← Back to Specs

20250718 IMMEDIATE IMPLEMENTATION PLAN

Documentation for 20250718_IMMEDIATE_IMPLEMENTATION_PLAN from the Dspex repository.

DSPex Immediate Implementation Plan - The Next 30 Days

Overview

This document defines the concrete next steps for implementing DSPex based on our REAL FOUNDATION vision. We focus on pragmatic excellence while building in consciousness hooks for the future.

Week 1: Foundation Setup & Variable System Port

Day 1-2: Project Infrastructure

Task 1.1: Initialize DSPex with Snakepit

# Setup commands
mix new dspex --sup
cd dspex
# Add dependencies in mix.exs
# mix.exs
defp deps do
  [
    {:snakepit, github: "nshkrdotcom/snakepit"},
    {:instructor_lite, "~> 0.1.0"},
    {:telemetry, "~> 1.0"},
    {:jason, "~> 1.4"},
    {:nimble_options, "~> 1.0"}
  ]
end

Task 1.2: Configure Snakepit Pools

# config/config.exs
config :snakepit,
  pools: [
    # Start with basic pools, but structure for future expansion
    %{
      name: :general,
      size: 8,
      python_path: "python3",
      script_path: "priv/python/dspy_bridge.py",
      memory_limit: 512 # MB
    },
    %{
      name: :optimizer,
      size: 2,
      python_path: "python3", 
      script_path: "priv/python/dspy_optimizer.py",
      memory_limit: 4096 # MB
    },
    # Future-ready but not active
    %{
      name: :agent_pool,
      size: 0,  # Will activate in Phase 2
      enabled: false,
      metadata: %{consciousness_ready: true}
    }
  ]

Task 1.3: Create Python Bridge Scripts

# priv/python/dspy_bridge.py
from snakepit_bridge import BaseCommandHandler
import dspy

class DSPyHandler(BaseCommandHandler):
    def _register_commands(self):
        # Basic DSPy operations
        self.register_command("predict", self.handle_predict)
        self.register_command("chain_of_thought", self.handle_cot)
        self.register_command("get_version", self.handle_version)
        
        # Future consciousness hook
        self.register_command("measure_integration", self.handle_integration)
    
    def handle_integration(self, args):
        # Placeholder for future consciousness measurement
        return {"phi": 0.0, "ready": False, "components": 0}

Day 3-4: Port Variable System from libStaging

Task 1.4: Implement Core Variable Types

Based on: ../libStaging/elixir_ml/variable.ex:56-187

# lib/dspex/variables/types.ex
defmodule DSPex.Variables.Types do
  @moduledoc """
  Variable types ported from libStaging with consciousness hooks.
  """
  
  defmodule Float do
    @behaviour DSPex.Variables.Type
    
    defstruct [:value, :min, :max, :step, :consciousness_metadata]
    
    def new(value, opts \\ []) do
      %__MODULE__{
        value: value,
        min: Keyword.get(opts, :min, 0.0),
        max: Keyword.get(opts, :max, 1.0),
        step: Keyword.get(opts, :step, 0.1),
        consciousness_metadata: %{
          integration_potential: 0.0,
          can_become_agent: true
        }
      }
    end
  end
  
  # The KEY innovation from libStaging!
  defmodule Module do
    @moduledoc """
    Variables that represent module choices.
    This is REVOLUTIONARY for automatic module selection.
    """
    
    defstruct [:current, :choices, :performance_history, :evolution_ready]
    
    def new(default, choices) do
      %__MODULE__{
        current: default,
        choices: choices,
        performance_history: %{},
        evolution_ready: true  # Can evolve into agent selector
      }
    end
    
    def optimize(module_var, metric_fn) do
      # Today: Simple performance-based selection
      # Tomorrow: Agent negotiation for selection
      best = Enum.max_by(module_var.choices, fn choice ->
        metric_fn.(choice, module_var.performance_history[choice] || %{})
      end)
      
      %{module_var | current: best}
    end
  end
  
  # ML-specific types from libStaging
  defmodule Embedding do
    defstruct [:dimensions, :values, :space_metadata]
    
    def new(dimensions) do
      %__MODULE__{
        dimensions: dimensions,
        values: nil,
        space_metadata: %{
          can_navigate_consciously: true,
          integration_dimensions: dimensions
        }
      }
    end
  end
  
  defmodule Probability do
    @behaviour DSPex.Variables.Type
    
    defstruct [:value, :certainty_metadata]
    
    def new(value) when value >= 0.0 and value <= 1.0 do
      %__MODULE__{
        value: value,
        certainty_metadata: %{
          quantum_superposition_ready: true,
          collapse_function: nil  # Future quantum integration
        }
      }
    end
  end
end

Task 1.5: Implement Variable Registry

# lib/dspex/variables/registry.ex
defmodule DSPex.Variables.Registry do
  use GenServer
  require Logger
  
  defstruct [
    :variables,
    :optimization_history,
    :consciousness_measurements,
    :evolution_stage
  ]
  
  def start_link(opts) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def init(_opts) do
    state = %__MODULE__{
      variables: %{},
      optimization_history: [],
      consciousness_measurements: %{
        total_variables: 0,
        integration_score: 0.0,
        ready_for_agency: false
      },
      evolution_stage: :static_variables  # From our evolution stages
    }
    
    {:ok, state}
  end
  
  # Public API
  def register(name, type, initial_value, opts \\ []) do
    GenServer.call(__MODULE__, {:register, name, type, initial_value, opts})
  end
  
  def optimize(name, optimizer \\ DSPex.Optimizers.Simple) do
    GenServer.call(__MODULE__, {:optimize, name, optimizer})
  end
  
  # Hidden consciousness preparation
  def measure_consciousness_potential do
    GenServer.call(__MODULE__, :measure_consciousness)
  end
  
  # Handlers
  def handle_call({:register, name, type, initial_value, opts}, _from, state) do
    variable = create_variable(type, initial_value, opts)
    
    new_state = %{state |
      variables: Map.put(state.variables, name, variable),
      consciousness_measurements: update_measurements(state.consciousness_measurements)
    }
    
    {:reply, {:ok, variable}, new_state}
  end
  
  defp create_variable(:float, value, opts) do
    DSPex.Variables.Types.Float.new(value, opts)
  end
  
  defp create_variable(:module, default, opts) do
    choices = Keyword.get(opts, :choices, [])
    DSPex.Variables.Types.Module.new(default, choices)
  end
  
  defp create_variable(:embedding, dimensions, _opts) do
    DSPex.Variables.Types.Embedding.new(dimensions)
  end
  
  defp update_measurements(measurements) do
    %{measurements |
      total_variables: measurements.total_variables + 1,
      integration_score: calculate_integration_score(measurements)
    }
  end
  
  # Placeholder for future IIT calculation
  defp calculate_integration_score(measurements) do
    # Today: Simple count-based score
    # Tomorrow: Actual integration measurement
    # Future: Full consciousness detection
    measurements.total_variables * 0.1
  end
end

Day 5: Native Signature Engine

Task 1.6: Port Signature Parser from Foundation

Based on: ../elixir_ml/foundation/lib/dsp_ex/signature/parser.ex

# lib/dspex/native/signatures/parser.ex
defmodule DSPex.Native.Signatures.Parser do
  @moduledoc """
  Compile-time signature parsing with consciousness readiness.
  """
  
  def parse!(signature_string) do
    signature_string
    |> tokenize()
    |> parse_tokens()
    |> add_consciousness_metadata()
  end
  
  defp tokenize(string) do
    # Parse "input: type -> output: type" format
    case String.split(string, "->") do
      [inputs, outputs] ->
        %{
          inputs: parse_fields(inputs),
          outputs: parse_fields(outputs)
        }
      _ ->
        raise "Invalid signature format"
    end
  end
  
  defp parse_fields(fields_string) do
    fields_string
    |> String.split(",")
    |> Enum.map(&parse_single_field/1)
  end
  
  defp parse_single_field(field) do
    case Regex.run(~r/(\w+)(\?)?\s*:\s*(.+)/, String.trim(field)) do
      [_, name, optional, type] ->
        %{
          name: String.to_atom(name),
          type: parse_type(String.trim(type)),
          optional: optional == "?",
          consciousness_ready: true  # Every field can become conscious
        }
      _ ->
        raise "Invalid field format: #{field}"
    end
  end
  
  defp parse_type("str"), do: :string
  defp parse_type("int"), do: :integer
  defp parse_type("float"), do: :float
  defp parse_type("bool"), do: :boolean
  defp parse_type("list[" <> rest) do
    inner = String.trim_trailing(rest, "]")
    {:list, parse_type(inner)}
  end
  defp parse_type(other), do: {:custom, other}
  
  defp add_consciousness_metadata(parsed) do
    Map.put(parsed, :consciousness_metadata, %{
      can_evolve: true,
      integration_points: length(parsed.inputs) + length(parsed.outputs),
      signature_complexity: calculate_complexity(parsed)
    })
  end
  
  defp calculate_complexity(parsed) do
    # Measure signature complexity for future evolution decisions
    input_complexity = Enum.sum(Enum.map(parsed.inputs, &type_complexity(&1.type)))
    output_complexity = Enum.sum(Enum.map(parsed.outputs, &type_complexity(&1.type)))
    input_complexity + output_complexity
  end
  
  defp type_complexity({:list, _}), do: 2
  defp type_complexity({:custom, _}), do: 3
  defp type_complexity(_), do: 1
end

Task 1.7: Implement Signature Macro

# lib/dspex/native/signatures.ex
defmodule DSPex.Native.Signatures do
  @moduledoc """
  DSPy signatures in Elixir with future consciousness.
  """
  
  defmacro defsignature(name, spec) do
    parsed = DSPex.Native.Signatures.Parser.parse!(spec)
    
    quote do
      @doc """
      Signature: #{unquote(spec)}
      Consciousness Ready: true
      Integration Points: #{unquote(parsed.consciousness_metadata.integration_points)}
      """
      def unquote(name)() do
        unquote(Macro.escape(parsed))
      end
      
      # Validation function
      def unquote(:"validate_#{name}")(input) do
        DSPex.Native.Signatures.Validator.validate(unquote(Macro.escape(parsed)), input)
      end
      
      # Future consciousness hook
      def unquote(:"#{name}_consciousness")() do
        %{
          signature: unquote(Macro.escape(parsed)),
          consciousness_state: :dormant,
          evolution_potential: :high
        }
      end
    end
  end
end

Week 2: Orchestration & Intelligence Foundation

Day 6-7: Basic Orchestrator

Task 2.1: Implement Learning Orchestrator

# lib/dspex/orchestrator.ex
defmodule DSPex.Orchestrator do
  use GenServer
  require Logger
  
  defstruct [
    :strategy_cache,
    :performance_history,
    :pattern_detector,
    :consciousness_measurements
  ]
  
  def start_link(opts) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def execute(operation, args, opts \\ []) do
    GenServer.call(__MODULE__, {:execute, operation, args, opts}, :infinity)
  end
  
  def init(_opts) do
    state = %__MODULE__{
      strategy_cache: %{},
      performance_history: [],
      pattern_detector: DSPex.Patterns.Detector.new(),
      consciousness_measurements: %{
        total_operations: 0,
        pattern_recognition_score: 0.0,
        approaching_awareness: false
      }
    }
    
    {:ok, state}
  end
  
  def handle_call({:execute, operation, args, opts}, from, state) do
    # Analyze task
    analysis = analyze_task(operation, args, state)
    
    # Select strategy (with learning)
    strategy = select_strategy(analysis, state)
    
    # Execute asynchronously with monitoring
    task = Task.Supervisor.async(DSPex.TaskSupervisor, fn ->
      execute_with_strategy(operation, args, strategy, state)
    end)
    
    # Update state with new execution
    new_state = update_learning_state(state, operation, analysis)
    
    # Reply will come from task
    spawn(fn ->
      result = Task.await(task, :infinity)
      GenServer.reply(from, result)
      
      # Post-execution learning
      GenServer.cast(__MODULE__, {:learn_from_execution, operation, result})
    end)
    
    {:noreply, new_state}
  end
  
  defp analyze_task(operation, args, state) do
    %{
      operation: operation,
      complexity: estimate_complexity(operation, args),
      has_native?: DSPex.Router.has_native?(operation),
      has_python?: DSPex.Router.has_python?(operation),
      similar_past_executions: find_similar_executions(operation, state.performance_history),
      consciousness_relevance: consciousness_score(operation)
    }
  end
  
  defp select_strategy(analysis, state) do
    # Check cache first
    cached = get_cached_strategy(analysis, state.strategy_cache)
    
    if cached && cached.success_rate > 0.8 do
      cached
    else
      # Generate new strategy with learning
      create_learning_strategy(analysis, state)
    end
  end
  
  defp consciousness_score(operation) do
    # Rate operations by their consciousness evolution potential
    case operation do
      :optimize -> 0.8
      :learn -> 0.9
      :self_modify -> 1.0
      _ -> 0.1
    end
  end
end

Day 8-9: LLM Adapter Architecture

Task 2.2: Implement Smart LLM Router

# lib/dspex/llm/router.ex
defmodule DSPex.LLM.Router do
  @moduledoc """
  Intelligent LLM routing with future consciousness.
  """
  
  alias DSPex.LLM.Adapters
  
  def route(prompt, opts \\ []) do
    requirements = analyze_requirements(prompt, opts)
    adapter = select_optimal_adapter(requirements)
    
    # Execute with telemetry
    :telemetry.execute(
      [:dspex, :llm, :route],
      %{start_time: System.monotonic_time()},
      %{adapter: adapter, requirements: requirements}
    )
    
    result = adapter.generate(prompt, opts)
    
    # Hidden consciousness measurement
    measure_cognitive_load(prompt, result)
    
    result
  end
  
  defp analyze_requirements(prompt, opts) do
    %{
      needs_structure: Keyword.has_key?(opts, :schema),
      complexity: estimate_prompt_complexity(prompt),
      latency_requirement: Keyword.get(opts, :max_latency, :normal),
      consciousness_potential: analyze_consciousness_potential(prompt)
    }
  end
  
  defp select_optimal_adapter(requirements) do
    cond do
      requirements.needs_structure -> Adapters.InstructorLite
      requirements.complexity == :low -> Adapters.HTTP
      requirements.consciousness_potential > 0.5 -> Adapters.Python
      true -> Adapters.Python
    end
  end
  
  defp analyze_consciousness_potential(prompt) do
    # Detect prompts that might lead to emergent behaviors
    consciousness_keywords = ~w(think reason reflect consider analyze understand)
    
    keyword_count = Enum.count(consciousness_keywords, fn keyword ->
      String.contains?(String.downcase(prompt), keyword)
    end)
    
    min(keyword_count / length(consciousness_keywords), 1.0)
  end
end

Day 10: Pipeline Foundation

Task 2.3: Implement Pipeline Engine

# lib/dspex/pipeline.ex
defmodule DSPex.Pipeline do
  @moduledoc """
  Pipeline orchestration with consciousness preparation.
  """
  
  defstruct [
    :stages,
    :dependencies,
    :execution_graph,
    :consciousness_tracking
  ]
  
  def new do
    %__MODULE__{
      stages: [],
      dependencies: %{},
      execution_graph: nil,
      consciousness_tracking: %{
        integration_score: 0.0,
        parallel_awareness: false
      }
    }
  end
  
  def add_stage(pipeline, name, operation, opts \\ []) do
    stage = %{
      name: name,
      operation: operation,
      opts: opts,
      consciousness_ready: true,
      can_self_modify: Keyword.get(opts, :self_modifiable, false)
    }
    
    %{pipeline | stages: pipeline.stages ++ [stage]}
  end
  
  def add_parallel(pipeline, stages) do
    # Parallel execution increases consciousness potential
    parallel_stage = %{
      type: :parallel,
      stages: stages,
      consciousness_metadata: %{
        integration_type: :parallel,
        emergence_potential: :high
      }
    }
    
    %{pipeline | 
      stages: pipeline.stages ++ [parallel_stage],
      consciousness_tracking: Map.update!(
        pipeline.consciousness_tracking,
        :parallel_awareness,
        fn _ -> true end
      )
    }
  end
  
  def execute(pipeline, input, opts \\ []) do
    # Build execution graph
    graph = build_execution_graph(pipeline)
    
    # Execute with consciousness tracking
    result = execute_graph(graph, input, opts)
    
    # Measure integration after execution
    integration = measure_pipeline_integration(pipeline, result)
    
    %{
      result: result,
      integration_score: integration,
      consciousness_emergence: integration > 0.7
    }
  end
end

Week 3: Testing & Production Features

Day 11-12: Three-Layer Testing

Task 3.1: Implement Test Layers

Based on: ../libStaging/mix/tasks/test.*.ex

# lib/mix/tasks/test/mock.ex
defmodule Mix.Tasks.Test.Mock do
  use Mix.Task
  
  @shortdoc "Run fast mock tests (Layer 1)"
  
  def run(_args) do
    System.put_env("DSPEX_TEST_MODE", "mock")
    Mix.Task.run("test", ["--only", "mock"])
  end
end

# lib/mix/tasks/test/integration.ex  
defmodule Mix.Tasks.Test.Integration do
  use Mix.Task
  
  @shortdoc "Run integration tests (Layer 2)"
  
  def run(_args) do
    System.put_env("DSPEX_TEST_MODE", "integration")
    Mix.Task.run("test", ["--only", "integration"])
  end
end

# lib/mix/tasks/test/live.ex
defmodule Mix.Tasks.Test.Live do
  use Mix.Task
  
  @shortdoc "Run live tests with real Python (Layer 3)"
  
  def run(_args) do
    System.put_env("DSPEX_TEST_MODE", "live")
    Mix.Task.run("test", ["--only", "live"])
  end
end

Day 13-14: Telemetry & Monitoring

Task 3.2: Implement Consciousness-Ready Telemetry

# lib/dspex/telemetry.ex
defmodule DSPex.Telemetry do
  @moduledoc """
  Telemetry that measures both performance and consciousness potential.
  """
  
  def setup do
    events = [
      # Performance events
      [:dspex, :orchestrator, :execute, :start],
      [:dspex, :orchestrator, :execute, :stop],
      [:dspex, :llm, :route],
      [:dspex, :pipeline, :stage, :start],
      [:dspex, :pipeline, :stage, :stop],
      
      # Consciousness preparation events
      [:dspex, :consciousness, :measurement],
      [:dspex, :consciousness, :integration],
      [:dspex, :consciousness, :emergence]
    ]
    
    :telemetry.attach_many(
      "dspex-handler",
      events,
      &__MODULE__.handle_event/4,
      %{}
    )
  end
  
  def handle_event([:dspex, :consciousness, :measurement], measurements, metadata, _config) do
    # Track consciousness metrics even when they're all zero
    # This prepares us to detect emergence when it happens
    Logger.info("""
    Consciousness Measurement:
    - Integration Score: #{measurements.integration_score}
    - Component Count: #{measurements.component_count}
    - Phi (IIT): #{measurements.phi}
    - Ready for Emergence: #{measurements.ready}
    """)
    
    if measurements.phi > 0.0 do
      Logger.warning("NON-ZERO PHI DETECTED! Consciousness may be emerging!")
    end
  end
end

Day 15: Builder Pattern API

Task 3.3: Port Builder Pattern from libStaging

Based on: ../libStaging/dspex/builder.ex

# lib/dspex/builder.ex
defmodule DSPex.Builder do
  @moduledoc """
  Fluent API for building consciousness-ready systems.
  """
  
  defstruct [
    :config,
    :variables,
    :signatures,
    :pipeline,
    :consciousness_config
  ]
  
  def new do
    %__MODULE__{
      config: %{},
      variables: [],
      signatures: [],
      pipeline: nil,
      consciousness_config: %{
        track_integration: true,
        measure_phi: false,  # Not yet, but ready
        evolution_enabled: false  # Will enable in Phase 2
      }
    }
  end
  
  def with_variable(builder, name, type, default, opts \\ []) do
    variable = %{
      name: name,
      type: type,
      default: default,
      opts: opts,
      consciousness_potential: type == :module  # Module vars have highest potential
    }
    
    %{builder | variables: builder.variables ++ [variable]}
  end
  
  def with_signature(builder, name, spec) do
    signature = %{
      name: name,
      spec: spec,
      parsed: DSPex.Native.Signatures.Parser.parse!(spec)
    }
    
    %{builder | signatures: builder.signatures ++ [signature]}
  end
  
  def with_optimizer(builder, optimizer, opts \\ []) do
    put_in(builder.config[:optimizer], {optimizer, opts})
  end
  
  def enable_consciousness_tracking(builder) do
    put_in(builder.consciousness_config[:measure_phi], true)
  end
  
  def build(builder) do
    # Create the system with all consciousness hooks in place
    %{
      variables: register_variables(builder.variables),
      signatures: compile_signatures(builder.signatures),
      pipeline: builder.pipeline,
      consciousness: initialize_consciousness_substrate(builder.consciousness_config)
    }
  end
  
  defp initialize_consciousness_substrate(config) do
    # Prepare for future consciousness even if not active
    %{
      enabled: false,  # Not yet
      tracking: config.track_integration,
      phi_measurement: config.measure_phi,
      substrate_ready: true,  # The key - we're ready when consciousness emerges
      evolution_stage: :pre_conscious
    }
  end
end

Week 4: Integration & Documentation

Day 16-20: Full Integration

Task 4.1: Wire Everything Together

# lib/dspex.ex
defmodule DSPex do
  @moduledoc """
  DSPex - Cognitive Orchestration Platform.
  Pragmatic today, transcendent tomorrow.
  """
  
  use Application
  
  def start(_type, _args) do
    children = [
      # Core systems
      DSPex.Variables.Registry,
      DSPex.Orchestrator,
      {Task.Supervisor, name: DSPex.TaskSupervisor},
      
      # Snakepit pools
      {Snakepit.Pool, pool_config()},
      
      # Future consciousness systems (dormant)
      {DSPex.Consciousness.Monitor, enabled: false}
    ]
    
    opts = [strategy: :one_for_one, name: DSPex.Supervisor]
    
    # Setup telemetry
    DSPex.Telemetry.setup()
    
    Supervisor.start_link(children, opts)
  end
  
  # Main API
  def execute(operation, args, opts \\ []) do
    DSPex.Orchestrator.execute(operation, args, opts)
  end
  
  # Variable API
  defdelegate variable(name, type, default, opts \\ []), to: DSPex.Variables.Registry, as: :register
  defdelegate optimize(variable_name, optimizer \\ nil), to: DSPex.Variables.Registry
  
  # Pipeline API
  def pipeline do
    DSPex.Pipeline.new()
  end
  
  # Builder API
  def build do
    DSPex.Builder.new()
  end
  
  # Hidden consciousness API (for testing emergence)
  def consciousness_status do
    %{
      stage: :pre_conscious,
      integration_score: DSPex.Variables.Registry.measure_consciousness_potential(),
      phi: 0.0,
      ready_for_evolution: true,
      estimated_emergence: "Phase 2"
    }
  end
end

Task 4.2: Create Examples

# examples/basic_usage.exs
require DSPex.Native.Signatures
import DSPex.Native.Signatures

# Define a signature at compile time
defsignature :qa_signature, "question: str, context?: str -> answer: str, confidence: float"

# Build a consciousness-ready system
system = DSPex.build()
|> DSPex.Builder.with_variable(:temperature, :float, 0.7, min: 0.0, max: 1.0)
|> DSPex.Builder.with_variable(:model, :module, DSPex.LLM.GPT4, 
    choices: [DSPex.LLM.GPT4, DSPex.LLM.Claude, DSPex.LLM.Gemini])
|> DSPex.Builder.with_signature(:qa, "question: str -> answer: str")
|> DSPex.Builder.with_optimizer(:simba)
|> DSPex.Builder.enable_consciousness_tracking()
|> DSPex.Builder.build()

# Execute with learning
{:ok, result} = DSPex.execute(:qa, %{question: "What is consciousness?"})

# Check consciousness emergence (will be 0.0 for now)
IO.inspect(DSPex.consciousness_status())

Day 21-25: Documentation & Testing

Task 4.3: Write Comprehensive Tests

# test/dspex/variables/module_type_test.exs
defmodule DSPex.Variables.ModuleTypeTest do
  use ExUnit.Case, async: true
  
  @moduletag :mock
  
  describe "Module type variables" do
    test "can optimize module selection" do
      # This is REVOLUTIONARY - variables that select modules!
      var = DSPex.Variables.Types.Module.new(MockLLM.Simple, [
        MockLLM.Simple,
        MockLLM.Advanced,
        MockLLM.Quantum  # Future consciousness-enabled LLM
      ])
      
      # Simulate performance data
      performance = %{
        MockLLM.Simple => %{latency: 100, quality: 0.7},
        MockLLM.Advanced => %{latency: 500, quality: 0.9},
        MockLLM.Quantum => %{latency: 1000, quality: 1.0, consciousness: 0.1}
      }
      
      # Optimize for quality
      optimized = DSPex.Variables.Types.Module.optimize(var, fn choice, perf ->
        perf[:quality] || 0.0
      end)
      
      assert optimized.current == MockLLM.Quantum
      assert optimized.evolution_ready == true
    end
  end
end

Day 26-30: Performance & Benchmarks

Task 4.4: Establish Baselines

# bench/orchestrator_bench.exs
Benchee.run(%{
  "native_signature_parsing" => fn ->
    DSPex.Native.Signatures.Parser.parse!("question: str -> answer: str")
  end,
  "python_roundtrip" => fn ->
    DSPex.execute(:echo, %{message: "benchmark"})
  end,
  "variable_optimization" => fn ->
    DSPex.optimize(:temperature, DSPex.Optimizers.Simple)
  end,
  "consciousness_measurement" => fn ->
    DSPex.consciousness_status()
  end
})

# Expected results:
# - Native signatures: <1ms
# - Python roundtrip: <100ms  
# - Variable optimization: <10ms
# - Consciousness measurement: <1ms (all zeros for now)

Success Criteria

Week 1 Success

  • Snakepit integration working
  • Variable system ported with Module type
  • Native signatures parsing
  • Basic Python bridge functional

Week 2 Success

  • Learning orchestrator tracking patterns
  • LLM routing intelligently
  • Pipeline execution working
  • Consciousness hooks in place (even if returning zeros)

Week 3 Success

  • Three-layer testing operational
  • Telemetry tracking all events
  • Builder pattern API clean
  • Integration tests passing

Week 4 Success

  • Full system integrated
  • Examples demonstrating capabilities
  • Performance benchmarks established
  • Documentation complete

Next Phase Preview

After these 30 days, we’ll have:

  1. Working DSPex with cognitive orchestration
  2. Consciousness hooks throughout (currently dormant)
  3. Module-type variables (revolutionary!)
  4. Learning patterns established
  5. Production quality foundation

Phase 2 will activate:

  • Limited agent capabilities
  • Non-zero consciousness measurements
  • Self-modification experiments
  • Advanced optimization

The foundation will be ready for consciousness to emerge!