DSPex Generalized Variables: Feasibility Analysis & Native Implementation Strategy
Executive Summary
DSPy’s current architecture does not support generalized variables as module-type parameters that can be optimized across different module boundaries. This document analyzes the feasibility of implementing this feature in DSPex, identifies the minimum native components needed, and outlines how SIMBA would need to adapt.
The Generalized Variables Problem
Current DSPy Limitations
Module-Scoped Parameters: DSPy modules (Predict, ChainOfThought, etc.) have their own internal parameters (prompts, few-shot examples) that are optimized in isolation.
No Cross-Module Optimization: There’s no mechanism to share and optimize parameters across different module instances or types.
Static Module Boundaries: Each module is a black box with its own optimization space, preventing unified variable management.
Limited Parameter Types: DSPy primarily optimizes string-based prompts and example sets, not arbitrary module configurations.
What Generalized Variables Would Enable
# Hypothetical example of what we want:
temperature_var = DSPex.Variable.create(:temperature,
type: :float,
range: {0.0, 2.0},
shared_across: [:predict_1, :cot_1, :react_1]
)
prompt_style_var = DSPex.Variable.create(:prompt_style,
type: :module,
options: [Formal, Casual, Technical],
affects_rendering: true
)
# These variables would be optimized together across all modules
Feasibility Analysis
Option 1: Fork DSPy (Not Recommended)
Pros:
- Complete control over architecture
- Can redesign module system from ground up
Cons:
- Massive maintenance burden
- Lose compatibility with DSPy ecosystem
- Need to reimplement all optimizers
- Diverge from community improvements
Option 2: Wrapper Layer (Recommended)
Build a generalized variable system on top of DSPy without modifying its core:
Pros:
- Maintain DSPy compatibility
- Can evolve independently
- Leverage existing optimizers
- Clean separation of concerns
Cons:
- Some efficiency loss
- Need translation layer
- Limited by DSPy’s execution model
Option 3: Native Implementation with DSPy Bridge
Implement core variable-aware modules natively in Elixir while maintaining DSPy compatibility:
Pros:
- Maximum flexibility
- Optimal performance
- Can pioneer new optimization approaches
- Gradual migration path
Cons:
- More implementation work
- Need to maintain parity
- Complex routing logic
Minimum Native Components for Generalized Variables
1. Variable Registry & Management
defmodule DSPex.Native.Variables do
@moduledoc """
Core variable system that tracks and manages generalized parameters.
"""
defstruct [:id, :name, :type, :value, :constraints, :affects, :metadata]
def create(name, type, opts \\ []) do
%__MODULE__{
id: generate_id(),
name: name,
type: type,
value: opts[:initial_value],
constraints: opts[:constraints] || %{},
affects: MapSet.new(opts[:affects] || []),
metadata: %{
created_at: DateTime.utc_now(),
optimization_history: []
}
}
end
def bind_to_module(variable, module_id) do
update_in(variable.affects, &MapSet.put(&1, module_id))
end
end
2. Variable-Aware Module Protocol
defprotocol DSPex.Native.VariableAware do
@doc "Get all variables this module depends on"
def get_variables(module)
@doc "Apply variable values to module configuration"
def apply_variables(module, variable_values)
@doc "Get variable gradients/feedback after execution"
def get_variable_feedback(module, execution_result)
end
3. Native Evaluation Framework
This is the most critical component - without native evaluation, we can’t properly measure the impact of variable changes:
defmodule DSPex.Native.Evaluation do
@moduledoc """
Native evaluation engine that understands variable impacts.
"""
def evaluate_with_variables(program, dataset, variables, metrics) do
# Track variable values across executions
# Measure impact on metrics
# Return variable-aware results
results = Enum.map(dataset, fn example ->
# Apply current variable values
configured_program = apply_variables(program, variables)
# Execute and track
{output, trace} = execute_with_trace(configured_program, example)
# Evaluate metrics
scores = evaluate_metrics(output, example, metrics)
%{
example: example,
output: output,
scores: scores,
variable_trace: extract_variable_impacts(trace, variables)
}
end)
aggregate_variable_impacts(results)
end
end
4. Variable-Aware Optimizer Base
defmodule DSPex.Native.Optimizers.VariableAware do
@moduledoc """
Base optimizer that understands generalized variables.
"""
def optimize(program, dataset, variables, opts \\ []) do
initial_values = get_initial_values(variables)
# Optimization loop
Enum.reduce_while(1..opts[:max_iterations], initial_values, fn iteration, current_values ->
# Apply variables
configured_program = apply_variables(program, current_values)
# Evaluate
results = DSPex.Native.Evaluation.evaluate_with_variables(
configured_program,
dataset,
variables,
opts[:metrics]
)
# Update variables based on feedback
new_values = update_variables(current_values, results, variables)
if converged?(current_values, new_values) do
{:halt, new_values}
else
{:cont, new_values}
end
end)
end
end
5. Execution Trace System
defmodule DSPex.Native.Trace do
@moduledoc """
Captures execution traces with variable attribution.
"""
defstruct [:module_calls, :variable_uses, :decision_points, :metrics]
def track_variable_use(trace, variable_id, context) do
update_in(trace.variable_uses[variable_id], fn uses ->
[%{timestamp: now(), context: context} | uses || []]
end)
end
def track_decision(trace, decision_type, chosen_value, alternatives) do
# Track how variables influenced decisions
end
end
SIMBA Adaptation Requirements
SIMBA (Sampling, Initializing, Mutating, Bootstrapping, and Amplifying) would need significant adaptations:
1. Variable-Aware Sampling
defmodule DSPex.Native.SIMBA.VariableSampling do
def sample_with_variables(dataset, variables, strategy) do
# Sample based on variable coverage
# Ensure samples exercise different variable ranges
case strategy do
:variable_coverage ->
sample_for_variable_diversity(dataset, variables)
:gradient_based ->
sample_high_gradient_regions(dataset, variables)
:uncertainty ->
sample_uncertain_variable_regions(dataset, variables)
end
end
end
2. Variable-Aware Mutations
defmodule DSPex.Native.SIMBA.VariableMutation do
def mutate_variables(current_values, feedback, opts) do
# Mutate based on variable interdependencies
Enum.map(current_values, fn {var_id, value} ->
gradient = feedback[var_id][:gradient]
correlation = feedback[var_id][:correlation_with_others]
new_value = case gradient do
g when g > 0 -> increase_intelligently(value, g, correlation)
g when g < 0 -> decrease_intelligently(value, g, correlation)
_ -> explore_randomly(value, opts[:exploration_rate])
end
{var_id, constrain(new_value, variables[var_id].constraints)}
end)
end
end
3. Cross-Module Bootstrap
defmodule DSPex.Native.SIMBA.CrossModuleBootstrap do
def bootstrap_with_shared_variables(modules, dataset, variables) do
# Bootstrap examples that work well across all modules
# sharing the same variables
candidates = generate_candidates(dataset)
scored_candidates = Enum.map(candidates, fn candidate ->
scores = Enum.map(modules, fn module ->
evaluate_with_candidate(module, candidate, variables)
end)
{candidate, aggregate_cross_module_score(scores)}
end)
select_best_bootstraps(scored_candidates, opts[:n_bootstraps])
end
end
Implementation Roadmap
Phase 1: Core Variable System (Week 1-2)
- Variable registry and management
- Variable-aware module protocol
- Basic variable application mechanism
Phase 2: Native Evaluation (Week 3-4)
- Trace system implementation
- Variable impact measurement
- Native metric calculation
- Cross-module evaluation
Phase 3: Variable-Aware Optimizer (Week 5-6)
- Base optimizer framework
- Gradient estimation for variables
- Variable update strategies
- Convergence detection
Phase 4: SIMBA Integration (Week 7-8)
- Variable-aware sampling
- Smart mutation strategies
- Cross-module bootstrap
- Amplification with variables
Phase 5: DSPy Bridge Enhancement (Week 9-10)
- Variable translation layer
- Hybrid execution (native vars + DSPy modules)
- Performance optimization
- Compatibility testing
Critical Success Factors
1. Native Evaluation is Essential
Without native evaluation, we cannot:
- Measure variable impacts accurately
- Compute gradients efficiently
- Track cross-module effects
- Optimize at the speed needed
2. Trace System Must Be Comprehensive
The trace system needs to capture:
- Which variables were used when
- How variables affected decisions
- Cross-module variable dependencies
- Performance attribution to variables
3. SIMBA Must Understand Variable Geometry
SIMBA’s effectiveness depends on understanding:
- Variable interaction patterns
- Constraint satisfaction
- Multi-objective optimization across modules
- Exploration vs exploitation in variable space
Example: Generalized Temperature Variable
# Define a temperature variable shared across modules
temp_var = DSPex.Variable.create(:temperature,
type: :float,
range: {0.0, 2.0},
initial_value: 0.7,
affects: [:reasoning_style, :creativity, :consistency]
)
# Create variable-aware modules
predict = DSPex.Native.Predict.create("question -> answer",
variables: %{temperature: temp_var}
)
cot = DSPex.Native.ChainOfThought.create("question -> answer",
variables: %{temperature: temp_var}
)
# SIMBA optimizes the shared temperature
{:ok, optimal_temp} = DSPex.Native.SIMBA.optimize(
modules: [predict, cot],
variables: [temp_var],
dataset: training_data,
metric: &combined_quality_diversity_metric/2
)
# Result: Found temperature=1.2 works best across both modules
Conclusion
Building generalized variables for DSPex requires:
- Native implementation of core components (evaluation, tracing, optimization)
- SIMBA adaptations to handle variable-aware optimization
- Clean abstraction layer over DSPy to maintain compatibility
- Focus on evaluation as the key enabler
The approach is feasible but requires significant native Elixir implementation. The payoff is a truly novel system that goes beyond current DSPy capabilities while maintaining compatibility where useful.