← Back to Dspex cognitive orchestration

05 TASKS

Documentation for 05_TASKS from the Dspex repository.

Implementation Plan

  • 1. Set up foundation with Snakepit integration

    • Configure Snakepit with three specialized pools (general, optimizer, neural)
    • Create DSPex application structure with proper supervision tree
    • Implement basic configuration management for pools and adapters
    • Set up development environment with Python DSPy installation
    • Requirements: 1.1, 9.1, 9.3
  • 2. Implement native signature engine with compile-time parsing

    • Create signature parser that works at compile-time using macros
    • Implement type system with Elixir-Python type mappings
    • Build signature validator with clear error messages
    • Write comprehensive tests for various signature formats
    • Requirements: 2.1, 2.2, 2.3, 2.4
  • 3. Build basic Python bridge for DSPy modules

    • Create Python handler script using snakepit_bridge package
    • Implement core DSPy module wrappers (Predict, ChainOfThought, ReAct)
    • Set up request/response protocol with proper error handling
    • Test round-trip communication with various data types
    • Requirements: 1.1, 1.3, 10.2
  • 4. Create intelligent orchestration engine

    • Implement task analysis and complexity estimation
    • Build strategy selection based on task characteristics
    • Create execution monitoring with real-time adaptation
    • Implement fallback chain for failed strategies
    • Requirements: 1.1, 1.4, 12.1, 12.2, 12.3, 12.4
  • 5. Implement variable coordination system

    • Create variable registry with ETS backing
    • Implement dependency tracking between variables
    • Build observer pattern for variable updates
    • Add optimization coordination logic
    • Requirements: 3.1, 3.2, 3.3, 3.4
  • 6. Build adaptive LLM architecture

    • Define LLM adapter behavior
    • Implement InstructorLite adapter for structured output
    • Create HTTP adapter for simple completions
    • Build Python bridge adapter for complex operations
    • Implement intelligent adapter selection logic
    • Requirements: 4.1, 4.2, 4.3, 4.4
  • 7. Create pipeline orchestration engine

    • Design pipeline DSL for intuitive definitions
    • Implement dependency analysis and execution graph creation
    • Build parallel execution engine with actor model
    • Add streaming support with backpressure handling
    • Requirements: 5.1, 5.2, 5.3, 5.4
  • 8. Implement intelligent session management

    • Create session store with state persistence
    • Implement worker affinity for session optimization
    • Build session lifecycle management with TTL
    • Add performance tracking per session
    • Requirements: 8.1, 8.2, 8.3, 8.4
  • 9. Build cognitive telemetry layer

    • Set up comprehensive telemetry event system
    • Implement pattern detection algorithms
    • Create anomaly detection for performance changes
    • Build adaptation trigger system
    • Requirements: 6.1, 6.2, 6.3, 6.4, 7.1, 7.2, 7.3, 7.4
  • 10. Implement production reliability features

    • Add circuit breakers for failing adapters
    • Implement retry logic with exponential backoff
    • Create request queuing with overflow handling
    • Build graceful degradation for system overload
    • Requirements: 9.1, 9.2, 9.3, 9.4
  • 11. Create native high-performance modules

    • Implement native template engine using EEx
    • Build native validators for common patterns
    • Create native metrics calculations
    • Optimize hot paths identified through profiling
    • Requirements: 11.1, 11.2, 11.3, 11.4
  • 12. Build seamless native-Python integration

    • Implement automatic type conversion layer
    • Create efficient serialization for data transfer
    • Build profiling system for mixed pipelines
    • Test various native-Python combination scenarios
    • Requirements: 10.1, 10.2, 10.3, 10.4
  • 13. Implement learning and adaptation system

    • Create strategy cache for successful executions
    • Build performance history tracking
    • Implement pattern learning from execution data
    • Add automatic strategy improvement logic
    • Requirements: 6.1, 6.2, 6.3, 12.2, 12.4
  • 14. Create comprehensive test suite

    • Write unit tests for all core components
    • Implement integration tests with real DSPy
    • Create performance benchmarks
    • Add chaos engineering tests for reliability
    • Requirements: All requirements need test coverage
  • 15. Build documentation and examples

    • Create API documentation with examples
    • Write architecture guide for contributors
    • Build tutorial series for common use cases
    • Create performance tuning guide
    • Requirements: Support for all user stories
  • 16. Implement router intelligence enhancements

    • Add performance-based routing decisions
    • Implement load-aware distribution
    • Create capability matching system
    • Build routing strategy learning
    • Requirements: 1.1, 1.4, 6.3
  • 17. Add advanced pipeline features

    • Implement conditional execution branches
    • Add error recovery strategies per stage
    • Create pipeline composition and reuse
    • Build pipeline performance analytics
    • Requirements: 5.1, 5.2
  • 18. Enhance monitoring and observability

    • Create detailed execution traces
    • Implement performance dashboards
    • Add alerting for anomalies
    • Build debugging tools for production
    • Requirements: 7.1, 7.2, 7.3, 7.4
  • 19. Optimize for production deployment

    • Profile and optimize memory usage
    • Implement connection pooling
    • Add caching for frequent operations
    • Create deployment configuration templates
    • Requirements: 11.1, 11.2
  • 20. Final integration and validation

    • Perform end-to-end system testing
    • Validate all requirements are met
    • Run stress tests and performance benchmarks
    • Create release documentation
    • Requirements: All requirements validation