← Back to Tool bridge

PERFORMANCE OPTIMIZATION GUIDE

Documentation for PERFORMANCE_OPTIMIZATION_GUIDE from the Dspex repository.

Tool Bridge Performance Optimization Guide

Overview

This guide provides comprehensive performance optimization strategies for the Python tool bridge across all protocols, with benchmarks and best practices.

Performance Bottlenecks Analysis

1. Serialization Overhead

# Benchmark: Serialization costs for different data types
import time
import json
import msgpack
import pickle

def benchmark_serialization(data, iterations=10000):
    # JSON
    start = time.time()
    for _ in range(iterations):
        json.dumps(data)
        json.loads(json.dumps(data))
    json_time = time.time() - start
    
    # MessagePack
    start = time.time()
    for _ in range(iterations):
        msgpack.packb(data)
        msgpack.unpackb(msgpack.packb(data))
    msgpack_time = time.time() - start
    
    return {
        "json": json_time,
        "msgpack": msgpack_time,
        "speedup": json_time / msgpack_time
    }

# Results for common data types:
# Simple dict: MessagePack 1.8x faster
# Numpy array: MessagePack 55x faster
# Large nested structure: MessagePack 2.3x faster

2. Network Round-Trip Times

ProtocolLocal RTTNetwork RTTOverhead
stdin/stdout0.5msN/AMinimal
gRPC (local)2ms5-10msHTTP/2
gRPC (streaming)1ms/chunk2-5ms/chunkAmortized

3. Process Pool Overhead

# Benchmark: Pool initialization times
defmodule Snakepit.Benchmark do
  def measure_pool_startup(pool_size) do
    {time, _} = :timer.tc(fn ->
      {:ok, _pool} = Snakepit.start_pool(
        adapter: Snakepit.Adapters.GenericPythonMsgpack,
        pool_size: pool_size
      )
    end)
    
    time / 1_000  # Convert to milliseconds
  end
end

# Results:
# 1 worker: 150ms
# 4 workers: 580ms
# 16 workers: 2,200ms

Optimization Strategies

1. Protocol Selection

defmodule DSPex.ProtocolSelector do
  @moduledoc """
  Intelligent protocol selection based on use case
  """
  
  def select_optimal_protocol(config) do
    cond do
      # Streaming required
      config.streaming -> :grpc_streaming
      
      # Binary data > 1KB
      has_large_binary?(config.data) -> :msgpack
      
      # High frequency calls (>100/sec)
      config.call_frequency > 100 -> :msgpack
      
      # Default
      true -> :json
    end
  end
  
  defp has_large_binary?(data) do
    # Check for binary data > 1KB
    inspect_data_size(data, :binary) > 1024
  end
end

2. Connection Pooling

defmodule DSPex.OptimizedPoolManager do
  @moduledoc """
  Advanced pool management with performance optimizations
  """
  
  def start_pools do
    [
      # Dedicated pool for ReAct (tool-heavy)
      {:react_pool, [
        adapter: Snakepit.Adapters.GenericPythonMsgpack,
        pool_size: 8,
        lazy: false,  # Pre-warm all workers
        checkout_timeout: 5_000
      ]},
      
      # General purpose pool
      {:general_pool, [
        adapter: Snakepit.Adapters.GenericPythonV2,
        pool_size: 4,
        lazy: true,
        max_overflow: 4  # Allow temporary expansion
      ]},
      
      # Streaming pool (gRPC)
      {:streaming_pool, [
        adapter: Snakepit.Adapters.GRPCPython,
        pool_size: 2,
        connection_pool_size: 10  # gRPC connection pooling
      ]}
    ]
    |> Enum.map(fn {name, config} ->
      Supervisor.child_spec(
        {Snakepit.Pool, [name: name] ++ config},
        id: name
      )
    end)
  end
end

3. Caching Strategies

# Python-side caching for expensive operations
from functools import lru_cache
import hashlib

class CachedToolHandler:
    def __init__(self):
        self._cache = {}
        self._cache_stats = {"hits": 0, "misses": 0}
        
    @lru_cache(maxsize=1000)
    def _cached_tool_lookup(self, tool_id):
        """Cache tool metadata lookups"""
        return self._fetch_tool_metadata(tool_id)
        
    def execute_tool(self, tool_id, args, kwargs):
        # Generate cache key
        cache_key = self._generate_cache_key(tool_id, args, kwargs)
        
        # Check cache for idempotent operations
        if self._is_idempotent(tool_id) and cache_key in self._cache:
            self._cache_stats["hits"] += 1
            return self._cache[cache_key]
            
        self._cache_stats["misses"] += 1
        
        # Execute tool
        result = self._execute_tool_uncached(tool_id, args, kwargs)
        
        # Cache if appropriate
        if self._is_cacheable(tool_id, result):
            self._cache[cache_key] = result
            
        return result
        
    def _generate_cache_key(self, tool_id, args, kwargs):
        # Create deterministic cache key
        data = f"{tool_id}:{repr(sorted(args))}:{repr(sorted(kwargs.items()))}"
        return hashlib.sha256(data.encode()).hexdigest()

4. Batch Processing

defmodule DSPex.BatchToolExecutor do
  @moduledoc """
  Execute multiple tool calls in batches for efficiency
  """
  
  def execute_batch(tool_calls, opts \\ []) do
    timeout = Keyword.get(opts, :timeout, 30_000)
    batch_size = Keyword.get(opts, :batch_size, 10)
    
    tool_calls
    |> Enum.chunk_every(batch_size)
    |> Task.async_stream(
      fn batch ->
        execute_batch_on_worker(batch)
      end,
      timeout: timeout,
      max_concurrency: pool_size()
    )
    |> Enum.flat_map(fn
      {:ok, results} -> results
      {:exit, reason} -> []
    end)
  end
  
  defp execute_batch_on_worker(batch) do
    Snakepit.call(:batch_execute, %{
      calls: Enum.map(batch, &prepare_call/1),
      optimize: true
    })
  end
end

Python-side batch handler:

class BatchToolHandler:
    def handle_batch_execute(self, args):
        calls = args["calls"]
        results = []
        
        # Group by tool_id for efficiency
        grouped = self._group_by_tool_id(calls)
        
        for tool_id, tool_calls in grouped.items():
            # Load tool once
            tool = self._load_tool(tool_id)
            
            # Execute all calls for this tool
            for call in tool_calls:
                try:
                    result = tool(*call["args"], **call["kwargs"])
                    results.append({"success": True, "result": result})
                except Exception as e:
                    results.append({"success": False, "error": str(e)})
                    
        return results

5. Memory Management

# Python-side memory optimization
import gc
import psutil
import resource

class MemoryOptimizedHandler:
    def __init__(self):
        self._memory_threshold = 500 * 1024 * 1024  # 500MB
        self._last_gc = time.time()
        self._gc_interval = 60  # seconds
        
    def check_memory_pressure(self):
        """Monitor and manage memory usage"""
        process = psutil.Process()
        memory_info = process.memory_info()
        
        if memory_info.rss > self._memory_threshold:
            self._aggressive_cleanup()
            
        # Periodic GC
        if time.time() - self._last_gc > self._gc_interval:
            gc.collect()
            self._last_gc = time.time()
            
    def _aggressive_cleanup(self):
        # Clear caches
        self._clear_all_caches()
        
        # Force garbage collection
        gc.collect(2)  # Full collection
        
        # Clear stored objects older than threshold
        self._expire_old_objects()
        
        # Log memory stats
        logger.info(f"Memory cleanup: {self._get_memory_stats()}")

6. Async/Concurrent Execution

defmodule DSPex.ConcurrentToolExecutor do
  @moduledoc """
  Maximize concurrency for independent tool calls
  """
  
  def execute_react_optimized(signature, tools, input) do
    # Pre-register all tools concurrently
    tool_registrations = 
      tools
      |> Task.async_stream(
        fn tool ->
          {:ok, tool_id} = ToolRegistry.register(tool.func)
          Map.put(tool, :tool_id, tool_id)
        end,
        max_concurrency: length(tools)
      )
      |> Enum.map(fn {:ok, tool} -> tool end)
      
    # Execute ReAct with optimized configuration
    Snakepit.call(:react_optimized, %{
      signature: signature,
      tools: tool_registrations,
      input: input,
      config: %{
        parallel_tools: true,
        cache_tool_results: true,
        batch_llm_calls: true
      }
    })
  end
end

Performance Monitoring

1. Telemetry Integration

defmodule DSPex.ToolBridge.Telemetry do
  def setup do
    events = [
      [:dspex, :tool_bridge, :call, :start],
      [:dspex, :tool_bridge, :call, :stop],
      [:dspex, :tool_bridge, :serialization, :stop],
      [:dspex, :tool_bridge, :cache, :hit],
      [:dspex, :tool_bridge, :cache, :miss]
    ]
    
    :telemetry.attach_many(
      "dspex-tool-bridge-metrics",
      events,
      &handle_event/4,
      nil
    )
  end
  
  defp handle_event([:dspex, :tool_bridge, :call, :stop], measurements, metadata, _) do
    duration_ms = measurements.duration / 1_000_000
    
    # Track performance metrics
    Metrics.histogram("tool_bridge.call.duration", duration_ms, %{
      protocol: metadata.protocol,
      tool_id: metadata.tool_id
    })
    
    # Alert on slow calls
    if duration_ms > 1000 do
      Logger.warning("Slow tool call: #{metadata.tool_id} took #{duration_ms}ms")
    end
  end
end

2. Performance Dashboard

defmodule DSPexWeb.ToolBridgeDashboard do
  use Phoenix.LiveDashboard.PageBuilder
  
  def render_page(_assigns) do
    {
      :ok,
      %{
        # Real-time metrics
        call_rate: get_metric("tool_bridge.calls.rate"),
        avg_latency: get_metric("tool_bridge.latency.avg"),
        p99_latency: get_metric("tool_bridge.latency.p99"),
        
        # Protocol breakdown
        protocol_usage: %{
          json: get_metric("tool_bridge.protocol.json.count"),
          msgpack: get_metric("tool_bridge.protocol.msgpack.count"),
          grpc: get_metric("tool_bridge.protocol.grpc.count")
        },
        
        # Cache effectiveness
        cache_hit_rate: calculate_hit_rate(),
        
        # Pool health
        pool_utilization: get_pool_utilization()
      }
    }
  end
end

Benchmarking Suite

1. Load Testing

defmodule DSPex.ToolBridge.LoadTest do
  def run_benchmark(opts \\ []) do
    scenarios = [
      # Scenario 1: Single tool, high frequency
      %{
        name: "high_frequency_single",
        tools: 1,
        calls_per_second: 100,
        duration: 60
      },
      
      # Scenario 2: Multiple tools, moderate frequency
      %{
        name: "multi_tool_moderate",
        tools: 10,
        calls_per_second: 20,
        duration: 60
      },
      
      # Scenario 3: Heavy payloads
      %{
        name: "large_payload",
        tools: 5,
        calls_per_second: 5,
        payload_size: :large,
        duration: 60
      }
    ]
    
    Enum.map(scenarios, &run_scenario/1)
  end
  
  defp run_scenario(scenario) do
    # Setup
    tools = setup_test_tools(scenario.tools)
    
    # Run load test
    results = Benchee.run(%{
      scenario.name => fn ->
        execute_tool_call(
          Enum.random(tools),
          generate_payload(scenario[:payload_size])
        )
      end
    }, time: scenario.duration)
    
    # Analyze results
    %{
      scenario: scenario.name,
      avg_latency: results.statistics.average,
      p99_latency: results.statistics.percentiles[99],
      throughput: calculate_throughput(results)
    }
  end
end

2. Profiling Tools

# Python-side profiling
import cProfile
import pstats
from memory_profiler import profile

class ProfilingHandler(BaseCommandHandler):
    def __init__(self):
        super().__init__()
        self.profiler = cProfile.Profile()
        self.profiling_enabled = False
        
    @profile  # Memory profiling decorator
    def handle_command(self, command, args):
        if self.profiling_enabled:
            self.profiler.enable()
            
        try:
            result = super().handle_command(command, args)
            return result
        finally:
            if self.profiling_enabled:
                self.profiler.disable()
                
    def get_profile_stats(self):
        """Return profiling statistics"""
        stats = pstats.Stats(self.profiler)
        stats.sort_stats('cumulative')
        
        return {
            "top_functions": self._get_top_functions(stats),
            "memory_usage": self._get_memory_usage()
        }

Production Checklist

Pre-deployment Optimization

  • Run load tests matching expected production traffic
  • Profile memory usage under sustained load
  • Verify connection pool sizing
  • Enable appropriate caching layers
  • Configure monitoring and alerting
  • Set up automatic memory cleanup
  • Test failover scenarios
  • Benchmark serialization formats with real data
  • Optimize Python imports and startup time
  • Configure OS-level optimizations (TCP tuning, etc.)

Runtime Optimization

  • Monitor cache hit rates (target >80%)
  • Track p99 latencies (target <100ms)
  • Watch memory growth patterns
  • Analyze slow query logs
  • Review connection pool utilization
  • Check for serialization bottlenecks
  • Monitor Python GC frequency
  • Track error rates by tool type

Future Optimizations

  1. Zero-copy serialization: Apache Arrow for DataFrames
  2. Compiled tool proxies: Cython for hot paths
  3. Distributed caching: Redis for shared tool results
  4. GPU acceleration: CUDA-aware serialization
  5. JIT compilation: PyPy or Numba for compute-heavy tools