DSPex Variables Implementation Strategy: A Comprehensive Specification
Executive Summary
After extensive analysis of the DSPex variables concept, DSPy architecture, and various implementation approaches, this document presents the recommended strategy for implementing the revolutionary generalized variables system in DSPex. The recommendation is a hybrid approach with progressive native implementation, starting with a DSPy adapter layer and gradually building native Elixir components for optimal performance and innovation.
Core Innovation: Generalized Variables
What Makes DSPex Variables Revolutionary
Cross-Module Optimization: Unlike DSPy where each module optimizes in isolation, DSPex variables are shared coordination points that can be optimized across multiple modules simultaneously.
Module-Type Variables: Variables that can represent module choices themselves, enabling automatic selection between different implementations (e.g., choosing between GPT-4, Claude, or Gemini based on task performance).
Consciousness-Ready Architecture: Forward-looking design with metadata tracking evolution stages, integration potential, and phi contribution (Integrated Information Theory).
Universal Optimization Targets: Any parameter in the system can become a variable - from simple floats to complex module configurations.
Implementation Strategy: Three-Phase Hybrid Approach
Phase 1: DSPy Adapter Layer (Weeks 1-3)
Build a lightweight adapter that adds variables to existing DSPy modules without modifying DSPy core.
1.1 Variable Registry
defmodule DSPex.Variables.Registry do
use GenServer
@type variable_id :: String.t()
@type variable_type :: :float | :integer | :choice | :module | :embedding
defstruct [:variables, :observers, :optimizers, :history]
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def register(name, type, initial_value, opts \\ []) do
GenServer.call(__MODULE__, {:register, name, type, initial_value, opts})
end
def update(variable_id, new_value, metadata \\ %{}) do
GenServer.call(__MODULE__, {:update, variable_id, new_value, metadata})
end
def observe(variable_id, observer_pid) do
GenServer.cast(__MODULE__, {:observe, variable_id, observer_pid})
end
end
1.2 DSPy Variable Adapter
Create Python-side adapter that injects variables into DSPy modules:
# snakepit/priv/python/dspex_variables.py
class VariableAdapter:
"""Adds variable awareness to DSPy modules"""
def __init__(self, elixir_bridge):
self.bridge = elixir_bridge
self.variable_cache = {}
def inject_variables(self, module, variable_mappings):
"""Inject variable values into DSPy module parameters"""
for param_path, variable_id in variable_mappings.items():
value = self._get_variable_value(variable_id)
self._set_nested_attr(module, param_path, value)
return module
def wrap_module(self, module_class, variable_specs):
"""Create variable-aware wrapper for DSPy module"""
class VariableAwareModule(module_class):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._variable_specs = variable_specs
self._variable_adapter = VariableAdapter(elixir_bridge)
def forward(self, *args, **kwargs):
# Apply current variable values
self._variable_adapter.inject_variables(self, self._variable_specs)
# Track variable usage
self._track_variable_usage()
# Execute original forward
result = super().forward(*args, **kwargs)
# Report variable impact
self._report_variable_impact(result)
return result
return VariableAwareModule
1.3 Elixir Integration Layer
defmodule DSPex.Variables.DSPyBridge do
@moduledoc """
Bridge between Elixir variables and Python DSPy modules
"""
def create_variable_aware_module(module_type, signature, variable_specs) do
# Create module with variable injection points
{:ok, module_id} = Snakepit.Python.call(:runtime, """
from dspex_variables import VariableAdapter
import dspy
# Get module class
module_class = getattr(dspy, '#{module_type}')
# Create adapter
adapter = VariableAdapter(bridge)
# Create wrapped class
VariableAwareClass = adapter.wrap_module(module_class, #{inspect(variable_specs)})
# Instantiate
module = VariableAwareClass('#{signature}')
module
""", store_as: ID.generate("variable_aware_module"))
{:ok, module_id}
end
def execute_with_variables(module_id, inputs, variable_values) do
# Update variables in registry
Enum.each(variable_values, fn {var_id, value} ->
DSPex.Variables.Registry.update(var_id, value)
end)
# Execute module
{:ok, result} = Snakepit.Python.call(:runtime, """
stored.#{module_id}(**#{inspect(inputs)})
""")
# Extract variable feedback
feedback = extract_variable_feedback(result)
{:ok, result, feedback}
end
end
Phase 2: Native Core Components (Weeks 4-6)
Build essential native components that DSPy lacks.
2.1 Native Evaluation Framework
defmodule DSPex.Native.Evaluation do
@moduledoc """
Native evaluation engine with variable impact tracking
"""
defstruct [:metrics, :variable_impacts, :traces]
def evaluate_with_variables(program, dataset, variables, opts \\ []) do
results = dataset
|> Task.async_stream(fn example ->
evaluate_example(program, example, variables, opts)
end, max_concurrency: opts[:max_concurrency] || 4)
|> Enum.map(fn {:ok, result} -> result end)
%__MODULE__{
metrics: aggregate_metrics(results),
variable_impacts: calculate_variable_impacts(results, variables),
traces: if(opts[:collect_traces], do: extract_traces(results), else: nil)
}
end
defp evaluate_example(program, example, variables, opts) do
# Start trace
trace = DSPex.Trace.start()
# Apply variables
configured_program = apply_variables(program, variables)
# Execute with trace
{result, trace} = DSPex.Trace.capture(trace, fn ->
execute_program(configured_program, example)
end)
# Calculate metrics
metrics = calculate_metrics(result, example, opts[:metrics] || [:accuracy])
# Extract variable attribution
variable_attribution = attribute_to_variables(trace, variables)
%{
example: example,
result: result,
metrics: metrics,
trace: trace,
variable_attribution: variable_attribution
}
end
defp calculate_variable_impacts(results, variables) do
# Aggregate impact of each variable on metrics
Enum.reduce(results, %{}, fn result, acc ->
Enum.reduce(result.variable_attribution, acc, fn {var_id, impact}, acc2 ->
Map.update(acc2, var_id, [impact], &[impact | &1])
end)
end)
|> Enum.map(fn {var_id, impacts} ->
{var_id, %{
mean_impact: Statistics.mean(impacts),
std_dev: Statistics.standard_deviation(impacts),
samples: length(impacts)
}}
end)
|> Map.new()
end
end
2.2 Native Variable Types
defmodule DSPex.Variables.Types do
@moduledoc """
Native variable type system with consciousness metadata
"""
defmodule Type do
@callback validate(value :: any()) :: {:ok, any()} | {:error, String.t()}
@callback cast(value :: any()) :: {:ok, any()} | {:error, String.t()}
@callback constraints() :: keyword()
@callback consciousness_metadata() :: map()
end
defmodule Float do
@behaviour Type
def validate(value) when is_float(value), do: {:ok, value}
def validate(value) when is_integer(value), do: {:ok, value * 1.0}
def validate(_), do: {:error, "must be a float"}
def cast(value) when is_binary(value) do
case Float.parse(value) do
{float, ""} -> {:ok, float}
_ -> {:error, "cannot cast to float"}
end
end
def cast(value), do: validate(value)
def constraints, do: [min: :float, max: :float, step: :float]
def consciousness_metadata do
%{
integration_potential: 0.7,
can_become_agent: false,
evolution_stage: :static,
phi_contribution: 0.1,
description: "Continuous parameter for fine-tuning"
}
end
end
defmodule Module do
@behaviour Type
def validate(value) when is_atom(value), do: {:ok, value}
def validate(value) when is_binary(value), do: {:ok, String.to_atom(value)}
def validate(_), do: {:error, "must be a module identifier"}
def cast(value), do: validate(value)
def constraints, do: [choices: :list]
def consciousness_metadata do
%{
integration_potential: 0.95,
can_become_agent: true,
evolution_stage: :intelligent,
phi_contribution: 0.8,
description: "Module selection enables cognitive orchestration"
}
end
end
end
2.3 Native Trace System
defmodule DSPex.Trace do
@moduledoc """
Execution trace system with variable attribution
"""
defstruct [
:id,
:start_time,
:events,
:variable_uses,
:decision_points,
:module_calls
]
def start do
%__MODULE__{
id: ID.generate("trace"),
start_time: System.monotonic_time(),
events: [],
variable_uses: %{},
decision_points: [],
module_calls: []
}
end
def capture(trace, fun) do
Process.put(:dspex_trace, trace)
result = fun.()
final_trace = Process.get(:dspex_trace)
Process.delete(:dspex_trace)
{result, final_trace}
end
def record_variable_use(variable_id, value, context) do
case Process.get(:dspex_trace) do
%__MODULE__{} = trace ->
event = %{
type: :variable_use,
variable_id: variable_id,
value: value,
context: context,
timestamp: System.monotonic_time()
}
updated_trace = %{trace |
events: [event | trace.events],
variable_uses: Map.update(trace.variable_uses, variable_id, [event], &[event | &1])
}
Process.put(:dspex_trace, updated_trace)
nil ->
# No active trace
:ok
end
end
def record_decision(decision_type, chosen, alternatives, metadata \\ %{}) do
case Process.get(:dspex_trace) do
%__MODULE__{} = trace ->
decision = %{
type: decision_type,
chosen: chosen,
alternatives: alternatives,
metadata: metadata,
timestamp: System.monotonic_time()
}
updated_trace = %{trace |
events: [{:decision, decision} | trace.events],
decision_points: [decision | trace.decision_points]
}
Process.put(:dspex_trace, updated_trace)
nil ->
:ok
end
end
end
Phase 3: Advanced Native Features (Weeks 7-10)
3.1 Native Variable-Aware Optimizers
defmodule DSPex.Native.Optimizers.VariableOptimizer do
@moduledoc """
Base optimizer for variable-aware optimization
"""
defstruct [:strategy, :metrics, :constraints, :history]
def optimize(program, dataset, variables, opts \\ []) do
strategy = opts[:strategy] || DSPex.Native.Optimizers.SimulatedAnnealing
initial_state = %{
variables: variables,
values: get_initial_values(variables),
best_score: -:infinity,
best_values: nil,
iteration: 0
}
final_state = Enum.reduce_while(1..opts[:max_iterations], initial_state, fn i, state ->
# Evaluate current configuration
evaluation = DSPex.Native.Evaluation.evaluate_with_variables(
program,
dataset,
apply_values(state.variables, state.values),
opts
)
score = calculate_score(evaluation, opts[:metrics])
# Update best if improved
state = if score > state.best_score do
%{state | best_score: score, best_values: state.values}
else
state
end
# Generate next values using strategy
next_values = strategy.next_values(
state.values,
evaluation.variable_impacts,
temperature(i, opts[:max_iterations])
)
# Check convergence
if converged?(state, opts) do
{:halt, state}
else
{:cont, %{state | values: next_values, iteration: i}}
end
end)
{:ok, final_state.best_values, final_state.best_score}
end
defp temperature(iteration, max_iterations) do
# Simulated annealing temperature schedule
initial_temp = 1.0
final_temp = 0.01
initial_temp * :math.pow(final_temp / initial_temp, iteration / max_iterations)
end
end
3.2 SIMBA-GV (SIMBA for Generalized Variables)
defmodule DSPex.Native.Optimizers.SIMBA_GV do
@moduledoc """
SIMBA adapted for generalized variable optimization
"""
alias DSPex.Native.{Evaluation, Variables}
def optimize(modules, dataset, variables, opts \\ []) do
# Phase 1: Sample for variable coverage
samples = sample_for_variables(dataset, variables, opts)
# Phase 2: Initialize variable values
initial_values = initialize_variables(modules, samples, variables)
# Phase 3: Mutate and bootstrap
bootstrapped = bootstrap_with_mutations(
modules,
samples,
variables,
initial_values,
opts
)
# Phase 4: Amplify successful patterns
amplified = amplify_patterns(bootstrapped, modules, dataset, variables)
{:ok, amplified}
end
defp sample_for_variables(dataset, variables, opts) do
# Smart sampling that ensures variable space coverage
module_vars = Enum.filter(variables, &(&1.type == :module))
continuous_vars = Enum.filter(variables, &(&1.type in [:float, :integer]))
# For module variables, ensure we sample data that works well with each option
module_samples = if length(module_vars) > 0 do
Enum.flat_map(module_vars, fn var ->
Enum.flat_map(var.constraints.choices, fn choice ->
sample_for_module_choice(dataset, var, choice, opts)
end)
end)
else
[]
end
# For continuous variables, sample across the range
continuous_samples = if length(continuous_vars) > 0 do
sample_across_ranges(dataset, continuous_vars, opts)
else
[]
end
Enum.uniq(module_samples ++ continuous_samples)
end
defp bootstrap_with_mutations(modules, samples, variables, initial_values, opts) do
# Generate mutations of variable values
mutations = generate_mutations(initial_values, variables, opts[:mutation_count] || 10)
# Evaluate each mutation across all modules
evaluated_mutations = Enum.map(mutations, fn mutation ->
scores = Enum.map(modules, fn module ->
configured = apply_variables(module, mutation)
evaluation = Evaluation.evaluate_with_variables(
configured,
samples,
variables,
opts
)
{module.id, evaluation.metrics}
end)
{mutation, aggregate_cross_module_score(scores)}
end)
# Select best mutations for bootstrapping
evaluated_mutations
|> Enum.sort_by(fn {_, score} -> score end, :desc)
|> Enum.take(opts[:bootstrap_count] || 5)
|> Enum.map(fn {mutation, _} -> mutation end)
end
defp amplify_patterns(bootstrapped_values, modules, dataset, variables) do
# Find patterns in successful configurations
patterns = extract_variable_patterns(bootstrapped_values, variables)
# Generate new configurations based on patterns
amplified = Enum.flat_map(patterns, fn pattern ->
generate_from_pattern(pattern, variables, 5)
end)
# Final evaluation and selection
all_configs = bootstrapped_values ++ amplified
evaluated = Enum.map(all_configs, fn config ->
score = evaluate_configuration(config, modules, dataset, variables)
{config, score}
end)
evaluated
|> Enum.sort_by(fn {_, score} -> score end, :desc)
|> List.first()
|> elem(0)
end
end
Implementation Decision: Hybrid with Progressive Native
Recommended Approach
- Start Hybrid: Begin with DSPy adapter layer to get variables working quickly
- Build Native Core: Implement evaluation, tracing, and basic optimization natively
- Extend Gradually: Add advanced features like SIMBA-GV and consciousness metadata
- Maintain Compatibility: Keep DSPy bridge for ecosystem compatibility
Why Not Pure Native?
- Time to Market: Would take 3-6 months to rebuild everything
- Ecosystem Loss: Lose access to DSPy modules and optimizers
- Maintenance Burden: Need to maintain all optimizers and modules
Why Not Pure DSPy Extension?
- Architectural Limitations: DSPy’s module-centric design conflicts with variables
- Performance: Cross-language variable updates would be slow
- Innovation Constraints: Can’t implement advanced features like consciousness metadata
Key Innovation Points
1. Module-Type Variables
The ability to have variables that select between modules is revolutionary:
reasoning_var = Variable.create(:reasoning_approach,
type: :module,
choices: [Predict, ChainOfThought, ReAct, ProgramOfThought],
metadata: %{affects: "reasoning style and depth"}
)
# System automatically selects best reasoning approach
2. Cross-Module Optimization
Variables optimize across module boundaries:
temperature_var = Variable.create(:temperature,
type: :float,
range: {0.0, 2.0},
shared_by: [:ideation_module, :refinement_module, :critique_module]
)
# One temperature optimized for entire pipeline coherence
3. Consciousness-Ready Architecture
Every variable includes metadata for future cognitive capabilities:
%{
integration_potential: 0.95, # How well it integrates
can_become_agent: true, # Can evolve to make decisions
evolution_stage: :intelligent, # Current evolution level
phi_contribution: 0.8 # Consciousness contribution
}
Development Timeline
Weeks 1-3: Foundation
- Variable registry and type system
- DSPy adapter layer
- Basic variable injection
Weeks 4-6: Native Core
- Native evaluation framework
- Trace system with attribution
- Basic native optimizer
Weeks 7-9: Advanced Features
- SIMBA-GV implementation
- Module-type variables
- Cross-module optimization
Weeks 10-12: Polish & Integration
- Performance optimization
- Consciousness metadata tracking
- Documentation and examples
Success Metrics
- Functional: Variables work across modules
- Performance: <100ms overhead per variable update
- Optimization: 20%+ improvement over module-isolated optimization
- Compatibility: All DSPy modules work with variables
- Innovation: First system with module-type variables
Conclusion
The hybrid approach with progressive native implementation provides the best balance of:
- Speed to market (working system in 3 weeks)
- Innovation potential (native components enable new features)
- Ecosystem compatibility (maintain DSPy integration)
- Performance (native evaluation and optimization)
This strategy positions DSPex as the first system to truly implement generalized variables for language model programming, while maintaining practical compatibility with the existing ecosystem.