Add GraphQL/REST API generation
- Implement background job processing
Phase 5: Production Features (Weeks 9-10)
- Add comprehensive monitoring and telemetry
- Implement distributed caching with Redis
- Add automated deployment and scaling
- Complete documentation and examples
Testing Strategy
Enhanced 3-Layer Testing
- Layer 1 (Mock): Test all Elixir APIs with mock implementations
- Layer 2 (Bridge): Test Python bridge communication and serialization
- Layer 3 (Integration): Full end-to-end testing with real DSPy
Performance Targets
- Signature Processing: < 5ms for complex signatures
- Module Execution: < 100ms for basic predictions
- Optimization Jobs: Complete within resource constraints
- State Serialization: < 10ms for complex objects
- Pool Throughput: Maintain 1000+ requests/second
Risk Mitigation
Technical Risks
- Complex State Management: Use ETS and persistent_term for high-performance state
- Serialization Overhead: Implement efficient binary protocols where needed
- Python Memory Leaks: Implement worker recycling and monitoring
- API Surface Complexity: Provide progressive disclosure with sensible defaults
Compatibility Risks
- DSPy Version Changes: Pin to specific DSPy versions with migration strategies
- Provider API Changes: Abstract provider differences behind unified interfaces
- Elixir/Python Mismatches: Comprehensive type validation and conversion
Success Metrics
Functionality Coverage
- 90%+ of DSPy prediction modules implemented
- 80%+ of DSPy optimizers available
- 15+ vector database integrations
- Complete evaluation framework
- Production-ready monitoring
Performance Metrics
- Sub-100ms prediction latency
- 1000+ requests/second throughput
- < 1% failure rate under load
- < 5 second worker initialization
- Zero memory leaks over 24 hours
Developer Experience
- Complete API documentation
- 50+ working examples
- IDE autocomplete support
- Comprehensive error messages
- Easy deployment guide
This comprehensive design transforms DSPex from a signature-only bridge into a full-featured ML infrastructure platform that rivals Python DSPy while leveraging Elixir’s unique strengths in concurrency, fault tolerance, and real-time systems.