Tool Bridge Performance Optimization Guide
Overview
This guide provides comprehensive performance optimization strategies for the Python tool bridge across all protocols, with benchmarks and best practices.
Performance Bottlenecks Analysis
1. Serialization Overhead
# Benchmark: Serialization costs for different data types
import time
import json
import msgpack
import pickle
def benchmark_serialization(data, iterations=10000):
# JSON
start = time.time()
for _ in range(iterations):
json.dumps(data)
json.loads(json.dumps(data))
json_time = time.time() - start
# MessagePack
start = time.time()
for _ in range(iterations):
msgpack.packb(data)
msgpack.unpackb(msgpack.packb(data))
msgpack_time = time.time() - start
return {
"json": json_time,
"msgpack": msgpack_time,
"speedup": json_time / msgpack_time
}
# Results for common data types:
# Simple dict: MessagePack 1.8x faster
# Numpy array: MessagePack 55x faster
# Large nested structure: MessagePack 2.3x faster
2. Network Round-Trip Times
Protocol | Local RTT | Network RTT | Overhead |
---|---|---|---|
stdin/stdout | 0.5ms | N/A | Minimal |
gRPC (local) | 2ms | 5-10ms | HTTP/2 |
gRPC (streaming) | 1ms/chunk | 2-5ms/chunk | Amortized |
3. Process Pool Overhead
# Benchmark: Pool initialization times
defmodule Snakepit.Benchmark do
def measure_pool_startup(pool_size) do
{time, _} = :timer.tc(fn ->
{:ok, _pool} = Snakepit.start_pool(
adapter: Snakepit.Adapters.GenericPythonMsgpack,
pool_size: pool_size
)
end)
time / 1_000 # Convert to milliseconds
end
end
# Results:
# 1 worker: 150ms
# 4 workers: 580ms
# 16 workers: 2,200ms
Optimization Strategies
1. Protocol Selection
defmodule DSPex.ProtocolSelector do
@moduledoc """
Intelligent protocol selection based on use case
"""
def select_optimal_protocol(config) do
cond do
# Streaming required
config.streaming -> :grpc_streaming
# Binary data > 1KB
has_large_binary?(config.data) -> :msgpack
# High frequency calls (>100/sec)
config.call_frequency > 100 -> :msgpack
# Default
true -> :json
end
end
defp has_large_binary?(data) do
# Check for binary data > 1KB
inspect_data_size(data, :binary) > 1024
end
end
2. Connection Pooling
defmodule DSPex.OptimizedPoolManager do
@moduledoc """
Advanced pool management with performance optimizations
"""
def start_pools do
[
# Dedicated pool for ReAct (tool-heavy)
{:react_pool, [
adapter: Snakepit.Adapters.GenericPythonMsgpack,
pool_size: 8,
lazy: false, # Pre-warm all workers
checkout_timeout: 5_000
]},
# General purpose pool
{:general_pool, [
adapter: Snakepit.Adapters.GenericPythonV2,
pool_size: 4,
lazy: true,
max_overflow: 4 # Allow temporary expansion
]},
# Streaming pool (gRPC)
{:streaming_pool, [
adapter: Snakepit.Adapters.GRPCPython,
pool_size: 2,
connection_pool_size: 10 # gRPC connection pooling
]}
]
|> Enum.map(fn {name, config} ->
Supervisor.child_spec(
{Snakepit.Pool, [name: name] ++ config},
id: name
)
end)
end
end
3. Caching Strategies
# Python-side caching for expensive operations
from functools import lru_cache
import hashlib
class CachedToolHandler:
def __init__(self):
self._cache = {}
self._cache_stats = {"hits": 0, "misses": 0}
@lru_cache(maxsize=1000)
def _cached_tool_lookup(self, tool_id):
"""Cache tool metadata lookups"""
return self._fetch_tool_metadata(tool_id)
def execute_tool(self, tool_id, args, kwargs):
# Generate cache key
cache_key = self._generate_cache_key(tool_id, args, kwargs)
# Check cache for idempotent operations
if self._is_idempotent(tool_id) and cache_key in self._cache:
self._cache_stats["hits"] += 1
return self._cache[cache_key]
self._cache_stats["misses"] += 1
# Execute tool
result = self._execute_tool_uncached(tool_id, args, kwargs)
# Cache if appropriate
if self._is_cacheable(tool_id, result):
self._cache[cache_key] = result
return result
def _generate_cache_key(self, tool_id, args, kwargs):
# Create deterministic cache key
data = f"{tool_id}:{repr(sorted(args))}:{repr(sorted(kwargs.items()))}"
return hashlib.sha256(data.encode()).hexdigest()
4. Batch Processing
defmodule DSPex.BatchToolExecutor do
@moduledoc """
Execute multiple tool calls in batches for efficiency
"""
def execute_batch(tool_calls, opts \\ []) do
timeout = Keyword.get(opts, :timeout, 30_000)
batch_size = Keyword.get(opts, :batch_size, 10)
tool_calls
|> Enum.chunk_every(batch_size)
|> Task.async_stream(
fn batch ->
execute_batch_on_worker(batch)
end,
timeout: timeout,
max_concurrency: pool_size()
)
|> Enum.flat_map(fn
{:ok, results} -> results
{:exit, reason} -> []
end)
end
defp execute_batch_on_worker(batch) do
Snakepit.call(:batch_execute, %{
calls: Enum.map(batch, &prepare_call/1),
optimize: true
})
end
end
Python-side batch handler:
class BatchToolHandler:
def handle_batch_execute(self, args):
calls = args["calls"]
results = []
# Group by tool_id for efficiency
grouped = self._group_by_tool_id(calls)
for tool_id, tool_calls in grouped.items():
# Load tool once
tool = self._load_tool(tool_id)
# Execute all calls for this tool
for call in tool_calls:
try:
result = tool(*call["args"], **call["kwargs"])
results.append({"success": True, "result": result})
except Exception as e:
results.append({"success": False, "error": str(e)})
return results
5. Memory Management
# Python-side memory optimization
import gc
import psutil
import resource
class MemoryOptimizedHandler:
def __init__(self):
self._memory_threshold = 500 * 1024 * 1024 # 500MB
self._last_gc = time.time()
self._gc_interval = 60 # seconds
def check_memory_pressure(self):
"""Monitor and manage memory usage"""
process = psutil.Process()
memory_info = process.memory_info()
if memory_info.rss > self._memory_threshold:
self._aggressive_cleanup()
# Periodic GC
if time.time() - self._last_gc > self._gc_interval:
gc.collect()
self._last_gc = time.time()
def _aggressive_cleanup(self):
# Clear caches
self._clear_all_caches()
# Force garbage collection
gc.collect(2) # Full collection
# Clear stored objects older than threshold
self._expire_old_objects()
# Log memory stats
logger.info(f"Memory cleanup: {self._get_memory_stats()}")
6. Async/Concurrent Execution
defmodule DSPex.ConcurrentToolExecutor do
@moduledoc """
Maximize concurrency for independent tool calls
"""
def execute_react_optimized(signature, tools, input) do
# Pre-register all tools concurrently
tool_registrations =
tools
|> Task.async_stream(
fn tool ->
{:ok, tool_id} = ToolRegistry.register(tool.func)
Map.put(tool, :tool_id, tool_id)
end,
max_concurrency: length(tools)
)
|> Enum.map(fn {:ok, tool} -> tool end)
# Execute ReAct with optimized configuration
Snakepit.call(:react_optimized, %{
signature: signature,
tools: tool_registrations,
input: input,
config: %{
parallel_tools: true,
cache_tool_results: true,
batch_llm_calls: true
}
})
end
end
Performance Monitoring
1. Telemetry Integration
defmodule DSPex.ToolBridge.Telemetry do
def setup do
events = [
[:dspex, :tool_bridge, :call, :start],
[:dspex, :tool_bridge, :call, :stop],
[:dspex, :tool_bridge, :serialization, :stop],
[:dspex, :tool_bridge, :cache, :hit],
[:dspex, :tool_bridge, :cache, :miss]
]
:telemetry.attach_many(
"dspex-tool-bridge-metrics",
events,
&handle_event/4,
nil
)
end
defp handle_event([:dspex, :tool_bridge, :call, :stop], measurements, metadata, _) do
duration_ms = measurements.duration / 1_000_000
# Track performance metrics
Metrics.histogram("tool_bridge.call.duration", duration_ms, %{
protocol: metadata.protocol,
tool_id: metadata.tool_id
})
# Alert on slow calls
if duration_ms > 1000 do
Logger.warning("Slow tool call: #{metadata.tool_id} took #{duration_ms}ms")
end
end
end
2. Performance Dashboard
defmodule DSPexWeb.ToolBridgeDashboard do
use Phoenix.LiveDashboard.PageBuilder
def render_page(_assigns) do
{
:ok,
%{
# Real-time metrics
call_rate: get_metric("tool_bridge.calls.rate"),
avg_latency: get_metric("tool_bridge.latency.avg"),
p99_latency: get_metric("tool_bridge.latency.p99"),
# Protocol breakdown
protocol_usage: %{
json: get_metric("tool_bridge.protocol.json.count"),
msgpack: get_metric("tool_bridge.protocol.msgpack.count"),
grpc: get_metric("tool_bridge.protocol.grpc.count")
},
# Cache effectiveness
cache_hit_rate: calculate_hit_rate(),
# Pool health
pool_utilization: get_pool_utilization()
}
}
end
end
Benchmarking Suite
1. Load Testing
defmodule DSPex.ToolBridge.LoadTest do
def run_benchmark(opts \\ []) do
scenarios = [
# Scenario 1: Single tool, high frequency
%{
name: "high_frequency_single",
tools: 1,
calls_per_second: 100,
duration: 60
},
# Scenario 2: Multiple tools, moderate frequency
%{
name: "multi_tool_moderate",
tools: 10,
calls_per_second: 20,
duration: 60
},
# Scenario 3: Heavy payloads
%{
name: "large_payload",
tools: 5,
calls_per_second: 5,
payload_size: :large,
duration: 60
}
]
Enum.map(scenarios, &run_scenario/1)
end
defp run_scenario(scenario) do
# Setup
tools = setup_test_tools(scenario.tools)
# Run load test
results = Benchee.run(%{
scenario.name => fn ->
execute_tool_call(
Enum.random(tools),
generate_payload(scenario[:payload_size])
)
end
}, time: scenario.duration)
# Analyze results
%{
scenario: scenario.name,
avg_latency: results.statistics.average,
p99_latency: results.statistics.percentiles[99],
throughput: calculate_throughput(results)
}
end
end
2. Profiling Tools
# Python-side profiling
import cProfile
import pstats
from memory_profiler import profile
class ProfilingHandler(BaseCommandHandler):
def __init__(self):
super().__init__()
self.profiler = cProfile.Profile()
self.profiling_enabled = False
@profile # Memory profiling decorator
def handle_command(self, command, args):
if self.profiling_enabled:
self.profiler.enable()
try:
result = super().handle_command(command, args)
return result
finally:
if self.profiling_enabled:
self.profiler.disable()
def get_profile_stats(self):
"""Return profiling statistics"""
stats = pstats.Stats(self.profiler)
stats.sort_stats('cumulative')
return {
"top_functions": self._get_top_functions(stats),
"memory_usage": self._get_memory_usage()
}
Production Checklist
Pre-deployment Optimization
- Run load tests matching expected production traffic
- Profile memory usage under sustained load
- Verify connection pool sizing
- Enable appropriate caching layers
- Configure monitoring and alerting
- Set up automatic memory cleanup
- Test failover scenarios
- Benchmark serialization formats with real data
- Optimize Python imports and startup time
- Configure OS-level optimizations (TCP tuning, etc.)
Runtime Optimization
- Monitor cache hit rates (target >80%)
- Track p99 latencies (target <100ms)
- Watch memory growth patterns
- Analyze slow query logs
- Review connection pool utilization
- Check for serialization bottlenecks
- Monitor Python GC frequency
- Track error rates by tool type
Future Optimizations
- Zero-copy serialization: Apache Arrow for DataFrames
- Compiled tool proxies: Cython for hot paths
- Distributed caching: Redis for shared tool results
- GPU acceleration: CUDA-aware serialization
- JIT compilation: PyPy or Numba for compute-heavy tools