DSPex V2: Advanced Design Considerations
Overview
Based on the ElixirML unified vision, DSPex V2 should evolve beyond a simple Python bridge to become a cornerstone of the cognitive orchestration platform. The key insight is that DSPex should enable Variables as Universal Coordinators - transforming DSPy’s optimization capabilities into a distributed control plane for AI systems.
Major Design Considerations
1. Variables as First-Class Citizens
The ElixirML vision shows that variables should transcend simple parameters to become universal coordination primitives:
defmodule DSPex.Variable do
@moduledoc """
Variables as universal coordinators that can optimize any aspect of the system.
"""
defstruct [
:name,
:type, # :float, :choice, :module, :composite, :conditional
:value,
:constraints,
:dependencies, # Other variables this depends on
:observers, # Agents/modules watching this variable
:optimizer, # Current optimizer working on this
:history, # Optimization history
:metadata
]
# Any DSPy module parameter can become a variable
def from_dspy_param(module, param_name, opts \\ []) do
%__MODULE__{
name: "#{module}.#{param_name}",
type: infer_type(module, param_name),
constraints: extract_constraints(module, param_name),
optimizer: opts[:optimizer] || :mipro_v2
}
end
# Variables can coordinate across system boundaries
def coordinate(variable, change) do
# Notify all observers
notify_observers(variable, change)
# Update dependent variables
propagate_dependencies(variable, change)
# Trigger re-optimization if needed
maybe_reoptimize(variable, change)
end
end
2. Real-Time Cognitive Orchestration
DSPex should support adaptive execution that responds to real-time performance:
defmodule DSPex.CognitiveOrchestrator do
@moduledoc """
Real-time adaptation of DSPy modules based on performance feedback.
"""
use GenServer
defstruct [
:modules, # Active DSPy modules
:performance_history, # Performance metrics over time
:adaptation_rules, # When/how to adapt
:execution_intervals, # Dynamic execution timing
:resource_monitors # System resource tracking
]
# Cognitive variables for orchestration
@cognitive_variables [
execution_strategy: [
:performance_optimized,
:resource_conserving,
:adaptive_learning,
:multi_agent_coordinated
],
module_selection: [
:chain_of_thought,
:react,
:program_of_thought,
:auto_select # Let the system choose
]
]
def adapt_execution(state) do
performance_trend = analyze_trend(state.performance_history)
case performance_trend do
:improving -> accelerate_execution(state)
:degrading -> switch_strategy(state)
:unstable -> stabilize_execution(state)
end
end
# Auto-select best DSPy module based on task
def select_module(task, state) do
task_analysis = analyze_task(task)
performance_data = get_module_performance(state)
best_module = task_analysis
|> score_modules(performance_data)
|> select_highest_scoring()
# Track selection for learning
record_selection(task, best_module)
best_module
end
end
3. Multi-Agent Coordination (MABEAM Integration)
DSPex modules should act as specialized agents that can coordinate:
defmodule DSPex.Agent do
@moduledoc """
DSPy modules as MABEAM agents with coordination capabilities.
"""
use MABEAM.Agent
# Agent capabilities declaration
capabilities do
provides :dspy_optimization
provides :prompt_generation
provides :module_composition
requires :llm_access
requires :training_data
end
# Coordinate multiple DSPy modules
def coordinate_modules(modules, task) do
MABEAM.Coordination.consensus(modules, fn module ->
module.evaluate_fitness_for_task(task)
end)
end
# Distributed optimization across agents
def distributed_optimize(program, dataset) do
agents = discover_optimizer_agents()
# Split work across agents
work_distribution = distribute_optimization_work(dataset, agents)
# Parallel optimization with coordination
results = MABEAM.parallel_map(work_distribution, fn {agent, data} ->
agent.optimize_subset(program, data)
end)
# Merge results with consensus
merge_optimization_results(results)
end
end
4. Advanced DSPy Pattern Support
Support sophisticated DSPy patterns through the orchestration layer:
defmodule DSPex.Patterns do
@moduledoc """
Advanced DSPy patterns with cognitive orchestration.
"""
# Self-correcting chain of thought with backtracking
def self_correcting_cot(signature, input, opts \\ []) do
max_corrections = opts[:max_corrections] || 3
Stream.unfold({input, 0}, fn {current_input, attempts} ->
if attempts >= max_corrections do
nil
else
result = DSPex.chain_of_thought(signature, current_input)
case validate_reasoning(result) do
:valid ->
{result, nil} # Success, stop
{:invalid, reason} ->
# Backtrack and try again with correction
corrected = apply_correction(current_input, reason)
{nil, {corrected, attempts + 1}}
end
end
end)
|> Enum.find(&(&1 != nil))
end
# Tree-of-thoughts with parallel exploration
def tree_of_thoughts(signature, input, opts \\ []) do
breadth = opts[:breadth] || 3
depth = opts[:depth] || 3
# Generate initial thoughts in parallel
initial_thoughts = DSPex.parallel(
List.duplicate({:thought, signature, input}, breadth)
)
# Explore tree with cognitive pruning
explore_thought_tree(initial_thoughts, depth, opts)
end
# Meta-programming with self-scaffolding
def self_scaffolding_program(task_description) do
# Use DSPy to generate its own program
scaffold_signature = DSPex.signature(
"task_description -> program_code: str, test_cases: list[dict]"
)
{:ok, result} = DSPex.predict(scaffold_signature, %{
task_description: task_description
})
# Compile and validate generated program
compile_and_validate_program(result.program_code, result.test_cases)
end
end
5. Streaming and Real-Time Processing
Native support for streaming LLM responses with cognitive monitoring:
defmodule DSPex.Streaming do
@moduledoc """
Real-time streaming with cognitive monitoring and adaptation.
"""
def stream_with_monitoring(signature, input, opts \\ []) do
# Create monitored stream
{:ok, stream_id} = start_monitored_stream(signature, input)
Stream.resource(
fn -> init_stream_state(stream_id) end,
fn state ->
case get_next_chunk(state) do
{:chunk, text, metrics} ->
# Monitor quality in real-time
state = update_quality_metrics(state, metrics)
# Adapt if quality degrades
if should_adapt?(state) do
state = adapt_streaming_strategy(state)
end
{[{:text, text}], state}
{:done, final_metrics} ->
{:halt, finalize_stream(state, final_metrics)}
end
end,
fn state -> cleanup_stream(state) end
)
end
# Parallel streaming from multiple modules
def multi_stream(modules, input) do
streams = Enum.map(modules, fn module ->
Task.async(fn ->
stream_with_monitoring(module.signature, input)
end)
end)
# Merge streams with intelligent selection
merge_streams_with_selection(streams)
end
end
6. Production-Grade Infrastructure
Building on ElixirML’s foundation principles:
defmodule DSPex.Infrastructure do
@moduledoc """
Production infrastructure with comprehensive monitoring and fault tolerance.
"""
# Health monitoring across all components
def health_check do
%{
pools: check_pool_health(),
agents: check_agent_health(),
optimizers: check_optimizer_health(),
resources: check_resource_usage(),
performance: check_performance_metrics()
}
end
# Chaos engineering support
def chaos_test(scenario) do
case scenario do
:pool_failure -> simulate_pool_failures()
:network_partition -> simulate_network_issues()
:resource_exhaustion -> simulate_memory_pressure()
:optimizer_divergence -> simulate_optimization_failures()
end
end
# Multi-layer telemetry
def setup_telemetry do
# Pool-level metrics
attach_pool_telemetry()
# Module-level metrics
attach_module_telemetry()
# Optimization metrics
attach_optimizer_telemetry()
# Cognitive metrics
attach_cognitive_telemetry()
end
end
7. Integration with ElixirML Ecosystem
DSPex should seamlessly integrate with the broader ElixirML platform:
defmodule DSPex.ElixirMLIntegration do
@moduledoc """
Deep integration with ElixirML's unified architecture.
"""
# Use ElixirML's schema engine
def validate_with_schema(data, schema) do
ElixirML.Schema.validate(data, schema)
end
# Integrate with ExDantic for Pydantic compatibility
def from_pydantic_model(model) do
ExDantic.to_dspex_signature(model)
end
# Use ElixirML's variable system
def create_optimizable_module(module, variable_config) do
variables = ElixirML.Variables.from_config(variable_config)
%DSPex.OptimizableModule{
module: module,
variables: variables,
optimizer: select_optimizer(variables)
}
end
# Leverage MABEAM for distributed execution
def distributed_execution(program, dataset) do
MABEAM.distribute(program, dataset,
strategy: :capability_based,
coordination: :consensus
)
end
end
Implementation Priorities
- Variable System Integration - Enable any DSPy parameter to become a coordinated variable
- Real-Time Adaptation - Performance-based dynamic module selection and configuration
- Agent Coordination - DSPy modules as MABEAM agents with coordination protocols
- Streaming Support - Native streaming with cognitive monitoring
- Advanced Patterns - Self-correcting, tree-of-thoughts, meta-programming
- Production Infrastructure - Comprehensive monitoring, fault tolerance, chaos testing
Architecture Benefits
This advanced architecture delivers:
- Universal Coordination - Any parameter can be optimized by any optimizer
- Cognitive Adaptation - Real-time performance-based optimization
- Distributed Intelligence - Multi-agent coordination for complex workflows
- Production Reliability - Comprehensive monitoring and fault tolerance
- Ecosystem Integration - Seamless integration with ElixirML platform
Next Steps
- Implement core variable system with DSPy parameter mapping
- Build cognitive orchestration layer with performance monitoring
- Create MABEAM agent wrappers for DSPy modules
- Add streaming support with quality monitoring
- Implement advanced DSPy patterns
- Integrate with ElixirML’s broader ecosystem
This positions DSPex V2 not just as a DSPy bridge, but as a cognitive orchestration platform that advances the state of the art in ML system coordination.