Stage 2: Native Implementation - Technical Specification
Executive Summary
Stage 2 implements a complete native Elixir DSPy system that eliminates the Python bridge dependency while providing superior performance, fault tolerance, and scalability. This specification is based on comprehensive analysis of DSPy internals, ExDantic integration capabilities, and advanced Elixir/OTP patterns optimized for ML workloads.
Core Innovation: Native Elixir implementation that maintains 100% DSPy API compatibility while leveraging OTP’s concurrency model, fault tolerance, and distributed computing capabilities to deliver 10x performance improvements over the Python bridge approach.
Architecture Overview
System Architecture Diagram
┌─────────────────────────────────────────────────────────────────────────────────┐
│ Stage 2 Native Architecture │
├─────────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ ┌──────────────┐│
│ │ Native Signature│ │ Module System │ │ Provider │ │ Advanced ││
│ │ Compilation │ │ & Programs │ │ Integration │ │ Features ││
│ │ - ExDantic │ │ - GenServers │ │ - Native HTTP │ │ - Teleprompt ││
│ │ - Type System │ │ - Supervision │ │ - Circuit Break │ │ - Evaluation ││
│ │ - Schema Gen │ │ - State Mgmt │ │ - Rate Limiting │ │ - Streaming ││
│ └─────────────────┘ └─────────────────┘ └─────────────────┘ └──────────────┘│
│ │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ ┌──────────────┐│
│ │ Prediction │ │ Memory │ │ Distributed │ │ Production ││
│ │ Pipelines │ │ Management │ │ Computing │ │ Features ││
│ │ - Chain of │ │ - Backpressure │ │ - Clustering │ │ - Monitoring ││
│ │ Thought │ │ - GC Strategy │ │ - Load Balance │ │ - Hot Deploy ││
│ │ - React Pattern │ │ - ETS Caching │ │ - Failover │ │ - Metrics ││
│ └─────────────────┘ └─────────────────┘ └─────────────────┘ └──────────────┘│
│ │
│ ┌─────────────────────────────────────────────────────────────────────────────┐│
│ │ Ash Framework Integration ││
│ │ - Domain Modeling - Resource Actions - Query Engine - Relationships ││
│ └─────────────────────────────────────────────────────────────────────────────┘│
└─────────────────────────────────────────────────────────────────────────────────┘
Core Design Principles
- DSPy API Compatibility: 100% compatibility with existing DSPy signatures and patterns
- Performance First: 10x improvement over Python bridge through native Elixir implementation
- Fault Tolerance: OTP supervision trees for automatic recovery and error isolation
- Horizontal Scalability: Built-in clustering and distributed computing capabilities
- Production Readiness: Comprehensive monitoring, hot deployments, and operational features
Component 1: Native Signature Compilation System
1.1 Architecture Overview
Core Innovation: Replace Python-based signature parsing with native Elixir compilation that integrates deeply with ExDantic for superior type safety and performance.
Key Components:
- DSPex.Signature.Native - Core signature behavior with compile-time processing
- DSPex.Signature.ExDanticCompiler - ExDantic integration for type compilation
- DSPex.Signature.SchemaGenerator - Multi-provider JSON schema generation
- DSPex.Signature.Cache - High-performance signature caching with ETS
- DSPex.Signature.Optimizer - Compile-time optimizations and analysis
1.2 DSPy Signature Analysis Integration
From DSPy signatures/signature.py Analysis:
DSPy signatures use a metaclass-based approach with string parsing for field definitions:
# DSPy Pattern
class QASignature(dspy.Signature):
"""Answer questions with reasoning."""
question: str = dspy.InputField()
answer: str = dspy.OutputField(desc="reasoning and answer")
Native Elixir Translation:
# Native Elixir Pattern with ExDantic Integration
defmodule QASignature do
use DSPex.Signature.Native
@doc "Answer questions with reasoning."
signature question: :string -> answer: :string, desc: "reasoning and answer"
end
1.3 ExDantic Deep Integration
Schema Creation with Provider Optimization:
defmodule DSPex.Signature.ExDanticCompiler do
@moduledoc """
Compiles DSPy signatures into ExDantic schemas with provider-specific optimizations.
"""
alias Exdantic.{Schema, TypeAdapter, Config}
alias DSPex.Types.{MLTypes, ProviderTypes}
def compile_signature(signature_ast, provider \\ :openai) do
{input_fields, output_fields} = parse_signature_ast(signature_ast)
# Create ExDantic schemas with provider optimizations
input_schema = create_input_schema(input_fields, provider)
output_schema = create_output_schema(output_fields, provider)
# Generate provider-specific JSON schemas
json_schemas = generate_provider_schemas(input_schema, output_schema, provider)
# Create validation pipeline
validation_pipeline = create_validation_pipeline(input_schema, output_schema)
%DSPex.Signature.Compiled{
input_schema: input_schema,
output_schema: output_schema,
json_schemas: json_schemas,
validation_pipeline: validation_pipeline,
provider_optimizations: get_provider_optimizations(provider)
}
end
defp create_input_schema(fields, provider) do
# Use ExDantic's advanced features for ML-specific validation
schema_config = %{
title: "InputSchema",
description: "Input validation for ML operations",
provider_hints: get_provider_hints(provider),
validation_config: %{
coercion_enabled: true,
strict_mode: false,
custom_validators: get_ml_validators()
}
}
field_definitions = Enum.map(fields, fn {name, type, constraints} ->
{name, %{
type: convert_to_exdantic_type(type),
constraints: convert_constraints(constraints),
metadata: %{
ml_type: classify_ml_type(type),
provider_optimization: get_field_optimization(type, provider)
}
}}
end)
Exdantic.create_model(field_definitions, schema_config)
end
defp create_output_schema(fields, provider) do
# Enhanced output validation with ML-specific patterns
schema_config = %{
title: "OutputSchema",
description: "Output validation for ML operations",
provider_hints: get_provider_hints(provider),
validation_config: %{
coercion_enabled: true,
quality_assessment: true,
structured_output_validation: true
}
}
field_definitions = Enum.map(fields, fn {name, type, constraints} ->
{name, %{
type: convert_to_exdantic_type(type),
constraints: convert_constraints(constraints),
validators: get_output_validators(type),
metadata: %{
quality_metrics: get_quality_metrics(type),
extraction_patterns: get_extraction_patterns(type, provider)
}
}}
end)
Exdantic.create_model(field_definitions, schema_config)
end
defp generate_provider_schemas(input_schema, output_schema, provider) do
case provider do
:openai ->
%{
function_calling: generate_openai_function_schema(input_schema, output_schema),
structured_output: generate_openai_structured_schema(output_schema),
json_mode: generate_openai_json_schema(output_schema)
}
:anthropic ->
%{
tool_calling: generate_anthropic_tool_schema(input_schema, output_schema),
structured_output: generate_anthropic_structured_schema(output_schema)
}
:generic ->
%{
json_schema: Exdantic.JsonSchema.generate_schema(output_schema),
validation_schema: Exdantic.JsonSchema.generate_validation_schema(input_schema)
}
end
end
end
1.4 High-Performance Caching System
ETS-Based Signature Cache with Intelligent Eviction:
defmodule DSPex.Signature.Cache do
use GenServer
@table_name :signature_cache
@hot_signatures_table :hot_signatures
@compilation_locks_table :compilation_locks
defstruct [
:max_size,
:current_size,
:hit_count,
:miss_count,
:eviction_strategy,
:compilation_locks
]
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(opts) do
# Create ETS tables optimized for concurrent access
:ets.new(@table_name, [
:named_table,
:public,
{:read_concurrency, true},
{:write_concurrency, true},
{:decentralized_counters, true}
])
:ets.new(@hot_signatures_table, [
:named_table,
:public,
:ordered_set,
{:read_concurrency, true}
])
:ets.new(@compilation_locks_table, [
:named_table,
:public,
{:read_concurrency, true},
{:write_concurrency, true}
])
state = %__MODULE__{
max_size: Keyword.get(opts, :max_size, 10_000),
current_size: 0,
hit_count: 0,
miss_count: 0,
eviction_strategy: Keyword.get(opts, :eviction_strategy, :lru),
compilation_locks: %{}
}
# Start periodic maintenance
:timer.send_interval(300_000, :maintenance) # 5 minutes
{:ok, state}
end
@doc """
Get compiled signature with high-performance lookup.
Returns {:ok, compiled} | {:error, :not_cached} | {:error, :compiling}
"""
def get_compiled(signature_hash) do
case :ets.lookup(@table_name, signature_hash) do
[{^signature_hash, compiled, access_count, last_access}] ->
# Update access statistics atomically
new_access = access_count + 1
new_last_access = System.monotonic_time(:millisecond)
:ets.update_element(@table_name, signature_hash, [
{3, new_access},
{4, new_last_access}
])
# Update hot signatures tracking
:ets.insert(@hot_signatures_table, {new_last_access, signature_hash, new_access})
{:ok, compiled}
[] ->
# Check if compilation is in progress
case :ets.lookup(@compilation_locks_table, signature_hash) do
[{^signature_hash, _lock_ref, _timestamp}] ->
{:error, :compiling}
[] ->
{:error, :not_cached}
end
end
end
@doc """
Store compiled signature with intelligent caching.
"""
def store_compiled(signature_hash, compiled) do
GenServer.call(__MODULE__, {:store_compiled, signature_hash, compiled})
end
def handle_call({:store_compiled, signature_hash, compiled}, _from, state) do
current_time = System.monotonic_time(:millisecond)
# Check if we need to evict entries
new_state = maybe_evict_entries(state)
# Store the compiled signature
:ets.insert(@table_name, {signature_hash, compiled, 1, current_time})
:ets.insert(@hot_signatures_table, {current_time, signature_hash, 1})
# Update size tracking
updated_state = %{new_state | current_size: new_state.current_size + 1}
{:reply, :ok, updated_state}
end
@doc """
Acquire compilation lock to prevent duplicate work.
"""
def acquire_compilation_lock(signature_hash) do
lock_ref = make_ref()
timestamp = System.monotonic_time(:millisecond)
case :ets.insert_new(@compilation_locks_table, {signature_hash, lock_ref, timestamp}) do
true ->
{:ok, lock_ref}
false ->
{:error, :already_locked}
end
end
@doc """
Release compilation lock.
"""
def release_compilation_lock(signature_hash, lock_ref) do
case :ets.lookup(@compilation_locks_table, signature_hash) do
[{^signature_hash, ^lock_ref, _timestamp}] ->
:ets.delete(@compilation_locks_table, signature_hash)
:ok
_ ->
{:error, :invalid_lock}
end
end
def handle_info(:maintenance, state) do
# Perform cache maintenance
new_state = perform_cache_maintenance(state)
{:noreply, new_state}
end
defp maybe_evict_entries(state) do
if state.current_size >= state.max_size do
evict_entries(state)
else
state
end
end
defp evict_entries(state) do
eviction_count = div(state.max_size, 10) # Evict 10% of entries
case state.eviction_strategy do
:lru ->
evict_lru_entries(eviction_count)
:lfu ->
evict_lfu_entries(eviction_count)
:ttl ->
evict_expired_entries()
end
%{state | current_size: state.current_size - eviction_count}
end
defp evict_lru_entries(count) do
# Find least recently used entries
oldest_entries = :ets.select(@hot_signatures_table, [
{{'$1', '$2', '$3'}, [], [['$1', '$2', '$3']]}
])
|> Enum.sort()
|> Enum.take(count)
Enum.each(oldest_entries, fn [_timestamp, signature_hash, _access_count] ->
:ets.delete(@table_name, signature_hash)
:ets.match_delete(@hot_signatures_table, {'_', signature_hash, '_'})
end)
end
end
Component 2: Core Module and Program Architecture
2.1 Native Module System
From DSPy primitives/module.py Analysis:
DSPy modules use a class-based approach with parameter tracking and forward method definitions. The native Elixir implementation leverages GenServers for stateful operations and process isolation.
Architecture:
defmodule DSPex.Module.Native do
@moduledoc """
Native Elixir implementation of DSPy module system using GenServer for state management.
"""
defmacro __using__(opts) do
quote do
use GenServer
import DSPex.Module.Native
# Module registration
Module.register_attribute(__MODULE__, :module_parameters, accumulate: true)
Module.register_attribute(__MODULE__, :module_predictors, accumulate: true)
Module.register_attribute(__MODULE__, :module_metadata, accumulate: false)
@before_compile DSPex.Module.Native
end
end
defmacro parameter(name, type, opts \\ []) do
quote do
@module_parameters {unquote(name), unquote(type), unquote(opts)}
end
end
defmacro predictor(name, signature_module, opts \\ []) do
quote do
@module_predictors {unquote(name), unquote(signature_module), unquote(opts)}
end
end
defmacro __before_compile__(env) do
parameters = Module.get_attribute(env.module, :module_parameters)
predictors = Module.get_attribute(env.module, :module_predictors)
quote do
@module_metadata %{
parameters: unquote(Macro.escape(parameters)),
predictors: unquote(Macro.escape(predictors)),
module: __MODULE__
}
# Generate parameter access functions
unquote(generate_parameter_functions(parameters))
# Generate predictor access functions
unquote(generate_predictor_functions(predictors))
# GenServer callbacks
def init(opts) do
state = %DSPex.Module.State{
module: __MODULE__,
parameters: initialize_parameters(unquote(Macro.escape(parameters)), opts),
predictors: initialize_predictors(unquote(Macro.escape(predictors)), opts),
execution_history: [],
optimization_state: %{}
}
{:ok, state}
end
def handle_call({:forward, inputs}, from, state) do
# Execute forward pass with full state tracking
task = Task.async(fn ->
execute_forward_pass(inputs, state)
end)
# Store task for monitoring
new_pending = Map.put(state.pending_executions || %{}, task.ref, from)
{:noreply, %{state | pending_executions: new_pending}}
end
def handle_info({ref, result}, state) when is_reference(ref) do
# Handle completed forward pass
case Map.pop(state.pending_executions || %{}, ref) do
{from, remaining_pending} when from != nil ->
GenServer.reply(from, result)
# Update execution history
new_history = [result | Enum.take(state.execution_history, 99)]
{:noreply, %{state |
pending_executions: remaining_pending,
execution_history: new_history
}}
{nil, _} ->
{:noreply, state}
end
end
# Allow modules to override forward behavior
defoverridable handle_call: 3
end
end
defp generate_parameter_functions(parameters) do
Enum.map(parameters, fn {name, type, opts} ->
quote do
def unquote(:"get_#{name}")(pid) do
GenServer.call(pid, {:get_parameter, unquote(name)})
end
def unquote(:"set_#{name}")(pid, value) do
GenServer.call(pid, {:set_parameter, unquote(name), value})
end
end
end)
end
defp generate_predictor_functions(predictors) do
Enum.map(predictors, fn {name, signature_module, opts} ->
quote do
def unquote(:"predict_#{name}")(pid, inputs) do
GenServer.call(pid, {:predict, unquote(name), inputs})
end
end
end)
end
end
2.2 Program Execution Engine
Advanced Program Orchestration:
defmodule DSPex.Program.ExecutionEngine do
use GenServer
alias DSPex.Module.Registry
alias DSPex.Adapters.ProviderManager
alias DSPex.Telemetry.Tracker
defstruct [
:program_id,
:modules,
:execution_graph,
:current_execution,
:optimization_state,
:performance_metrics
]
def execute_program(program_id, inputs, opts \\ []) do
GenServer.call(via_name(program_id), {:execute, inputs, opts})
end
def handle_call({:execute, inputs, opts}, from, state) do
execution_id = generate_execution_id()
# Start telemetry span
:telemetry.span([:dspex, :program, :execution],
%{program_id: state.program_id, execution_id: execution_id}, fn ->
# Execute with full tracking
task = Task.async(fn ->
execute_program_with_tracking(inputs, opts, state)
end)
monitor_ref = Process.monitor(task.pid)
execution_context = %{
execution_id: execution_id,
task: task,
monitor_ref: monitor_ref,
from: from,
start_time: System.monotonic_time(:microsecond),
inputs: inputs,
opts: opts
}
new_state = %{state |
current_execution: execution_context,
performance_metrics: update_execution_start_metrics(state.performance_metrics)
}
{:noreply, new_state}
end)
end
defp execute_program_with_tracking(inputs, opts, state) do
# Validate inputs against program signature
case validate_program_inputs(inputs, state) do
{:ok, validated_inputs} ->
# Execute module graph in dependency order
execute_module_graph(validated_inputs, opts, state)
{:error, validation_errors} ->
{:error, {:input_validation_failed, validation_errors}}
end
rescue
error ->
{:error, {:execution_error, error}}
end
defp execute_module_graph(inputs, opts, state) do
execution_plan = build_execution_plan(state.execution_graph, inputs)
# Execute modules in parallel where possible
results = execute_modules_parallel(execution_plan, opts, state)
# Aggregate final results
case aggregate_results(results, state) do
{:ok, final_result} ->
{:ok, final_result}
{:error, reason} ->
{:error, reason}
end
end
defp execute_modules_parallel(execution_plan, opts, state) do
# Group modules by execution level (topological sort)
execution_levels = group_by_execution_level(execution_plan)
# Execute each level in sequence, modules within level in parallel
Enum.reduce_while(execution_levels, %{}, fn {level, modules}, acc_results ->
level_inputs = prepare_level_inputs(modules, acc_results)
# Execute all modules in this level concurrently
level_tasks = Enum.map(modules, fn module_spec ->
Task.async(fn ->
execute_module(module_spec, level_inputs[module_spec.name], opts, state)
end)
end)
# Wait for all modules in level to complete
case Task.await_many(level_tasks, get_timeout(opts)) do
results when is_list(results) ->
# Check if all results are successful
case extract_successful_results(results, modules) do
{:ok, level_results} ->
{:cont, Map.merge(acc_results, level_results)}
{:error, failed_modules} ->
{:halt, {:error, {:module_execution_failed, level, failed_modules}}}
end
{:timeout, _} ->
{:halt, {:error, {:execution_timeout, level}}}
end
end)
end
defp execute_module(module_spec, inputs, opts, state) do
# Get or start module process
case Registry.get_or_start_module(module_spec.name, module_spec.config) do
{:ok, module_pid} ->
# Execute module with monitoring
:telemetry.span([:dspex, :module, :execution],
%{module: module_spec.name, program: state.program_id}, fn ->
result = GenServer.call(module_pid, {:forward, inputs}, get_module_timeout(opts))
{result, %{module: module_spec.name}}
end)
{:error, reason} ->
{:error, {:module_start_failed, module_spec.name, reason}}
end
end
end
Component 3: Provider Integration Framework
3.1 Native HTTP Client Implementation
High-Performance Provider Clients:
defmodule DSPex.Providers.NativeClient do
@moduledoc """
High-performance native HTTP client for ML providers with advanced features.
"""
use GenServer
alias DSPex.Providers.{RateLimiter, CircuitBreaker, RetryStrategy}
alias DSPex.Telemetry.Tracker
defstruct [
:provider_name,
:base_url,
:auth_config,
:connection_pool,
:rate_limiter,
:circuit_breaker,
:retry_strategy,
:request_middleware,
:response_middleware
]
def start_link([provider_name, config]) do
GenServer.start_link(__MODULE__, [provider_name, config],
name: via_name(provider_name))
end
def init([provider_name, config]) do
# Initialize HTTP connection pool
pool_config = [
name: pool_name(provider_name),
size: config[:pool_size] || 20,
max_overflow: config[:max_overflow] || 10,
checkout_timeout: config[:checkout_timeout] || 30_000
]
{:ok, _pool} = :hackney_pool.start_pool(pool_name(provider_name), pool_config)
state = %__MODULE__{
provider_name: provider_name,
base_url: config[:base_url],
auth_config: config[:auth],
connection_pool: pool_name(provider_name),
rate_limiter: config[:rate_limiter],
circuit_breaker: config[:circuit_breaker],
retry_strategy: RetryStrategy.new(provider_name, config[:retry] || %{}),
request_middleware: config[:request_middleware] || [],
response_middleware: config[:response_middleware] || []
}
{:ok, state}
end
@doc """
Execute HTTP request with full provider integration.
"""
def request(provider_name, method, path, body \\ nil, headers \\ [], opts \\ []) do
GenServer.call(via_name(provider_name),
{:request, method, path, body, headers, opts})
end
def handle_call({:request, method, path, body, headers, opts}, from, state) do
# Execute request with full middleware pipeline
task = Task.async(fn ->
execute_request_with_middleware(method, path, body, headers, opts, state)
end)
monitor_ref = Process.monitor(task.pid)
# Store request context
request_context = %{
task: task,
monitor_ref: monitor_ref,
from: from,
start_time: System.monotonic_time(:microsecond),
method: method,
path: path
}
new_pending = Map.put(state.pending_requests || %{}, monitor_ref, request_context)
{:noreply, %{state | pending_requests: new_pending}}
end
def handle_info({:DOWN, monitor_ref, :process, _pid, result}, state) do
case Map.pop(state.pending_requests || %{}, monitor_ref) do
{request_context, remaining_pending} when request_context != nil ->
# Calculate request duration
duration = System.monotonic_time(:microsecond) - request_context.start_time
# Emit telemetry
:telemetry.execute([:dspex, :provider, :request],
%{duration: duration},
%{
provider: state.provider_name,
method: request_context.method,
path: request_context.path,
result: categorize_result(result)
}
)
# Reply to caller
GenServer.reply(request_context.from, result)
{:noreply, %{state | pending_requests: remaining_pending}}
{nil, _} ->
{:noreply, state}
end
end
defp execute_request_with_middleware(method, path, body, headers, opts, state) do
# Build full URL
url = build_url(state.base_url, path)
# Apply request middleware pipeline
{processed_body, processed_headers} =
apply_request_middleware(body, headers, state.request_middleware, state)
# Add authentication
auth_headers = build_auth_headers(state.auth_config)
final_headers = merge_headers(processed_headers, auth_headers)
# Execute with retry strategy
RetryStrategy.execute_with_retry(fn ->
execute_http_request(method, url, processed_body, final_headers, opts, state)
end, state.retry_strategy)
end
defp execute_http_request(method, url, body, headers, opts, state) do
# Check rate limiter
case RateLimiter.check_rate(state.rate_limiter) do
:ok ->
# Check circuit breaker
case CircuitBreaker.check_circuit(state.circuit_breaker) do
:closed ->
perform_http_request(method, url, body, headers, opts, state)
:open ->
{:error, :circuit_breaker_open}
:half_open ->
# Allow request but monitor for failure
result = perform_http_request(method, url, body, headers, opts, state)
CircuitBreaker.record_result(state.circuit_breaker, result)
result
end
{:error, :rate_limited} ->
{:error, :rate_limited}
end
end
defp perform_http_request(method, url, body, headers, opts, state) do
hackney_opts = [
pool: state.connection_pool,
timeout: opts[:timeout] || 30_000,
recv_timeout: opts[:recv_timeout] || 30_000,
follow_redirect: opts[:follow_redirect] || false,
with_body: true
]
case :hackney.request(method, url, headers, body, hackney_opts) do
{:ok, status_code, response_headers, response_body} ->
# Apply response middleware
processed_response = apply_response_middleware(
status_code, response_headers, response_body, state.response_middleware, state
)
case status_code do
code when code >= 200 and code < 300 ->
{:ok, processed_response}
code when code >= 400 and code < 500 ->
{:error, {:client_error, code, processed_response}}
code when code >= 500 ->
{:error, {:server_error, code, processed_response}}
code ->
{:error, {:unknown_status, code, processed_response}}
end
{:error, reason} ->
{:error, {:http_error, reason}}
end
end
end
3.2 Provider-Specific Adapters
OpenAI Native Integration:
defmodule DSPex.Providers.OpenAI do
@moduledoc """
Native OpenAI provider integration with advanced features.
"""
use DSPex.Providers.ProviderBehaviour
alias DSPex.Providers.{NativeClient, ResponseParser}
alias DSPex.Types.{Conversion, Validation}
@base_url "https://api.openai.com/v1"
@supported_models [
"gpt-4", "gpt-4-turbo", "gpt-4o", "gpt-4o-mini",
"gpt-3.5-turbo", "gpt-3.5-turbo-16k"
]
def execute_signature(signature, inputs, config) do
with {:ok, validated_inputs} <- validate_inputs(signature, inputs),
{:ok, request_payload} <- build_request_payload(signature, validated_inputs, config),
{:ok, response} <- make_api_request(request_payload, config),
{:ok, parsed_output} <- parse_response(response, signature),
{:ok, validated_output} <- validate_outputs(signature, parsed_output) do
{:ok, validated_output}
else
{:error, reason} -> {:error, reason}
end
end
defp build_request_payload(signature, inputs, config) do
# Choose the best approach based on signature complexity
case determine_request_strategy(signature, config) do
:function_calling ->
build_function_calling_request(signature, inputs, config)
:structured_output ->
build_structured_output_request(signature, inputs, config)
:json_mode ->
build_json_mode_request(signature, inputs, config)
:standard_completion ->
build_completion_request(signature, inputs, config)
end
end
defp build_function_calling_request(signature, inputs, config) do
# Generate OpenAI function schema from signature
function_schema = %{
name: signature.name || "execute",
description: signature.description || "Execute ML operation",
parameters: %{
type: "object",
properties: generate_input_properties(signature.input_schema),
required: get_required_fields(signature.input_schema)
}
}
# Build messages with function calling
messages = [
%{
role: "system",
content: build_system_prompt(signature, config)
},
%{
role: "user",
content: build_user_prompt(signature, inputs, config)
}
]
payload = %{
model: config[:model] || "gpt-4",
messages: messages,
tools: [%{type: "function", function: function_schema}],
tool_choice: %{type: "function", function: %{name: function_schema.name}},
temperature: config[:temperature] || 0.7,
max_tokens: config[:max_tokens] || 2048
}
{:ok, payload}
end
defp build_structured_output_request(signature, inputs, config) do
# Use OpenAI's structured output feature
response_schema = generate_response_schema(signature.output_schema)
messages = [
%{
role: "system",
content: build_system_prompt(signature, config)
},
%{
role: "user",
content: build_user_prompt(signature, inputs, config)
}
]
payload = %{
model: config[:model] || "gpt-4o",
messages: messages,
response_format: %{
type: "json_schema",
json_schema: %{
name: "response",
schema: response_schema,
strict: true
}
},
temperature: config[:temperature] || 0.7,
max_tokens: config[:max_tokens] || 2048
}
{:ok, payload}
end
defp make_api_request(payload, config) do
headers = [
{"Content-Type", "application/json"},
{"Authorization", "Bearer #{config[:api_key]}"}
]
body = Jason.encode!(payload)
case NativeClient.request(:openai, :post, "/chat/completions", body, headers) do
{:ok, response} ->
{:ok, response}
{:error, reason} ->
{:error, {:api_request_failed, reason}}
end
end
defp parse_response(response, signature) do
case Jason.decode(response.body) do
{:ok, %{"choices" => [choice | _]} = response_data} ->
parse_choice_content(choice, signature, response_data)
{:ok, %{"error" => error}} ->
{:error, {:api_error, error}}
{:error, decode_error} ->
{:error, {:json_decode_error, decode_error}}
end
end
defp parse_choice_content(choice, signature, response_data) do
cond do
# Function calling response
tool_calls = choice["message"]["tool_calls"] ->
parse_function_calling_response(tool_calls, signature)
# Structured output or JSON mode
content = choice["message"]["content"] ->
parse_content_response(content, signature)
true ->
{:error, :no_parseable_content}
end
end
defp parse_function_calling_response([tool_call | _], signature) do
case tool_call do
%{"function" => %{"arguments" => arguments_json}} ->
case Jason.decode(arguments_json) do
{:ok, arguments} ->
# Validate against output schema
{:ok, arguments}
{:error, reason} ->
{:error, {:function_arguments_decode_error, reason}}
end
_ ->
{:error, :invalid_function_call_format}
end
end
defp parse_content_response(content, signature) do
# Try to extract JSON from content
case extract_json_from_content(content) do
{:ok, json_data} ->
{:ok, json_data}
{:error, _} ->
# Fallback to structured extraction
extract_structured_data(content, signature)
end
end
defp validate_outputs(signature, outputs) do
case Validation.validate_data(outputs, signature.output_schema) do
{:ok, validated} ->
{:ok, validated}
{:error, validation_errors} ->
{:error, {:output_validation_failed, validation_errors}}
end
end
# Helper functions for schema generation and prompt building
defp generate_input_properties(input_schema) do
# Convert ExDantic schema to OpenAI function parameters
Conversion.exdantic_to_openai_properties(input_schema)
end
defp generate_response_schema(output_schema) do
# Convert ExDantic schema to OpenAI structured output schema
Conversion.exdantic_to_openai_schema(output_schema)
end
defp build_system_prompt(signature, config) do
base_prompt = signature.description || "You are a helpful AI assistant."
case config[:chain_of_thought] do
true ->
base_prompt <> "\n\nThink step by step and provide detailed reasoning."
false ->
base_prompt
nil ->
if signature.requires_reasoning? do
base_prompt <> "\n\nProvide clear reasoning for your response."
else
base_prompt
end
end
end
defp build_user_prompt(signature, inputs, config) do
# Generate dynamic prompt based on signature and inputs
prompt_parts = Enum.map(signature.input_fields, fn field ->
value = Map.get(inputs, field.name)
"#{field.description || field.name}: #{format_input_value(value, field.type)}"
end)
Enum.join(prompt_parts, "\n")
end
end
Component 4: Prediction Pipeline System
4.1 Native Prediction Engine
From DSPy predict/predict.py Analysis:
DSPy’s Predict class handles signature execution with provider interaction. The native Elixir implementation uses GenServer-based execution with comprehensive monitoring.
defmodule DSPex.Predict.Engine do
@moduledoc """
Native prediction engine with advanced execution strategies.
"""
use GenServer
alias DSPex.Signature.{Registry, Cache}
alias DSPex.Providers.ProviderManager
alias DSPex.Execution.{Context, Monitor}
defstruct [
:signature,
:provider,
:config,
:execution_history,
:performance_metrics,
:optimization_state
]
def start_link([signature, provider, config]) do
GenServer.start_link(__MODULE__, [signature, provider, config])
end
def init([signature, provider, config]) do
state = %__MODULE__{
signature: signature,
provider: provider,
config: config,
execution_history: :queue.new(),
performance_metrics: %{},
optimization_state: %{}
}
{:ok, state}
end
@doc """
Execute prediction with comprehensive monitoring and optimization.
"""
def predict(pid, inputs, opts \\ []) do
GenServer.call(pid, {:predict, inputs, opts})
end
def handle_call({:predict, inputs, opts}, from, state) do
execution_id = generate_execution_id()
# Start execution with telemetry span
:telemetry.span([:dspex, :predict, :execution],
%{
signature: state.signature.name,
provider: state.provider,
execution_id: execution_id
}, fn ->
# Execute prediction with full monitoring
task = Task.async(fn ->
execute_prediction_with_monitoring(inputs, opts, state)
end)
monitor_ref = Process.monitor(task.pid)
execution_context = %Context{
execution_id: execution_id,
task: task,
monitor_ref: monitor_ref,
from: from,
start_time: System.monotonic_time(:microsecond),
inputs: inputs,
opts: opts
}
new_pending = Map.put(state.pending_executions || %{}, monitor_ref, execution_context)
{:noreply, %{state | pending_executions: new_pending}}
end)
end
def handle_info({:DOWN, monitor_ref, :process, _pid, result}, state) do
case Map.pop(state.pending_executions || %{}, monitor_ref) do
{execution_context, remaining_pending} when execution_context != nil ->
# Calculate execution metrics
duration = System.monotonic_time(:microsecond) - execution_context.start_time
# Update execution history
history_entry = %{
execution_id: execution_context.execution_id,
inputs: execution_context.inputs,
result: result,
duration: duration,
timestamp: System.system_time(:millisecond)
}
new_history = add_to_history(state.execution_history, history_entry)
# Update performance metrics
new_metrics = update_performance_metrics(state.performance_metrics, history_entry)
# Emit telemetry
:telemetry.execute([:dspex, :predict, :completed],
%{duration: duration},
%{
signature: state.signature.name,
provider: state.provider,
result: categorize_result(result)
}
)
# Reply to caller
GenServer.reply(execution_context.from, result)
new_state = %{state |
pending_executions: remaining_pending,
execution_history: new_history,
performance_metrics: new_metrics
}
{:noreply, new_state}
{nil, _} ->
{:noreply, state}
end
end
defp execute_prediction_with_monitoring(inputs, opts, state) do
# Get compiled signature from cache
case Cache.get_compiled(state.signature.hash) do
{:ok, compiled_signature} ->
execute_with_compiled_signature(inputs, opts, compiled_signature, state)
{:error, :not_cached} ->
# Compile signature on demand
case compile_signature_on_demand(state.signature) do
{:ok, compiled_signature} ->
execute_with_compiled_signature(inputs, opts, compiled_signature, state)
{:error, reason} ->
{:error, {:signature_compilation_failed, reason}}
end
{:error, reason} ->
{:error, {:signature_cache_error, reason}}
end
end
defp execute_with_compiled_signature(inputs, opts, compiled_signature, state) do
# Apply execution strategy
execution_strategy = determine_execution_strategy(compiled_signature, opts, state)
case execution_strategy do
:standard ->
execute_standard_prediction(inputs, compiled_signature, state)
:chain_of_thought ->
execute_chain_of_thought(inputs, compiled_signature, state)
:multi_provider ->
execute_multi_provider(inputs, compiled_signature, state)
:optimized ->
execute_optimized_prediction(inputs, compiled_signature, state)
end
end
defp execute_standard_prediction(inputs, compiled_signature, state) do
# Standard prediction execution
case ProviderManager.execute_signature(
state.provider,
compiled_signature,
inputs,
state.config
) do
{:ok, result} ->
{:ok, result}
{:error, reason} ->
{:error, {:provider_execution_failed, reason}}
end
end
defp execute_chain_of_thought(inputs, compiled_signature, state) do
# Multi-step chain of thought execution
cot_config = Map.merge(state.config, %{
chain_of_thought: true,
reasoning_steps: true,
intermediate_validation: true
})
case ProviderManager.execute_signature(
state.provider,
compiled_signature,
inputs,
cot_config
) do
{:ok, result} ->
# Validate reasoning chain
case validate_reasoning_chain(result) do
{:ok, validated_result} ->
{:ok, validated_result}
{:error, validation_errors} ->
# Retry with improved prompting
retry_with_improved_prompting(inputs, compiled_signature, state, validation_errors)
end
{:error, reason} ->
{:error, {:chain_of_thought_failed, reason}}
end
end
defp execute_multi_provider(inputs, compiled_signature, state) do
# Execute on multiple providers for comparison
providers = get_configured_providers(state.config)
# Execute in parallel
tasks = Enum.map(providers, fn provider ->
Task.async(fn ->
ProviderManager.execute_signature(provider, compiled_signature, inputs, state.config)
end)
end)
# Wait for results with timeout
case Task.await_many(tasks, 30_000) do
results when is_list(results) ->
# Analyze and select best result
select_best_result(results, providers, compiled_signature)
{:timeout, _} ->
{:error, :multi_provider_timeout}
end
end
defp determine_execution_strategy(compiled_signature, opts, state) do
cond do
opts[:force_strategy] ->
opts[:force_strategy]
compiled_signature.requires_reasoning? ->
:chain_of_thought
length(get_configured_providers(state.config)) > 1 ->
:multi_provider
should_use_optimization?(state.performance_metrics) ->
:optimized
true ->
:standard
end
end
end
4.2 Chain of Thought Implementation
Native CoT with Step Validation:
defmodule DSPex.Predict.ChainOfThought do
@moduledoc """
Native Chain of Thought implementation with step-by-step validation.
"""
alias DSPex.Signature.Enhanced
alias DSPex.Validation.ReasoningChain
def execute(signature, inputs, config) do
# Build enhanced signature for CoT
cot_signature = build_cot_signature(signature)
# Execute with reasoning tracking
case execute_with_reasoning(cot_signature, inputs, config) do
{:ok, result} ->
validate_and_extract_reasoning(result, signature)
{:error, reason} ->
{:error, reason}
end
end
defp build_cot_signature(original_signature) do
# Enhance signature with reasoning fields
Enhanced.add_reasoning_fields(original_signature, %{
reasoning_steps: %{
type: :list,
item_type: :reasoning_step,
description: "Step-by-step reasoning process"
},
confidence: %{
type: :confidence_score,
description: "Confidence in the reasoning and conclusion"
}
})
end
defp execute_with_reasoning(cot_signature, inputs, config) do
# Build CoT-specific prompt
cot_prompt = build_cot_prompt(cot_signature, inputs)
# Execute with enhanced configuration
enhanced_config = Map.merge(config, %{
temperature: config[:temperature] || 0.3, # Lower temperature for reasoning
max_tokens: config[:max_tokens] || 4096, # More tokens for reasoning
reasoning_prompt: cot_prompt,
step_validation: true
})
DSPex.Providers.ProviderManager.execute_signature(
config[:provider] || :openai,
cot_signature,
inputs,
enhanced_config
)
end
defp build_cot_prompt(signature, inputs) do
base_description = signature.description || ""
"""
#{base_description}
Think step by step and provide your reasoning process. For each step:
1. State what you're thinking about
2. Explain your reasoning
3. Identify any assumptions you're making
4. Note any uncertainties
Structure your response to include:
- Clear reasoning steps
- Logical connections between steps
- A confidence assessment
- The final answer based on your reasoning
Be thorough but concise in your reasoning.
"""
end
defp validate_and_extract_reasoning(result, original_signature) do
case ReasoningChain.validate_reasoning(result) do
{:ok, validated_reasoning} ->
# Extract final answer according to original signature
extract_final_answer(validated_reasoning, original_signature)
{:error, validation_errors} ->
{:error, {:reasoning_validation_failed, validation_errors}}
end
end
defp extract_final_answer(reasoning_result, original_signature) do
# Extract fields that match the original signature
final_answer = Enum.reduce(original_signature.output_fields, %{}, fn field, acc ->
case Map.get(reasoning_result, field.name) do
nil ->
# Try to extract from reasoning steps
extract_from_reasoning_steps(reasoning_result.reasoning_steps, field)
value ->
Map.put(acc, field.name, value)
end
end)
# Include reasoning metadata
enriched_result = Map.merge(final_answer, %{
reasoning_chain: reasoning_result.reasoning_steps,
confidence: reasoning_result.confidence,
reasoning_quality: assess_reasoning_quality(reasoning_result)
})
{:ok, enriched_result}
end
defp assess_reasoning_quality(reasoning_result) do
steps = reasoning_result.reasoning_steps
%{
step_count: length(steps),
logical_consistency: check_logical_consistency(steps),
evidence_strength: assess_evidence_strength(steps),
uncertainty_handling: assess_uncertainty_handling(steps),
overall_score: calculate_overall_reasoning_score(steps)
}
end
defp check_logical_consistency(steps) do
# Analyze logical flow between steps
step_pairs = Enum.zip(steps, Enum.drop(steps, 1))
consistency_scores = Enum.map(step_pairs, fn {step1, step2} ->
analyze_step_consistency(step1, step2)
end)
case consistency_scores do
[] -> 1.0
scores -> Enum.sum(scores) / length(scores)
end
end
defp analyze_step_consistency(step1, step2) do
# Simple heuristic-based consistency check
# In production, this could use more sophisticated NLP analysis
step1_conclusion = extract_step_conclusion(step1)
step2_premise = extract_step_premise(step2)
if conclusion_supports_premise?(step1_conclusion, step2_premise) do
1.0
else
0.5 # Partial consistency
end
end
end
Component 5: Advanced Type System and Validation
5.1 ML-Specific Type Registry
Comprehensive ML Type System:
defmodule DSPex.Types.MLRegistry do
@moduledoc """
Comprehensive type registry for ML-specific types with ExDantic integration.
"""
use GenServer
alias Exdantic.{TypeAdapter, Validator}
alias DSPex.Types.{Constraints, Coercion, Validation}
# Core ML Types
@ml_types %{
# Text and Language Types
:prompt_template => %{
base_type: :string,
constraints: [min_length: 1, max_length: 100_000],
validators: [:template_syntax, :variable_consistency],
coercion: :string_coercion,
metadata: %{category: :text, provider_hints: %{openai: :text, anthropic: :text}}
},
:reasoning_chain => %{
base_type: {:list, :reasoning_step},
constraints: [min_items: 1, max_items: 50],
validators: [:reasoning_consistency, :logical_flow],
coercion: :reasoning_chain_coercion,
metadata: %{category: :reasoning, structured: true}
},
:reasoning_step => %{
base_type: :map,
schema: %{
step_number: {:integer, [min: 1]},
thought: {:string, [min_length: 10, max_length: 1000]},
reasoning: {:string, [min_length: 20, max_length: 2000]},
confidence: {:confidence_score, []}
},
validators: [:step_completeness, :reasoning_quality],
metadata: %{category: :reasoning, required_fields: [:thought, :reasoning]}
},
# Numeric and Score Types
:confidence_score => %{
base_type: :float,
constraints: [min: 0.0, max: 1.0],
validators: [:confidence_validation],
coercion: :confidence_coercion,
metadata: %{category: :numeric, precision: 3}
},
:probability => %{
base_type: :float,
constraints: [min: 0.0, max: 1.0],
validators: [:probability_validation],
coercion: :probability_coercion,
metadata: %{category: :numeric, precision: 6}
},
:token_count => %{
base_type: :integer,
constraints: [min: 0, max: 1_000_000],
validators: [:token_count_validation],
coercion: :integer_coercion,
metadata: %{category: :metrics, provider_specific: true}
},
# Embedding and Vector Types
:embedding => %{
base_type: {:list, :float},
constraints: [min_items: 1, max_items: 10_000],
validators: [:embedding_dimension, :embedding_normalization],
coercion: :embedding_coercion,
metadata: %{category: :vector, high_memory: true}
},
:similarity_score => %{
base_type: :float,
constraints: [min: -1.0, max: 1.0],
validators: [:similarity_validation],
coercion: :similarity_coercion,
metadata: %{category: :numeric, precision: 4}
},
# Function and Tool Types
:function_call => %{
base_type: :map,
schema: %{
function_name: {:string, [min_length: 1, max_length: 100]},
arguments: {:map, []},
call_id: {:optional, {:string, []}}
},
validators: [:function_call_validation, :arguments_validation],
metadata: %{category: :function, provider_specific: true}
},
:tool_result => %{
base_type: :map,
schema: %{
tool_name: {:string, [min_length: 1, max_length: 100]},
result: :any,
success: {:boolean, []},
error: {:optional, {:string, []}}
},
validators: [:tool_result_validation],
metadata: %{category: :function, structured: true}
},
# Model and Provider Types
:model_output => %{
base_type: :map,
schema: %{
content: {:string, []},
usage: {:optional, :token_usage},
model: {:string, []},
finish_reason: {:optional, {:string, []}}
},
validators: [:model_output_validation],
metadata: %{category: :model, provider_metadata: true}
},
:token_usage => %{
base_type: :map,
schema: %{
prompt_tokens: {:integer, [min: 0]},
completion_tokens: {:integer, [min: 0]},
total_tokens: {:integer, [min: 0]}
},
validators: [:token_usage_consistency],
metadata: %{category: :metrics, cost_relevant: true}
}
}
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(_opts) do
# Initialize type adapters for all ML types
type_adapters = initialize_type_adapters(@ml_types)
state = %{
ml_types: @ml_types,
type_adapters: type_adapters,
custom_types: %{},
validation_cache: :ets.new(:type_validation_cache, [:named_table, :public, {:read_concurrency, true}])
}
{:ok, state}
end
@doc """
Register a custom ML type with the registry.
"""
def register_custom_type(type_name, type_definition) do
GenServer.call(__MODULE__, {:register_custom_type, type_name, type_definition})
end
@doc """
Get type adapter for a given type.
"""
def get_type_adapter(type_name) do
GenServer.call(__MODULE__, {:get_type_adapter, type_name})
end
@doc """
Validate value against ML type with caching.
"""
def validate_value(value, type_name, opts \\ []) do
cache_key = {type_name, :erlang.phash2(value), opts}
case :ets.lookup(:type_validation_cache, cache_key) do
[{^cache_key, cached_result}] ->
cached_result
[] ->
result = perform_validation(value, type_name, opts)
# Cache result if successful
if match?({:ok, _}, result) do
:ets.insert(:type_validation_cache, {cache_key, result})
end
result
end
end
def handle_call({:register_custom_type, type_name, type_definition}, _from, state) do
# Create type adapter for custom type
case create_type_adapter(type_name, type_definition) do
{:ok, adapter} ->
new_custom_types = Map.put(state.custom_types, type_name, type_definition)
new_adapters = Map.put(state.type_adapters, type_name, adapter)
new_state = %{state |
custom_types: new_custom_types,
type_adapters: new_adapters
}
{:reply, :ok, new_state}
{:error, reason} ->
{:reply, {:error, reason}, state}
end
end
def handle_call({:get_type_adapter, type_name}, _from, state) do
case Map.get(state.type_adapters, type_name) do
nil ->
{:reply, {:error, :type_not_found}, state}
adapter ->
{:reply, {:ok, adapter}, state}
end
end
defp initialize_type_adapters(ml_types) do
Enum.reduce(ml_types, %{}, fn {type_name, type_def}, acc ->
case create_type_adapter(type_name, type_def) do
{:ok, adapter} ->
Map.put(acc, type_name, adapter)
{:error, _reason} ->
# Log error but continue
Logger.warning("Failed to create type adapter for #{type_name}")
acc
end
end)
end
defp create_type_adapter(type_name, type_definition) do
# Create ExDantic TypeAdapter with ML-specific enhancements
adapter_config = %{
type: type_definition.base_type,
constraints: type_definition.constraints || [],
validators: build_validator_pipeline(type_definition.validators || []),
coercion: get_coercion_function(type_definition.coercion),
metadata: type_definition.metadata || %{}
}
case TypeAdapter.create(type_name, adapter_config) do
{:ok, adapter} ->
{:ok, enhance_adapter_for_ml(adapter, type_definition)}
{:error, reason} ->
{:error, reason}
end
end
defp build_validator_pipeline(validator_names) do
Enum.map(validator_names, fn validator_name ->
case validator_name do
:template_syntax ->
&validate_template_syntax/1
:reasoning_consistency ->
&validate_reasoning_consistency/1
:confidence_validation ->
&validate_confidence_score/1
:embedding_dimension ->
&validate_embedding_dimension/1
:function_call_validation ->
&validate_function_call/1
custom_validator when is_function(custom_validator) ->
custom_validator
_ ->
# Default validation
&default_validation/1
end
end)
end
defp perform_validation(value, type_name, opts) do
case get_type_adapter(type_name) do
{:ok, adapter} ->
# Use ExDantic validation with ML enhancements
case TypeAdapter.validate(adapter, value, opts) do
{:ok, validated_value} ->
# Apply ML-specific post-validation
apply_ml_post_validation(validated_value, type_name, opts)
{:error, validation_errors} ->
{:error, validation_errors}
end
{:error, :type_not_found} ->
{:error, {:unknown_type, type_name}}
end
end
defp apply_ml_post_validation(value, type_name, opts) do
case type_name do
:reasoning_chain ->
# Additional reasoning chain validation
validate_reasoning_chain_quality(value, opts)
:embedding ->
# Embedding normalization and validation
validate_and_normalize_embedding(value, opts)
:confidence_score ->
# Confidence score calibration
calibrate_confidence_score(value, opts)
_ ->
{:ok, value}
end
end
# ML-specific validation functions
defp validate_template_syntax(template) when is_binary(template) do
# Validate template syntax and variable consistency
case parse_template_variables(template) do
{:ok, variables} ->
if variables_are_consistent?(variables) do
{:ok, template}
else
{:error, :inconsistent_template_variables}
end
{:error, reason} ->
{:error, {:template_syntax_error, reason}}
end
end
defp validate_reasoning_consistency(reasoning_chain) when is_list(reasoning_chain) do
# Check logical consistency between reasoning steps
case analyze_reasoning_flow(reasoning_chain) do
{:ok, _flow_analysis} ->
{:ok, reasoning_chain}
{:error, inconsistencies} ->
{:error, {:reasoning_inconsistency, inconsistencies}}
end
end
defp validate_confidence_score(score) when is_number(score) do
cond do
score < 0.0 ->
{:error, :confidence_below_minimum}
score > 1.0 ->
{:error, :confidence_above_maximum}
true ->
{:ok, Float.round(score, 3)}
end
end
defp validate_embedding_dimension(embedding) when is_list(embedding) do
# Validate embedding dimensions and normalization
dimension = length(embedding)
cond do
dimension < 1 ->
{:error, :embedding_too_small}
dimension > 10_000 ->
{:error, :embedding_too_large}
not all_numbers?(embedding) ->
{:error, :embedding_non_numeric}
true ->
# Check if normalized (optional)
magnitude = calculate_magnitude(embedding)
if magnitude > 0 do
{:ok, embedding}
else
{:error, :zero_magnitude_embedding}
end
end
end
# Helper functions
defp parse_template_variables(template) do
# Simple regex-based variable extraction
# In production, use a proper template parser
variables = Regex.scan(~r/\{\{(\w+)\}\}/, template)
|> Enum.map(fn [_, var] -> var end)
|> Enum.uniq()
{:ok, variables}
rescue
_ -> {:error, :invalid_template_syntax}
end
defp variables_are_consistent?(variables) do
# Check if all variables follow naming conventions
Enum.all?(variables, fn var ->
String.match?(var, ~r/^[a-zA-Z_][a-zA-Z0-9_]*$/)
end)
end
defp all_numbers?(list) do
Enum.all?(list, &is_number/1)
end
defp calculate_magnitude(vector) do
vector
|> Enum.map(&(&1 * &1))
|> Enum.sum()
|> :math.sqrt()
end
end
Component 6: Production Features and Monitoring
6.1 Comprehensive Telemetry System
Advanced ML Metrics Collection:
defmodule DSPex.Telemetry.MLMetrics do
@moduledoc """
Comprehensive telemetry system optimized for ML workloads.
"""
use GenServer
alias DSPex.Telemetry.{Aggregator, Exporter, Alerting}
# Telemetry events for ML operations
@ml_events [
[:dspex, :signature, :compilation],
[:dspex, :signature, :validation],
[:dspex, :prediction, :execution],
[:dspex, :prediction, :chain_of_thought],
[:dspex, :provider, :request],
[:dspex, :provider, :response],
[:dspex, :module, :execution],
[:dspex, :program, :execution],
[:dspex, :cache, :hit],
[:dspex, :cache, :miss],
[:dspex, :memory, :pressure],
[:dspex, :optimization, :iteration],
[:dspex, :evaluation, :metric],
[:dspex, :distributed, :coordination],
[:dspex, :error, :recovery]
]
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(opts) do
# Attach telemetry handlers
:telemetry.attach_many(
"ash-dspy-ml-metrics",
@ml_events,
&handle_ml_event/4,
%{config: opts}
)
# Initialize metrics storage
metrics_store = :ets.new(:ml_metrics, [
:named_table,
:public,
{:write_concurrency, true},
{:read_concurrency, true}
])
# Initialize aggregation windows
aggregation_windows = initialize_aggregation_windows()
state = %{
config: opts,
metrics_store: metrics_store,
aggregation_windows: aggregation_windows,
alert_rules: load_alert_rules(opts),
exporters: initialize_exporters(opts)
}
# Schedule periodic aggregation and export
:timer.send_interval(60_000, :aggregate_metrics) # 1 minute
:timer.send_interval(300_000, :export_metrics) # 5 minutes
:timer.send_interval(30_000, :check_alerts) # 30 seconds
{:ok, state}
end
def handle_ml_event([:dspex, :prediction, :execution], measurements, metadata, config) do
# Record prediction execution metrics
record_metric(:prediction_duration, measurements.duration, %{
signature: metadata.signature,
provider: metadata.provider,
success: metadata.success
})
# Track token usage if available
if metadata[:token_usage] do
record_metric(:token_usage, metadata.token_usage.total_tokens, %{
type: :total,
provider: metadata.provider,
model: metadata.model
})
record_metric(:token_usage, metadata.token_usage.prompt_tokens, %{
type: :prompt,
provider: metadata.provider,
model: metadata.model
})
record_metric(:token_usage, metadata.token_usage.completion_tokens, %{
type: :completion,
provider: metadata.provider,
model: metadata.model
})
end
# Track cost if available
if metadata[:cost] do
record_metric(:execution_cost, metadata.cost, %{
provider: metadata.provider,
model: metadata.model
})
end
# Track quality metrics if available
if metadata[:confidence] do
record_metric(:confidence_score, metadata.confidence, %{
signature: metadata.signature,
provider: metadata.provider
})
end
# Increment execution counter
increment_counter(:prediction_executions, %{
signature: metadata.signature,
provider: metadata.provider,
success: metadata.success
})
end
def handle_ml_event([:dspex, :provider, :request], measurements, metadata, config) do
# Track provider performance
record_metric(:provider_latency, measurements.duration, %{
provider: metadata.provider,
endpoint: metadata.endpoint
})
# Track provider reliability
case metadata.result do
:success ->
increment_counter(:provider_requests_success, %{provider: metadata.provider})
{:error, error_type} ->
increment_counter(:provider_requests_error, %{
provider: metadata.provider,
error_type: error_type
})
:timeout ->
increment_counter(:provider_requests_timeout, %{provider: metadata.provider})
end
# Track rate limiting
if metadata[:rate_limited] do
increment_counter(:provider_rate_limited, %{provider: metadata.provider})
end
end
def handle_ml_event([:dspex, :signature, :compilation], measurements, metadata, config) do
# Track signature compilation performance
record_metric(:signature_compilation_duration, measurements.duration, %{
signature_hash: metadata.signature_hash,
cache_hit: metadata.cache_hit
})
# Track compilation cache effectiveness
if metadata.cache_hit do
increment_counter(:signature_cache_hits, %{})
else
increment_counter(:signature_cache_misses, %{})
end
# Track compilation complexity
if metadata[:complexity_score] do
record_metric(:signature_complexity, metadata.complexity_score, %{
signature_type: metadata.signature_type
})
end
end
def handle_ml_event([:dspex, :memory, :pressure], measurements, metadata, config) do
# Track memory usage patterns
record_gauge(:memory_usage, measurements.memory_usage, %{
component: metadata.component
})
record_gauge(:memory_pressure_level, measurements.pressure_level, %{})
# Track garbage collection events
if metadata[:gc_triggered] do
increment_counter(:gc_events, %{
component: metadata.component,
gc_type: metadata.gc_type
})
end
# Track backpressure events
if metadata[:backpressure_active] do
increment_counter(:backpressure_activations, %{
component: metadata.component
})
end
end
def handle_ml_event([:dspex, :optimization, :iteration], measurements, metadata, config) do
# Track optimization progress
record_metric(:optimization_score, measurements.score, %{
optimizer: metadata.optimizer,
signature: metadata.signature,
iteration: metadata.iteration
})
record_metric(:optimization_duration, measurements.duration, %{
optimizer: metadata.optimizer,
signature: metadata.signature
})
# Track optimization convergence
if metadata[:converged] do
increment_counter(:optimization_convergence, %{
optimizer: metadata.optimizer,
iterations: metadata.iteration
})
end
end
def handle_info(:aggregate_metrics, state) do
# Perform metric aggregation
current_time = System.system_time(:second)
# Aggregate metrics for different time windows
Enum.each(state.aggregation_windows, fn {window_name, window_seconds} ->
window_start = current_time - window_seconds
aggregate_window_metrics(window_name, window_start, current_time, state)
end)
{:noreply, state}
end
def handle_info(:export_metrics, state) do
# Export metrics to configured backends
current_metrics = get_current_metrics(state.metrics_store)
Enum.each(state.exporters, fn exporter ->
Task.start(fn ->
Exporter.export_metrics(exporter, current_metrics)
end)
end)
{:noreply, state}
end
def handle_info(:check_alerts, state) do
# Check alert conditions
current_metrics = get_current_metrics(state.metrics_store)
Enum.each(state.alert_rules, fn alert_rule ->
case evaluate_alert_rule(alert_rule, current_metrics) do
{:triggered, alert_data} ->
Alerting.trigger_alert(alert_rule.name, alert_data)
:ok ->
:ok
end
end)
{:noreply, state}
end
# Metric recording functions
defp record_metric(metric_name, value, tags) do
timestamp = System.system_time(:millisecond)
:ets.insert(:ml_metrics, {
{metric_name, tags, timestamp},
value
})
end
defp record_gauge(metric_name, value, tags) do
# For gauges, we want the latest value
:ets.insert(:ml_metrics, {
{metric_name, tags, :gauge},
value
})
end
defp increment_counter(metric_name, tags) do
counter_key = {metric_name, tags, :counter}
case :ets.lookup(:ml_metrics, counter_key) do
[{^counter_key, current_value}] ->
:ets.update_element(:ml_metrics, counter_key, {2, current_value + 1})
[] ->
:ets.insert(:ml_metrics, {counter_key, 1})
end
end
defp initialize_aggregation_windows do
%{
"1m" => 60, # 1 minute
"5m" => 300, # 5 minutes
"15m" => 900, # 15 minutes
"1h" => 3600, # 1 hour
"24h" => 86400 # 24 hours
}
end
defp aggregate_window_metrics(window_name, window_start, window_end, state) do
# Get all metrics in the time window
window_metrics = :ets.select(:ml_metrics, [
{{{:'$1', :'$2', :'$3'}, :'$4'},
[{:andalso, {:is_integer, :'$3'},
{:andalso, {:>=, :'$3', window_start * 1000},
{:<, :'$3', window_end * 1000}}}],
[{{:'$1', :'$2', :'$3'}, :'$4'}]}
])
# Group by metric name and tags
grouped_metrics = Enum.group_by(window_metrics, fn {{metric_name, tags, _timestamp}, _value} ->
{metric_name, tags}
end)
# Calculate aggregations for each metric group
Enum.each(grouped_metrics, fn {{metric_name, tags}, metric_points} ->
values = Enum.map(metric_points, fn {_, value} -> value end)
aggregations = %{
count: length(values),
sum: Enum.sum(values),
avg: Enum.sum(values) / length(values),
min: Enum.min(values),
max: Enum.max(values),
p50: percentile(values, 50),
p95: percentile(values, 95),
p99: percentile(values, 99)
}
# Store aggregated metrics
store_aggregated_metric(window_name, metric_name, tags, aggregations, window_end)
end)
end
defp percentile(values, p) do
sorted = Enum.sort(values)
index = (length(sorted) * p / 100) |> Float.ceil() |> round() |> max(1) |> min(length(sorted))
Enum.at(sorted, index - 1)
end
defp store_aggregated_metric(window, metric_name, tags, aggregations, timestamp) do
aggregation_key = {:aggregated, window, metric_name, tags, timestamp}
:ets.insert(:ml_metrics, {aggregation_key, aggregations})
end
end
6.2 Hot Code Deployment System
Zero-Downtime Model Updates:
defmodule DSPex.Deployment.HotSwap do
@moduledoc """
Hot code deployment system for zero-downtime model updates and feature rollouts.
"""
use GenServer
alias DSPex.Module.Registry
alias DSPex.Telemetry.Tracker
alias DSPex.Deployment.{VersionManager, TrafficSplitter, HealthChecker}
defstruct [
:active_versions,
:staged_versions,
:rollout_configs,
:traffic_splits,
:health_monitors,
:rollback_snapshots
]
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(_opts) do
state = %__MODULE__{
active_versions: %{},
staged_versions: %{},
rollout_configs: %{},
traffic_splits: %{},
health_monitors: %{},
rollback_snapshots: %{}
}
# Start health monitoring
:timer.send_interval(30_000, :health_check)
{:ok, state}
end
@doc """
Deploy new version of a signature or module with gradual rollout.
"""
def deploy_version(component_id, new_version, rollout_config) do
GenServer.call(__MODULE__, {:deploy_version, component_id, new_version, rollout_config})
end
@doc """
Rollback to previous version immediately.
"""
def rollback_version(component_id) do
GenServer.call(__MODULE__, {:rollback_version, component_id})
end
def handle_call({:deploy_version, component_id, new_version, rollout_config}, _from, state) do
case prepare_deployment(component_id, new_version, rollout_config) do
{:ok, deployment_context} ->
# Create rollback snapshot
snapshot = create_rollback_snapshot(component_id, state)
# Stage the new version
new_staged = Map.put(state.staged_versions, component_id, new_version)
new_snapshots = Map.put(state.rollback_snapshots, component_id, snapshot)
new_configs = Map.put(state.rollout_configs, component_id, rollout_config)
# Start gradual rollout
{:ok, rollout_pid} = start_gradual_rollout(component_id, rollout_config)
new_state = %{state |
staged_versions: new_staged,
rollback_snapshots: new_snapshots,
rollout_configs: new_configs
}
{:reply, {:ok, :deployment_started}, new_state}
{:error, reason} ->
{:reply, {:error, reason}, state}
end
end
def handle_call({:rollback_version, component_id}, _from, state) do
case Map.get(state.rollback_snapshots, component_id) do
nil ->
{:reply, {:error, :no_snapshot_available}, state}
snapshot ->
# Perform immediate rollback
case perform_rollback(component_id, snapshot) do
:ok ->
# Clean up rollout state
new_state = %{state |
staged_versions: Map.delete(state.staged_versions, component_id),
rollout_configs: Map.delete(state.rollout_configs, component_id),
traffic_splits: Map.delete(state.traffic_splits, component_id),
rollback_snapshots: Map.delete(state.rollback_snapshots, component_id)
}
{:reply, :ok, new_state}
{:error, reason} ->
{:reply, {:error, reason}, state}
end
end
end
# Handle rollout progress updates
def handle_info({:rollout_progress, component_id, percentage}, state) do
# Update traffic split
new_traffic_splits = Map.put(state.traffic_splits, component_id, percentage)
# Update traffic splitter
TrafficSplitter.update_split(component_id, percentage)
Logger.info("Rollout progress for #{component_id}: #{percentage}%")
# Check if rollout is complete
if percentage >= 100 do
complete_rollout(component_id, state)
else
{:noreply, %{state | traffic_splits: new_traffic_splits}}
end
end
def handle_info({:rollout_failed, component_id, reason}, state) do
Logger.error("Rollout failed for #{component_id}: #{reason}. Initiating automatic rollback.")
# Trigger automatic rollback
case perform_automatic_rollback(component_id, state) do
:ok ->
new_state = cleanup_failed_rollout(component_id, state)
{:noreply, new_state}
{:error, rollback_error} ->
Logger.critical("Rollback failed for #{component_id}: #{rollback_error}")
{:noreply, state}
end
end
def handle_info(:health_check, state) do
# Check health of all active rollouts
Enum.each(state.traffic_splits, fn {component_id, _percentage} ->
case check_rollout_health(component_id) do
:healthy ->
:ok
{:unhealthy, reason} ->
# Trigger rollout failure
send(self(), {:rollout_failed, component_id, reason})
end
end)
{:noreply, state}
end
defp prepare_deployment(component_id, new_version, rollout_config) do
# Validate new version
case validate_new_version(component_id, new_version) do
:ok ->
# Prepare deployment environment
case setup_deployment_environment(component_id, new_version) do
{:ok, context} ->
{:ok, context}
{:error, reason} ->
{:error, {:environment_setup_failed, reason}}
end
{:error, reason} ->
{:error, {:version_validation_failed, reason}}
end
end
defp validate_new_version(component_id, new_version) do
# Perform various validation checks
with :ok <- validate_version_format(new_version),
:ok <- validate_compatibility(component_id, new_version),
:ok <- validate_dependencies(new_version),
:ok <- validate_security(new_version) do
:ok
else
{:error, reason} -> {:error, reason}
end
end
defp start_gradual_rollout(component_id, rollout_config) do
Task.start(fn ->
execute_gradual_rollout(component_id, rollout_config)
end)
end
defp execute_gradual_rollout(component_id, config) do
steps = config[:rollout_steps] || [5, 10, 25, 50, 100]
step_duration = config[:step_duration] || 300_000 # 5 minutes
health_check_interval = config[:health_check_interval] || 30_000 # 30 seconds
Enum.each(steps, fn percentage ->
# Update traffic split
send(DSPex.Deployment.HotSwap, {:rollout_progress, component_id, percentage})
# Wait for step duration with periodic health checks
monitor_step_health(component_id, step_duration, health_check_interval)
end)
# Rollout completed successfully
send(DSPex.Deployment.HotSwap, {:rollout_complete, component_id})
end
defp monitor_step_health(component_id, total_duration, check_interval) do
end_time = System.monotonic_time(:millisecond) + total_duration
monitor_loop(component_id, end_time, check_interval)
end
defp monitor_loop(component_id, end_time, check_interval) do
current_time = System.monotonic_time(:millisecond)
if current_time >= end_time do
:ok
else
case check_rollout_health(component_id) do
:healthy ->
# Wait for next check
Process.sleep(min(check_interval, end_time - current_time))
monitor_loop(component_id, end_time, check_interval)
{:unhealthy, reason} ->
# Abort rollout
send(DSPex.Deployment.HotSwap, {:rollout_failed, component_id, reason})
exit(:rollout_failed)
end
end
end
defp check_rollout_health(component_id) do
# Get recent metrics for the component
metrics = get_component_metrics(component_id, 60_000) # Last minute
cond do
metrics[:error_rate] > 0.05 -> # 5% error rate threshold
{:unhealthy, :high_error_rate}
metrics[:avg_latency] > metrics[:baseline_latency] * 1.5 ->
{:unhealthy, :high_latency}
metrics[:memory_usage] > get_memory_threshold(component_id) ->
{:unhealthy, :memory_pressure}
metrics[:throughput] < metrics[:baseline_throughput] * 0.8 ->
{:unhealthy, :low_throughput}
true ->
:healthy
end
end
defp create_rollback_snapshot(component_id, state) do
case Map.get(state.active_versions, component_id) do
nil ->
%{version: nil, config: nil, timestamp: System.system_time(:second)}
active_version ->
%{
version: active_version,
config: get_current_config(component_id),
registry_state: Registry.get_component_state(component_id),
timestamp: System.system_time(:second)
}
end
end
defp perform_rollback(component_id, snapshot) do
Logger.info("Performing rollback for #{component_id}")
try do
# Stop traffic to new version immediately
TrafficSplitter.set_split(component_id, 0)
# Restore previous version if available
case snapshot.version do
nil ->
# No previous version, disable component
Registry.disable_component(component_id)
previous_version ->
# Restore previous version
Registry.restore_component(component_id, previous_version, snapshot.registry_state)
end
# Reset traffic to 100% old version
TrafficSplitter.reset_split(component_id)
Logger.info("Rollback completed successfully for #{component_id}")
:ok
rescue
error ->
Logger.error("Rollback failed for #{component_id}: #{inspect(error)}")
{:error, error}
end
end
defp complete_rollout(component_id, state) do
Logger.info("Completing rollout for #{component_id}")
# Move staged version to active
case Map.get(state.staged_versions, component_id) do
nil ->
{:noreply, state}
staged_version ->
# Activate new version
Registry.activate_version(component_id, staged_version)
# Clean up rollout state
new_state = %{state |
active_versions: Map.put(state.active_versions, component_id, staged_version),
staged_versions: Map.delete(state.staged_versions, component_id),
rollout_configs: Map.delete(state.rollout_configs, component_id),
traffic_splits: Map.delete(state.traffic_splits, component_id)
}
Logger.info("Rollout completed successfully for #{component_id}")
{:noreply, new_state}
end
end
end
Implementation Timeline and Success Metrics
12-Week Implementation Schedule
Weeks 1-2: Foundation Components
- Native signature compilation system with ExDantic integration
- Core module and program architecture
- Provider integration framework foundation
- Success Metrics: Signature compilation <1ms, 100% DSPy compatibility
Weeks 3-4: Prediction and Types
- Prediction pipeline system with CoT implementation
- Advanced type system and validation engine
- Success Metrics: Prediction execution <2s, comprehensive type coverage
Weeks 5-6: Advanced Features
- Optimization and teleprompt systems
- Evaluation and metrics framework
- Success Metrics: Optimization convergence, comprehensive metrics collection
Weeks 7-8: Production Features
- Streaming and async operations
- Memory management and performance optimization
- Success Metrics: Memory efficiency >90%, streaming support
Weeks 9-10: Integration
- Complete Ash framework integration
- Distributed computing capabilities
- Success Metrics: Seamless Ash integration, clustering support
Weeks 11-12: Validation and Deployment
- Comprehensive testing and validation
- Production deployment preparation
- Success Metrics: All tests passing, production readiness
Performance Targets
- 10x Performance Improvement over Python bridge
- <100ms signature compilation time
- 50+ concurrent ML operations supported
- 99.9% uptime under production load
- <500MB memory baseline usage
- Sub-second hot code deployment
Compatibility Requirements
- 100% DSPy API compatibility for core features
- Complete provider ecosystem support (OpenAI, Anthropic, etc.)
- Seamless migration from Stage 1 Python bridge
- Backward compatibility with existing Stage 1 implementations
This technical specification provides the comprehensive foundation for implementing a production-ready, high-performance native Elixir DSPy system that exceeds the capabilities of the Python-based approach while maintaining full compatibility and extending the DSPy ecosystem with advanced features only possible in the Elixir/OTP environment.