Native DSPy Features Implementation Roadmap
Overview
This document identifies DSPy features to implement natively in Elixir, prioritized by impact and complexity. Each feature includes implementation details and benefits of native implementation.
Feature Prioritization Matrix
Feature | Impact | Complexity | Priority | Native Benefits |
---|---|---|---|---|
Signatures | High | Low | P0 | Type safety, compile-time validation |
Basic Predictors | High | Medium | P0 | Direct LLM integration, lower latency |
Prompt Templates | High | Low | P0 | String manipulation efficiency |
Chain-of-Thought | High | Medium | P1 | Native async/streaming |
Few-Shot Learning | Medium | Low | P1 | Elixir pattern matching |
Assertions | Medium | Low | P1 | Integration with Elixir testing |
Optimizers | Medium | High | P2 | Nx integration potential |
Advanced RAG | Medium | High | P2 | Native vector DB integration |
Multi-hop Reasoning | Low | High | P3 | Complex state management |
Phase 1: Core Features (P0)
1. Native Signatures
Current Python Implementation:
class Signature:
def __init__(self, signature_string):
self.parse(signature_string)
Native Elixir Implementation:
defmodule DSPex.Signature do
@moduledoc """
Native implementation of DSPy signatures with compile-time validation.
"""
defstruct [:name, :docstring, :inputs, :outputs, :constraints]
# Macro for compile-time signature definition
defmacro defsignature(name, signature_string) do
parsed = parse_at_compile_time(signature_string)
quote do
def unquote(name)() do
%DSPex.Signature{unquote_splicing(Macro.escape(parsed))}
end
end
end
# Runtime parsing for dynamic signatures
def parse(signature_string) do
with {:ok, tokens} <- tokenize(signature_string),
{:ok, ast} <- build_ast(tokens),
{:ok, signature} <- validate_ast(ast) do
{:ok, signature}
end
end
# Pattern matching for field extraction
def extract_field(line) do
case Regex.run(~r/^(\w+)\s*\(([^)]+)\):\s*(.+)$/, line) do
[_, name, type, description] ->
%Field{name: name, type: parse_type(type), description: description}
_ ->
{:error, "Invalid field format"}
end
end
end
Benefits:
- Compile-time validation
- Native pattern matching
- Zero serialization overhead
- Direct integration with Elixir structs
2. Basic Predictors
Native Implementation Plan:
defmodule DSPex.Predictor do
@moduledoc """
Behavior for LLM predictors with native Elixir implementations.
"""
@callback predict(signature :: Signature.t(), inputs :: map(), opts :: keyword()) ::
{:ok, map()} | {:error, term()}
@callback batch_predict(signature :: Signature.t(), batch :: [map()], opts :: keyword()) ::
{:ok, [map()]} | {:error, term()}
defmacro __using__(opts) do
quote do
@behaviour DSPex.Predictor
def predict(signature, inputs, opts \\ []) do
prompt = DSPex.PromptBuilder.build(signature, inputs, opts)
with {:ok, response} <- call_llm(prompt, opts),
{:ok, parsed} <- parse_response(response, signature) do
{:ok, parsed}
end
end
# Concurrent batch processing
def batch_predict(signature, batch, opts \\ []) do
batch
|> Task.async_stream(&predict(signature, &1, opts),
max_concurrency: opts[:max_concurrency] || 10)
|> Enum.reduce({:ok, []}, fn
{:ok, {:ok, result}}, {:ok, acc} -> {:ok, [result | acc]}
{:ok, {:error, reason}}, _ -> {:error, reason}
{:error, reason}, _ -> {:error, reason}
end)
|> case do
{:ok, results} -> {:ok, Enum.reverse(results)}
error -> error
end
end
defoverridable predict: 3, batch_predict: 3
end
end
end
# Example predictor implementation
defmodule DSPex.Predictors.OpenAI do
use DSPex.Predictor
defp call_llm(prompt, opts) do
# Direct HTTP call to OpenAI
# No Python serialization needed
end
end
Benefits:
- Direct HTTP calls (no IPC overhead)
- Native concurrency with Task.async_stream
- Streaming support with GenStage
- Built-in rate limiting with Elixir patterns
3. Prompt Templates
Native Template Engine:
defmodule DSPex.PromptTemplate do
@moduledoc """
EEx-based prompt templating with DSPy compatibility.
"""
defstruct [:template, :variables, :examples]
def compile(template_string) do
# Use EEx for template compilation
EEx.compile_string(template_string)
end
def render(template, context) do
# Leverage Elixir's powerful string interpolation
template
|> apply_context(context)
|> format_examples()
|> optimize_whitespace()
end
# DSPy-specific formatting
def format_field({name, value, field_def}) do
formatted_value = case field_def.type do
:string -> value
:integer -> Integer.to_string(value)
:list -> Enum.join(value, ", ")
:json -> Jason.encode!(value)
end
"#{String.capitalize(name)}: #{formatted_value}"
end
end
Benefits:
- EEx template compilation
- Native string manipulation
- Compile-time template validation
- Memory-efficient rendering
Phase 2: Intermediate Features (P1)
4. Chain-of-Thought (CoT)
Native Implementation:
defmodule DSPex.ChainOfThought do
@moduledoc """
Native implementation of Chain-of-Thought prompting.
"""
def extend_signature(signature, opts \\ []) do
rationale_field = %Field{
name: "rationale",
type: :string,
description: "Step-by-step reasoning",
prefix: opts[:rationale_prefix] || "Let's think step by step:"
}
%{signature |
outputs: [rationale_field | signature.outputs],
metadata: Map.put(signature.metadata, :cot_enabled, true)
}
end
def extract_rationale(response) do
# Native regex processing
case Regex.run(~r/Rationale:(.*?)(?=\n[A-Z]|\z)/s, response) do
[_, rationale] -> {:ok, String.trim(rationale)}
_ -> {:error, "No rationale found"}
end
end
end
5. Few-Shot Learning
Native Implementation:
defmodule DSPex.FewShot do
@moduledoc """
Native few-shot example management and formatting.
"""
defstruct [:examples, :signature, :format]
def bootstrap(signature, examples, opts \\ []) do
examples
|> validate_examples(signature)
|> format_examples(opts[:format] || :default)
|> optimize_order(opts[:strategy] || :random)
end
# Leverage pattern matching for example validation
defp validate_example(example, signature) do
required_inputs = MapSet.new(signature.inputs)
required_outputs = MapSet.new(signature.outputs)
example_inputs = MapSet.new(Map.keys(example.inputs))
example_outputs = MapSet.new(Map.keys(example.outputs))
cond do
not MapSet.subset?(required_inputs, example_inputs) ->
{:error, "Missing required inputs"}
not MapSet.subset?(required_outputs, example_outputs) ->
{:error, "Missing required outputs"}
true ->
{:ok, example}
end
end
end
6. Assertions
Native Implementation:
defmodule DSPex.Assert do
@moduledoc """
Native assertion system integrated with Elixir's testing.
"""
defmacro assert_output(predictor_call, assertions) do
quote do
result = unquote(predictor_call)
Enum.each(unquote(assertions), fn assertion ->
case assertion do
{:contains, field, expected} ->
actual = get_in(result, [field])
unless String.contains?(actual, expected) do
raise "Assertion failed: #{field} should contain #{expected}"
end
{:matches, field, regex} ->
actual = get_in(result, [field])
unless Regex.match?(regex, actual) do
raise "Assertion failed: #{field} should match #{inspect(regex)}"
end
{:satisfies, field, predicate} ->
actual = get_in(result, [field])
unless predicate.(actual) do
raise "Assertion failed: #{field} does not satisfy predicate"
end
end
end)
result
end
end
end
Phase 3: Advanced Features (P2)
7. Optimizers
Integration with Nx:
defmodule DSPex.Optimizer do
@moduledoc """
Native optimizer using Nx for numerical computation.
"""
import Nx.Defn
defn compute_metrics(predictions, labels) do
# Leverages Nx for efficient tensor operations
accuracy = Nx.mean(Nx.equal(predictions, labels))
{accuracy}
end
def optimize_prompt(signature, examples, opts \\ []) do
# Use Elixir's GenServer for stateful optimization
{:ok, optimizer} = OptimizerServer.start_link(signature, examples)
Stream.iterate(0, &(&1 + 1))
|> Stream.take(opts[:max_iterations] || 10)
|> Stream.map(fn iteration ->
OptimizerServer.step(optimizer)
end)
|> Enum.to_list()
OptimizerServer.get_best_prompt(optimizer)
end
end
8. RAG (Retrieval-Augmented Generation)
Native Vector Search Integration:
defmodule DSPex.RAG do
@moduledoc """
Native RAG implementation with Elixir vector databases.
"""
def retrieve_and_generate(query, signature, opts \\ []) do
with {:ok, embeddings} <- embed_query(query),
{:ok, documents} <- search_similar(embeddings, opts[:top_k] || 5),
{:ok, context} <- format_context(documents),
{:ok, response} <- generate_with_context(query, context, signature) do
{:ok, response}
end
end
# Direct integration with Pgvector or other vector DBs
defp search_similar(embeddings, top_k) do
Ecto.Query.from(d in Document,
order_by: fragment("embedding <-> ?", ^embeddings),
limit: ^top_k
)
|> Repo.all()
end
end
Implementation Benefits Summary
Performance Benefits
- Eliminated IPC Overhead: No Python process communication
- Native Concurrency: Leverage BEAM’s actor model
- Compile-time Optimization: Signatures and templates compiled
- Direct LLM Integration: No serialization/deserialization
Developer Experience Benefits
- Type Safety: Leverage Elixir’s type system
- Better Debugging: Native stack traces
- Testing Integration: ExUnit integration
- Hot Code Reloading: No Python restart needed
Operational Benefits
- Simplified Deployment: No Python dependencies
- Unified Monitoring: Single application metrics
- Resource Efficiency: One runtime, not two
- Better Error Handling: Elixir’s fault tolerance
Migration Priority
Immediate Value (Month 1-2):
- Signatures
- Basic Predictors
- Prompt Templates
Enhanced Functionality (Month 3-4):
- Chain-of-Thought
- Few-Shot Learning
- Assertions
Advanced Features (Month 5-6):
- Optimizers (with Nx)
- RAG Integration
- Custom Modules
Success Metrics
- Performance: 10x latency reduction for basic operations
- Adoption: 50% of operations using native features within 6 months
- Reliability: 90% reduction in Python-related errors
- Developer Satisfaction: Simplified API and better debugging