← Back to Specs

20250718 AMALGAMATED PLAN COGNITIVE ORCHESTRATION

Documentation for 20250718_AMALGAMATED_PLAN_COGNITIVE_ORCHESTRATION from the Dspex repository.

20250718 Amalgamated Plan: DSPex Cognitive Orchestration Platform

Executive Summary

This document amalgamates all insights from:

  • DSPex V2 Foundation specifications
  • Unified Vision architecture documents (11-17, 1200-1207)
  • libStaging proven implementations
  • Foundation/MABEAM architectural lessons
  • Snakepit pooler capabilities

The result is a pragmatic yet innovative plan for building DSPex as a Cognitive Orchestration Platform that leverages existing DSPy through intelligent Elixir orchestration.

Core Philosophy: “Simple Core, Smart Orchestration”

The Paradigm Shift

  • Old Way: Reimplement DSPy in Elixir (massive effort, always behind)
  • New Way: Orchestrate existing DSPy through Snakepit (immediate functionality, focus on value-add)

Key Principles

  1. Orchestration Over Implementation: We orchestrate DSPy, not reimplement it
  2. Intelligence Through Observation: Learn and adapt from patterns, not complex AI
  3. Native Performance Where It Matters: Signatures, templates, simple operations
  4. Production-First Design: Monitoring, fault tolerance, scalability built-in
  5. Gradual Enhancement: Start with Python DSPy, enhance with native over time

Architecture Overview

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                 User API                         β”‚
β”‚        (Clean DSPex.execute interface)          β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                          ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚          Cognitive Orchestration Layer           β”‚
β”‚   (Smart routing, learning, adaptation)          β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β€’ Pattern Learning    β€’ Strategy Cache           β”‚
β”‚ β€’ Performance Prediction β€’ Adaptive Routing      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                          ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Native     β”‚    Variable      β”‚   LLM         β”‚
β”‚   Engine     β”‚  Coordination    β”‚  Adapters     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β€’ Signatures β”‚ β€’ Module Type    β”‚ β€’ InstructorLiteβ”‚
β”‚ β€’ Templates  β”‚ β€’ SIMBA/BEACON   β”‚ β€’ HTTP Direct β”‚
β”‚ β€’ Validators β”‚ β€’ ML Types       β”‚ β€’ Python Bridgeβ”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                        ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              Snakepit Foundation                 β”‚
β”‚  (Process pooling, sessions, health monitoring)  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β€’ General Pool (8 workers, 512MB)                β”‚
β”‚ β€’ Optimizer Pool (2 workers, 4GB)                β”‚
β”‚ β€’ Neural Pool (4 workers, 8GB + GPU)             β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                          ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚               Python DSPy                        β”‚
β”‚        (Full framework, all modules)             β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Core Components

1. Cognitive Orchestration Engine

The brain that learns and adapts:

defmodule DSPex.Orchestrator do
  # Intelligent task analysis
  def orchestrate(task, context) do
    task
    |> analyze_requirements()      # Complexity, resource needs
    |> select_execution_strategy() # Based on learned patterns
    |> distribute_work()           # Across pools/workers
    |> monitor_execution()         # Real-time tracking
    |> adapt_in_realtime()        # Adjust if needed
    |> handle_failures_gracefully() # With fallbacks
  end
end

Key capabilities:

  • Pattern Learning: Learn from execution history
  • Resource Prediction: Estimate needs based on task
  • Dynamic Adaptation: Adjust strategies in real-time
  • Distributed Coordination: Manage work across pools

2. Variable Coordination System

Revolutionary approach from libStaging - variables as coordination primitives:

defmodule DSPex.Variables do
  # Variable types from libStaging
  defmodule ModuleType do
    # Automatic module selection!
    # variable :model, :module, choices: [GPT4, Claude, Gemini]
  end
  
  defmodule MLTypes do
    # From libStaging patterns
    def embedding(dims), do: {:array, :float, shape: [dims]}
    def probability(), do: {:float, min: 0.0, max: 1.0}
    def tensor(shape), do: {:array, :float, shape: shape}
  end
end

Key innovations:

  • Module Variables: Enable automatic module selection optimization
  • ML-Specific Types: Embeddings, probabilities, tensors
  • Composite Variables: Complex parameter spaces
  • Optimization Coordination: Multiple optimizers can work together

3. Native High-Performance Layer

From foundation’s proven patterns:

defmodule DSPex.Native do
  # Compile-time signature parsing
  defmacro defsignature(name, spec) do
    parsed = parse_at_compile_time(spec)
    # Generate zero-overhead code
  end
  
  # EEx-based templates
  # Fast validators
  # Metric calculations
end

Native implementations for:

  • Signatures: Compile-time parsing, zero runtime overhead
  • Templates: EEx-based, sub-millisecond rendering
  • Validators: Type checking, constraint validation
  • Simple Operations: Where latency matters

4. LLM Adapter Architecture

Flexible integration with automatic selection:

defmodule DSPex.LLM do
  def predict(prompt, opts) do
    # Analyze requirements
    requirements = analyze_requirements(prompt, opts)
    
    # Select optimal adapter
    adapter = case requirements do
      %{structured: true} -> Adapters.InstructorLite
      %{simple: true} -> Adapters.HTTP
      %{complex: true} -> Adapters.Python
    end
    
    adapter.generate(prompt, opts)
  end
end

Adapters:

  • InstructorLite: For structured generation
  • HTTP Direct: For simple, fast calls
  • Python Bridge: For complex DSPy operations

5. Advanced Optimizers (From libStaging)

Pre-built, tested optimization algorithms:

# SIMBA - Stochastic optimization
DSPex.Optimizers.SIMBA
- Trajectory sampling
- Performance buckets
- Strategy application

# BEACON - Bayesian optimization
DSPex.Optimizers.BEACON
- Continuous parameter spaces
- Built-in benchmarking
- Scientific evaluation

# Bootstrap Few-Shot
DSPex.Optimizers.BootstrapFewShot
- Demo selection
- Performance filtering
- Incremental improvement

6. Pipeline Orchestration

Leveraging Elixir’s actor model:

pipeline = DSPex.Builder.new()
|> with_signature("question -> answer")
|> with_variable(:temperature, :float, 0.7)
|> with_variable(:model, :module, [GPT4, Claude])
|> with_optimizer(:simba)
|> with_parallel_stages([...])
|> build()

Features:

  • Automatic Parallelization: Based on dependency analysis
  • Stream Processing: With backpressure
  • Progress Tracking: Real-time updates
  • Fault Tolerance: Partial result handling

7. Production Infrastructure

Three-layer testing from libStaging:

  • mix test.mock - Fast unit tests
  • mix test.fallback - Bridge testing
  • mix test.live - Full integration

Monitoring and reliability:

  • Circuit breakers for failing services
  • Retry logic with exponential backoff
  • Request queuing with overflow handling
  • Graceful degradation under load

What We’re NOT Building

  1. No Agent-Everything: Unlike foundation, we don’t make everything an agent
  2. No MABEAM Markets: Simple coordination, not auction mechanisms
  3. No Distributed-First: Single-node excellence, distributed-ready
  4. No ML Reimplementation: Use Python DSPy for complex algorithms

Implementation Phases

Phase 1: Foundation (Week 1)

  • Snakepit integration with three pools
  • Port libStaging variable system
  • Native signature engine from foundation
  • Basic routing and bridge

Phase 2: Core Features (Week 2)

  • LLM adapter architecture
  • Pipeline orchestration with Builder pattern
  • Session management
  • SIMBA/BEACON optimizers

Phase 3: Intelligence (Week 3)

  • Learning orchestrator
  • Pattern detection and caching
  • Adaptive routing
  • Stream processing

Phase 4: Production (Week 4)

  • Three-layer testing
  • Circuit breakers and retries
  • Documentation and examples
  • Performance optimization

Key Innovations

1. Module-Type Variables

variable :model, :module, choices: [GPT4, Claude, Gemini]
# System automatically optimizes module selection!

2. Cognitive Adaptation

  • Learn from every execution
  • Cache successful strategies
  • Predict resource needs
  • Route intelligently

3. ML-Specific Types

variable :embedding, :embedding, dims: 1536
variable :confidence, :probability
variable :weights, :tensor, shape: [768, 768]

4. Builder Pattern API

Clean, intuitive interface:

DSPex.Builder.new()
|> with_native_signatures()
|> with_python_fallback()
|> optimize_for(:latency)
|> build()

Success Metrics

  1. Performance

    • <1ms for native operations
    • <100ms for simple operations
    • 10x faster than pure Python for hot paths
  2. Scalability

    • 1000+ requests/second for cached operations
    • Efficient pool utilization
    • Graceful overload handling
  3. Intelligence

    • 20%+ performance improvement through learning
    • Successful pattern detection
    • Optimal adapter selection
  4. Reliability

    • 99.9% uptime
    • Automatic recovery
    • Clear error messages

Why This Will Succeed

  1. Proven Foundation: Snakepit + DSPy already work
  2. Battle-Tested Patterns: Reuse libStaging’s best parts
  3. Lessons Learned: Avoid foundation’s overengineering
  4. Clear Value: Not just a bridge, but intelligent orchestration
  5. Pragmatic Approach: Simple core, smart features

The Payoff

DSPex becomes more than “DSPy for Elixir” - it becomes a Cognitive Orchestration Platform that:

  • Makes ML operations smarter through learning
  • Optimizes execution automatically
  • Provides production-grade reliability
  • Enables patterns impossible in pure Python

By focusing on orchestration intelligence rather than reimplementation, we create something genuinely innovative while maintaining pragmatic implementation approach.

Next Steps

  1. Review and approve this amalgamated plan
  2. Begin Phase 1 implementation
  3. Set up CI/CD with three-layer testing
  4. Create initial benchmarks
  5. Start documentation

The path is clear: leverage what works, add intelligence where it matters, ship something revolutionary.