← Back to Docs

STAGE 2 TECHNICAL SPECIFICATION

Documentation for STAGE_2_TECHNICAL_SPECIFICATION from the Dspex repository.

Stage 2: Native Implementation - Technical Specification

Executive Summary

Stage 2 implements a complete native Elixir DSPy system that eliminates the Python bridge dependency while providing superior performance, fault tolerance, and scalability. This specification is based on comprehensive analysis of DSPy internals, ExDantic integration capabilities, and advanced Elixir/OTP patterns optimized for ML workloads.

Core Innovation: Native Elixir implementation that maintains 100% DSPy API compatibility while leveraging OTP’s concurrency model, fault tolerance, and distributed computing capabilities to deliver 10x performance improvements over the Python bridge approach.

Architecture Overview

System Architecture Diagram

┌─────────────────────────────────────────────────────────────────────────────────┐
│                           Stage 2 Native Architecture                          │
├─────────────────────────────────────────────────────────────────────────────────┤
│                                                                                 │
│  ┌─────────────────┐  ┌─────────────────┐  ┌─────────────────┐  ┌──────────────┐│
│  │ Native Signature│  │ Module System   │  │ Provider        │  │ Advanced     ││
│  │ Compilation     │  │ & Programs      │  │ Integration     │  │ Features     ││
│  │ - ExDantic      │  │ - GenServers    │  │ - Native HTTP   │  │ - Teleprompt ││
│  │ - Type System   │  │ - Supervision   │  │ - Circuit Break │  │ - Evaluation ││
│  │ - Schema Gen    │  │ - State Mgmt    │  │ - Rate Limiting │  │ - Streaming  ││
│  └─────────────────┘  └─────────────────┘  └─────────────────┘  └──────────────┘│
│                                                                                 │
│  ┌─────────────────┐  ┌─────────────────┐  ┌─────────────────┐  ┌──────────────┐│
│  │ Prediction      │  │ Memory          │  │ Distributed     │  │ Production   ││
│  │ Pipelines       │  │ Management      │  │ Computing       │  │ Features     ││
│  │ - Chain of      │  │ - Backpressure  │  │ - Clustering    │  │ - Monitoring ││
│  │   Thought       │  │ - GC Strategy   │  │ - Load Balance  │  │ - Hot Deploy ││
│  │ - React Pattern │  │ - ETS Caching   │  │ - Failover      │  │ - Metrics    ││
│  └─────────────────┘  └─────────────────┘  └─────────────────┘  └──────────────┘│
│                                                                                 │
│  ┌─────────────────────────────────────────────────────────────────────────────┐│
│  │                          Ash Framework Integration                          ││
│  │  - Domain Modeling  - Resource Actions  - Query Engine  - Relationships    ││
│  └─────────────────────────────────────────────────────────────────────────────┘│
└─────────────────────────────────────────────────────────────────────────────────┘

Core Design Principles

  1. DSPy API Compatibility: 100% compatibility with existing DSPy signatures and patterns
  2. Performance First: 10x improvement over Python bridge through native Elixir implementation
  3. Fault Tolerance: OTP supervision trees for automatic recovery and error isolation
  4. Horizontal Scalability: Built-in clustering and distributed computing capabilities
  5. Production Readiness: Comprehensive monitoring, hot deployments, and operational features

Component 1: Native Signature Compilation System

1.1 Architecture Overview

Core Innovation: Replace Python-based signature parsing with native Elixir compilation that integrates deeply with ExDantic for superior type safety and performance.

Key Components:

  • DSPex.Signature.Native - Core signature behavior with compile-time processing
  • DSPex.Signature.ExDanticCompiler - ExDantic integration for type compilation
  • DSPex.Signature.SchemaGenerator - Multi-provider JSON schema generation
  • DSPex.Signature.Cache - High-performance signature caching with ETS
  • DSPex.Signature.Optimizer - Compile-time optimizations and analysis

1.2 DSPy Signature Analysis Integration

From DSPy signatures/signature.py Analysis:

DSPy signatures use a metaclass-based approach with string parsing for field definitions:

# DSPy Pattern
class QASignature(dspy.Signature):
    """Answer questions with reasoning."""
    question: str = dspy.InputField()
    answer: str = dspy.OutputField(desc="reasoning and answer")

Native Elixir Translation:

# Native Elixir Pattern with ExDantic Integration
defmodule QASignature do
  use DSPex.Signature.Native
  
  @doc "Answer questions with reasoning."
  signature question: :string -> answer: :string, desc: "reasoning and answer"
end

1.3 ExDantic Deep Integration

Schema Creation with Provider Optimization:

defmodule DSPex.Signature.ExDanticCompiler do
  @moduledoc """
  Compiles DSPy signatures into ExDantic schemas with provider-specific optimizations.
  """
  
  alias Exdantic.{Schema, TypeAdapter, Config}
  alias DSPex.Types.{MLTypes, ProviderTypes}
  
  def compile_signature(signature_ast, provider \\ :openai) do
    {input_fields, output_fields} = parse_signature_ast(signature_ast)
    
    # Create ExDantic schemas with provider optimizations
    input_schema = create_input_schema(input_fields, provider)
    output_schema = create_output_schema(output_fields, provider)
    
    # Generate provider-specific JSON schemas
    json_schemas = generate_provider_schemas(input_schema, output_schema, provider)
    
    # Create validation pipeline
    validation_pipeline = create_validation_pipeline(input_schema, output_schema)
    
    %DSPex.Signature.Compiled{
      input_schema: input_schema,
      output_schema: output_schema,
      json_schemas: json_schemas,
      validation_pipeline: validation_pipeline,
      provider_optimizations: get_provider_optimizations(provider)
    }
  end
  
  defp create_input_schema(fields, provider) do
    # Use ExDantic's advanced features for ML-specific validation
    schema_config = %{
      title: "InputSchema",
      description: "Input validation for ML operations",
      provider_hints: get_provider_hints(provider),
      validation_config: %{
        coercion_enabled: true,
        strict_mode: false,
        custom_validators: get_ml_validators()
      }
    }
    
    field_definitions = Enum.map(fields, fn {name, type, constraints} ->
      {name, %{
        type: convert_to_exdantic_type(type),
        constraints: convert_constraints(constraints),
        metadata: %{
          ml_type: classify_ml_type(type),
          provider_optimization: get_field_optimization(type, provider)
        }
      }}
    end)
    
    Exdantic.create_model(field_definitions, schema_config)
  end
  
  defp create_output_schema(fields, provider) do
    # Enhanced output validation with ML-specific patterns
    schema_config = %{
      title: "OutputSchema", 
      description: "Output validation for ML operations",
      provider_hints: get_provider_hints(provider),
      validation_config: %{
        coercion_enabled: true,
        quality_assessment: true,
        structured_output_validation: true
      }
    }
    
    field_definitions = Enum.map(fields, fn {name, type, constraints} ->
      {name, %{
        type: convert_to_exdantic_type(type),
        constraints: convert_constraints(constraints),
        validators: get_output_validators(type),
        metadata: %{
          quality_metrics: get_quality_metrics(type),
          extraction_patterns: get_extraction_patterns(type, provider)
        }
      }}
    end)
    
    Exdantic.create_model(field_definitions, schema_config)
  end
  
  defp generate_provider_schemas(input_schema, output_schema, provider) do
    case provider do
      :openai ->
        %{
          function_calling: generate_openai_function_schema(input_schema, output_schema),
          structured_output: generate_openai_structured_schema(output_schema),
          json_mode: generate_openai_json_schema(output_schema)
        }
      
      :anthropic ->
        %{
          tool_calling: generate_anthropic_tool_schema(input_schema, output_schema),
          structured_output: generate_anthropic_structured_schema(output_schema)
        }
      
      :generic ->
        %{
          json_schema: Exdantic.JsonSchema.generate_schema(output_schema),
          validation_schema: Exdantic.JsonSchema.generate_validation_schema(input_schema)
        }
    end
  end
end

1.4 High-Performance Caching System

ETS-Based Signature Cache with Intelligent Eviction:

defmodule DSPex.Signature.Cache do
  use GenServer
  
  @table_name :signature_cache
  @hot_signatures_table :hot_signatures
  @compilation_locks_table :compilation_locks
  
  defstruct [
    :max_size,
    :current_size,
    :hit_count,
    :miss_count,
    :eviction_strategy,
    :compilation_locks
  ]
  
  def start_link(opts) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def init(opts) do
    # Create ETS tables optimized for concurrent access
    :ets.new(@table_name, [
      :named_table, 
      :public, 
      {:read_concurrency, true},
      {:write_concurrency, true},
      {:decentralized_counters, true}
    ])
    
    :ets.new(@hot_signatures_table, [
      :named_table,
      :public,
      :ordered_set,
      {:read_concurrency, true}
    ])
    
    :ets.new(@compilation_locks_table, [
      :named_table,
      :public,
      {:read_concurrency, true},
      {:write_concurrency, true}
    ])
    
    state = %__MODULE__{
      max_size: Keyword.get(opts, :max_size, 10_000),
      current_size: 0,
      hit_count: 0,
      miss_count: 0,
      eviction_strategy: Keyword.get(opts, :eviction_strategy, :lru),
      compilation_locks: %{}
    }
    
    # Start periodic maintenance
    :timer.send_interval(300_000, :maintenance)  # 5 minutes
    
    {:ok, state}
  end
  
  @doc """
  Get compiled signature with high-performance lookup.
  Returns {:ok, compiled} | {:error, :not_cached} | {:error, :compiling}
  """
  def get_compiled(signature_hash) do
    case :ets.lookup(@table_name, signature_hash) do
      [{^signature_hash, compiled, access_count, last_access}] ->
        # Update access statistics atomically
        new_access = access_count + 1
        new_last_access = System.monotonic_time(:millisecond)
        
        :ets.update_element(@table_name, signature_hash, [
          {3, new_access},
          {4, new_last_access}
        ])
        
        # Update hot signatures tracking
        :ets.insert(@hot_signatures_table, {new_last_access, signature_hash, new_access})
        
        {:ok, compiled}
      
      [] ->
        # Check if compilation is in progress
        case :ets.lookup(@compilation_locks_table, signature_hash) do
          [{^signature_hash, _lock_ref, _timestamp}] ->
            {:error, :compiling}
          
          [] ->
            {:error, :not_cached}
        end
    end
  end
  
  @doc """
  Store compiled signature with intelligent caching.
  """
  def store_compiled(signature_hash, compiled) do
    GenServer.call(__MODULE__, {:store_compiled, signature_hash, compiled})
  end
  
  def handle_call({:store_compiled, signature_hash, compiled}, _from, state) do
    current_time = System.monotonic_time(:millisecond)
    
    # Check if we need to evict entries
    new_state = maybe_evict_entries(state)
    
    # Store the compiled signature
    :ets.insert(@table_name, {signature_hash, compiled, 1, current_time})
    :ets.insert(@hot_signatures_table, {current_time, signature_hash, 1})
    
    # Update size tracking
    updated_state = %{new_state | current_size: new_state.current_size + 1}
    
    {:reply, :ok, updated_state}
  end
  
  @doc """
  Acquire compilation lock to prevent duplicate work.
  """
  def acquire_compilation_lock(signature_hash) do
    lock_ref = make_ref()
    timestamp = System.monotonic_time(:millisecond)
    
    case :ets.insert_new(@compilation_locks_table, {signature_hash, lock_ref, timestamp}) do
      true ->
        {:ok, lock_ref}
      
      false ->
        {:error, :already_locked}
    end
  end
  
  @doc """
  Release compilation lock.
  """
  def release_compilation_lock(signature_hash, lock_ref) do
    case :ets.lookup(@compilation_locks_table, signature_hash) do
      [{^signature_hash, ^lock_ref, _timestamp}] ->
        :ets.delete(@compilation_locks_table, signature_hash)
        :ok
      
      _ ->
        {:error, :invalid_lock}
    end
  end
  
  def handle_info(:maintenance, state) do
    # Perform cache maintenance
    new_state = perform_cache_maintenance(state)
    {:noreply, new_state}
  end
  
  defp maybe_evict_entries(state) do
    if state.current_size >= state.max_size do
      evict_entries(state)
    else
      state
    end
  end
  
  defp evict_entries(state) do
    eviction_count = div(state.max_size, 10)  # Evict 10% of entries
    
    case state.eviction_strategy do
      :lru ->
        evict_lru_entries(eviction_count)
      
      :lfu ->
        evict_lfu_entries(eviction_count)
      
      :ttl ->
        evict_expired_entries()
    end
    
    %{state | current_size: state.current_size - eviction_count}
  end
  
  defp evict_lru_entries(count) do
    # Find least recently used entries
    oldest_entries = :ets.select(@hot_signatures_table, [
      {{'$1', '$2', '$3'}, [], [['$1', '$2', '$3']]}
    ])
    |> Enum.sort()
    |> Enum.take(count)
    
    Enum.each(oldest_entries, fn [_timestamp, signature_hash, _access_count] ->
      :ets.delete(@table_name, signature_hash)
      :ets.match_delete(@hot_signatures_table, {'_', signature_hash, '_'})
    end)
  end
end

Component 2: Core Module and Program Architecture

2.1 Native Module System

From DSPy primitives/module.py Analysis:

DSPy modules use a class-based approach with parameter tracking and forward method definitions. The native Elixir implementation leverages GenServers for stateful operations and process isolation.

Architecture:

defmodule DSPex.Module.Native do
  @moduledoc """
  Native Elixir implementation of DSPy module system using GenServer for state management.
  """
  
  defmacro __using__(opts) do
    quote do
      use GenServer
      import DSPex.Module.Native
      
      # Module registration
      Module.register_attribute(__MODULE__, :module_parameters, accumulate: true)
      Module.register_attribute(__MODULE__, :module_predictors, accumulate: true)
      Module.register_attribute(__MODULE__, :module_metadata, accumulate: false)
      
      @before_compile DSPex.Module.Native
    end
  end
  
  defmacro parameter(name, type, opts \\ []) do
    quote do
      @module_parameters {unquote(name), unquote(type), unquote(opts)}
    end
  end
  
  defmacro predictor(name, signature_module, opts \\ []) do
    quote do
      @module_predictors {unquote(name), unquote(signature_module), unquote(opts)}
    end
  end
  
  defmacro __before_compile__(env) do
    parameters = Module.get_attribute(env.module, :module_parameters)
    predictors = Module.get_attribute(env.module, :module_predictors)
    
    quote do
      @module_metadata %{
        parameters: unquote(Macro.escape(parameters)),
        predictors: unquote(Macro.escape(predictors)),
        module: __MODULE__
      }
      
      # Generate parameter access functions
      unquote(generate_parameter_functions(parameters))
      
      # Generate predictor access functions
      unquote(generate_predictor_functions(predictors))
      
      # GenServer callbacks
      def init(opts) do
        state = %DSPex.Module.State{
          module: __MODULE__,
          parameters: initialize_parameters(unquote(Macro.escape(parameters)), opts),
          predictors: initialize_predictors(unquote(Macro.escape(predictors)), opts),
          execution_history: [],
          optimization_state: %{}
        }
        
        {:ok, state}
      end
      
      def handle_call({:forward, inputs}, from, state) do
        # Execute forward pass with full state tracking
        task = Task.async(fn ->
          execute_forward_pass(inputs, state)
        end)
        
        # Store task for monitoring
        new_pending = Map.put(state.pending_executions || %{}, task.ref, from)
        
        {:noreply, %{state | pending_executions: new_pending}}
      end
      
      def handle_info({ref, result}, state) when is_reference(ref) do
        # Handle completed forward pass
        case Map.pop(state.pending_executions || %{}, ref) do
          {from, remaining_pending} when from != nil ->
            GenServer.reply(from, result)
            
            # Update execution history
            new_history = [result | Enum.take(state.execution_history, 99)]
            
            {:noreply, %{state | 
              pending_executions: remaining_pending,
              execution_history: new_history
            }}
          
          {nil, _} ->
            {:noreply, state}
        end
      end
      
      # Allow modules to override forward behavior
      defoverridable handle_call: 3
    end
  end
  
  defp generate_parameter_functions(parameters) do
    Enum.map(parameters, fn {name, type, opts} ->
      quote do
        def unquote(:"get_#{name}")(pid) do
          GenServer.call(pid, {:get_parameter, unquote(name)})
        end
        
        def unquote(:"set_#{name}")(pid, value) do
          GenServer.call(pid, {:set_parameter, unquote(name), value})
        end
      end
    end)
  end
  
  defp generate_predictor_functions(predictors) do
    Enum.map(predictors, fn {name, signature_module, opts} ->
      quote do
        def unquote(:"predict_#{name}")(pid, inputs) do
          GenServer.call(pid, {:predict, unquote(name), inputs})
        end
      end
    end)
  end
end

2.2 Program Execution Engine

Advanced Program Orchestration:

defmodule DSPex.Program.ExecutionEngine do
  use GenServer
  
  alias DSPex.Module.Registry
  alias DSPex.Adapters.ProviderManager
  alias DSPex.Telemetry.Tracker
  
  defstruct [
    :program_id,
    :modules,
    :execution_graph,
    :current_execution,
    :optimization_state,
    :performance_metrics
  ]
  
  def execute_program(program_id, inputs, opts \\ []) do
    GenServer.call(via_name(program_id), {:execute, inputs, opts})
  end
  
  def handle_call({:execute, inputs, opts}, from, state) do
    execution_id = generate_execution_id()
    
    # Start telemetry span
    :telemetry.span([:dspex, :program, :execution], 
      %{program_id: state.program_id, execution_id: execution_id}, fn ->
      
      # Execute with full tracking
      task = Task.async(fn ->
        execute_program_with_tracking(inputs, opts, state)
      end)
      
      monitor_ref = Process.monitor(task.pid)
      
      execution_context = %{
        execution_id: execution_id,
        task: task,
        monitor_ref: monitor_ref,
        from: from,
        start_time: System.monotonic_time(:microsecond),
        inputs: inputs,
        opts: opts
      }
      
      new_state = %{state | 
        current_execution: execution_context,
        performance_metrics: update_execution_start_metrics(state.performance_metrics)
      }
      
      {:noreply, new_state}
    end)
  end
  
  defp execute_program_with_tracking(inputs, opts, state) do
    # Validate inputs against program signature
    case validate_program_inputs(inputs, state) do
      {:ok, validated_inputs} ->
        # Execute module graph in dependency order
        execute_module_graph(validated_inputs, opts, state)
      
      {:error, validation_errors} ->
        {:error, {:input_validation_failed, validation_errors}}
    end
  rescue
    error ->
      {:error, {:execution_error, error}}
  end
  
  defp execute_module_graph(inputs, opts, state) do
    execution_plan = build_execution_plan(state.execution_graph, inputs)
    
    # Execute modules in parallel where possible
    results = execute_modules_parallel(execution_plan, opts, state)
    
    # Aggregate final results
    case aggregate_results(results, state) do
      {:ok, final_result} ->
        {:ok, final_result}
      
      {:error, reason} ->
        {:error, reason}
    end
  end
  
  defp execute_modules_parallel(execution_plan, opts, state) do
    # Group modules by execution level (topological sort)
    execution_levels = group_by_execution_level(execution_plan)
    
    # Execute each level in sequence, modules within level in parallel
    Enum.reduce_while(execution_levels, %{}, fn {level, modules}, acc_results ->
      level_inputs = prepare_level_inputs(modules, acc_results)
      
      # Execute all modules in this level concurrently
      level_tasks = Enum.map(modules, fn module_spec ->
        Task.async(fn ->
          execute_module(module_spec, level_inputs[module_spec.name], opts, state)
        end)
      end)
      
      # Wait for all modules in level to complete
      case Task.await_many(level_tasks, get_timeout(opts)) do
        results when is_list(results) ->
          # Check if all results are successful
          case extract_successful_results(results, modules) do
            {:ok, level_results} ->
              {:cont, Map.merge(acc_results, level_results)}
            
            {:error, failed_modules} ->
              {:halt, {:error, {:module_execution_failed, level, failed_modules}}}
          end
        
        {:timeout, _} ->
          {:halt, {:error, {:execution_timeout, level}}}
      end
    end)
  end
  
  defp execute_module(module_spec, inputs, opts, state) do
    # Get or start module process
    case Registry.get_or_start_module(module_spec.name, module_spec.config) do
      {:ok, module_pid} ->
        # Execute module with monitoring
        :telemetry.span([:dspex, :module, :execution],
          %{module: module_spec.name, program: state.program_id}, fn ->
          
          result = GenServer.call(module_pid, {:forward, inputs}, get_module_timeout(opts))
          {result, %{module: module_spec.name}}
        end)
      
      {:error, reason} ->
        {:error, {:module_start_failed, module_spec.name, reason}}
    end
  end
end

Component 3: Provider Integration Framework

3.1 Native HTTP Client Implementation

High-Performance Provider Clients:

defmodule DSPex.Providers.NativeClient do
  @moduledoc """
  High-performance native HTTP client for ML providers with advanced features.
  """
  
  use GenServer
  
  alias DSPex.Providers.{RateLimiter, CircuitBreaker, RetryStrategy}
  alias DSPex.Telemetry.Tracker
  
  defstruct [
    :provider_name,
    :base_url,
    :auth_config,
    :connection_pool,
    :rate_limiter,
    :circuit_breaker,
    :retry_strategy,
    :request_middleware,
    :response_middleware
  ]
  
  def start_link([provider_name, config]) do
    GenServer.start_link(__MODULE__, [provider_name, config], 
      name: via_name(provider_name))
  end
  
  def init([provider_name, config]) do
    # Initialize HTTP connection pool
    pool_config = [
      name: pool_name(provider_name),
      size: config[:pool_size] || 20,
      max_overflow: config[:max_overflow] || 10,
      checkout_timeout: config[:checkout_timeout] || 30_000
    ]
    
    {:ok, _pool} = :hackney_pool.start_pool(pool_name(provider_name), pool_config)
    
    state = %__MODULE__{
      provider_name: provider_name,
      base_url: config[:base_url],
      auth_config: config[:auth],
      connection_pool: pool_name(provider_name),
      rate_limiter: config[:rate_limiter],
      circuit_breaker: config[:circuit_breaker],
      retry_strategy: RetryStrategy.new(provider_name, config[:retry] || %{}),
      request_middleware: config[:request_middleware] || [],
      response_middleware: config[:response_middleware] || []
    }
    
    {:ok, state}
  end
  
  @doc """
  Execute HTTP request with full provider integration.
  """
  def request(provider_name, method, path, body \\ nil, headers \\ [], opts \\ []) do
    GenServer.call(via_name(provider_name), 
      {:request, method, path, body, headers, opts})
  end
  
  def handle_call({:request, method, path, body, headers, opts}, from, state) do
    # Execute request with full middleware pipeline
    task = Task.async(fn ->
      execute_request_with_middleware(method, path, body, headers, opts, state)
    end)
    
    monitor_ref = Process.monitor(task.pid)
    
    # Store request context
    request_context = %{
      task: task,
      monitor_ref: monitor_ref,
      from: from,
      start_time: System.monotonic_time(:microsecond),
      method: method,
      path: path
    }
    
    new_pending = Map.put(state.pending_requests || %{}, monitor_ref, request_context)
    
    {:noreply, %{state | pending_requests: new_pending}}
  end
  
  def handle_info({:DOWN, monitor_ref, :process, _pid, result}, state) do
    case Map.pop(state.pending_requests || %{}, monitor_ref) do
      {request_context, remaining_pending} when request_context != nil ->
        # Calculate request duration
        duration = System.monotonic_time(:microsecond) - request_context.start_time
        
        # Emit telemetry
        :telemetry.execute([:dspex, :provider, :request], 
          %{duration: duration}, 
          %{
            provider: state.provider_name,
            method: request_context.method,
            path: request_context.path,
            result: categorize_result(result)
          }
        )
        
        # Reply to caller
        GenServer.reply(request_context.from, result)
        
        {:noreply, %{state | pending_requests: remaining_pending}}
      
      {nil, _} ->
        {:noreply, state}
    end
  end
  
  defp execute_request_with_middleware(method, path, body, headers, opts, state) do
    # Build full URL
    url = build_url(state.base_url, path)
    
    # Apply request middleware pipeline
    {processed_body, processed_headers} = 
      apply_request_middleware(body, headers, state.request_middleware, state)
    
    # Add authentication
    auth_headers = build_auth_headers(state.auth_config)
    final_headers = merge_headers(processed_headers, auth_headers)
    
    # Execute with retry strategy
    RetryStrategy.execute_with_retry(fn ->
      execute_http_request(method, url, processed_body, final_headers, opts, state)
    end, state.retry_strategy)
  end
  
  defp execute_http_request(method, url, body, headers, opts, state) do
    # Check rate limiter
    case RateLimiter.check_rate(state.rate_limiter) do
      :ok ->
        # Check circuit breaker
        case CircuitBreaker.check_circuit(state.circuit_breaker) do
          :closed ->
            perform_http_request(method, url, body, headers, opts, state)
          
          :open ->
            {:error, :circuit_breaker_open}
          
          :half_open ->
            # Allow request but monitor for failure
            result = perform_http_request(method, url, body, headers, opts, state)
            CircuitBreaker.record_result(state.circuit_breaker, result)
            result
        end
      
      {:error, :rate_limited} ->
        {:error, :rate_limited}
    end
  end
  
  defp perform_http_request(method, url, body, headers, opts, state) do
    hackney_opts = [
      pool: state.connection_pool,
      timeout: opts[:timeout] || 30_000,
      recv_timeout: opts[:recv_timeout] || 30_000,
      follow_redirect: opts[:follow_redirect] || false,
      with_body: true
    ]
    
    case :hackney.request(method, url, headers, body, hackney_opts) do
      {:ok, status_code, response_headers, response_body} ->
        # Apply response middleware
        processed_response = apply_response_middleware(
          status_code, response_headers, response_body, state.response_middleware, state
        )
        
        case status_code do
          code when code >= 200 and code < 300 ->
            {:ok, processed_response}
          
          code when code >= 400 and code < 500 ->
            {:error, {:client_error, code, processed_response}}
          
          code when code >= 500 ->
            {:error, {:server_error, code, processed_response}}
          
          code ->
            {:error, {:unknown_status, code, processed_response}}
        end
      
      {:error, reason} ->
        {:error, {:http_error, reason}}
    end
  end
end

3.2 Provider-Specific Adapters

OpenAI Native Integration:

defmodule DSPex.Providers.OpenAI do
  @moduledoc """
  Native OpenAI provider integration with advanced features.
  """
  
  use DSPex.Providers.ProviderBehaviour
  
  alias DSPex.Providers.{NativeClient, ResponseParser}
  alias DSPex.Types.{Conversion, Validation}
  
  @base_url "https://api.openai.com/v1"
  @supported_models [
    "gpt-4", "gpt-4-turbo", "gpt-4o", "gpt-4o-mini",
    "gpt-3.5-turbo", "gpt-3.5-turbo-16k"
  ]
  
  def execute_signature(signature, inputs, config) do
    with {:ok, validated_inputs} <- validate_inputs(signature, inputs),
         {:ok, request_payload} <- build_request_payload(signature, validated_inputs, config),
         {:ok, response} <- make_api_request(request_payload, config),
         {:ok, parsed_output} <- parse_response(response, signature),
         {:ok, validated_output} <- validate_outputs(signature, parsed_output) do
      {:ok, validated_output}
    else
      {:error, reason} -> {:error, reason}
    end
  end
  
  defp build_request_payload(signature, inputs, config) do
    # Choose the best approach based on signature complexity
    case determine_request_strategy(signature, config) do
      :function_calling ->
        build_function_calling_request(signature, inputs, config)
      
      :structured_output ->
        build_structured_output_request(signature, inputs, config)
      
      :json_mode ->
        build_json_mode_request(signature, inputs, config)
      
      :standard_completion ->
        build_completion_request(signature, inputs, config)
    end
  end
  
  defp build_function_calling_request(signature, inputs, config) do
    # Generate OpenAI function schema from signature
    function_schema = %{
      name: signature.name || "execute",
      description: signature.description || "Execute ML operation",
      parameters: %{
        type: "object",
        properties: generate_input_properties(signature.input_schema),
        required: get_required_fields(signature.input_schema)
      }
    }
    
    # Build messages with function calling
    messages = [
      %{
        role: "system",
        content: build_system_prompt(signature, config)
      },
      %{
        role: "user", 
        content: build_user_prompt(signature, inputs, config)
      }
    ]
    
    payload = %{
      model: config[:model] || "gpt-4",
      messages: messages,
      tools: [%{type: "function", function: function_schema}],
      tool_choice: %{type: "function", function: %{name: function_schema.name}},
      temperature: config[:temperature] || 0.7,
      max_tokens: config[:max_tokens] || 2048
    }
    
    {:ok, payload}
  end
  
  defp build_structured_output_request(signature, inputs, config) do
    # Use OpenAI's structured output feature
    response_schema = generate_response_schema(signature.output_schema)
    
    messages = [
      %{
        role: "system",
        content: build_system_prompt(signature, config)
      },
      %{
        role: "user",
        content: build_user_prompt(signature, inputs, config)
      }
    ]
    
    payload = %{
      model: config[:model] || "gpt-4o",
      messages: messages,
      response_format: %{
        type: "json_schema",
        json_schema: %{
          name: "response",
          schema: response_schema,
          strict: true
        }
      },
      temperature: config[:temperature] || 0.7,
      max_tokens: config[:max_tokens] || 2048
    }
    
    {:ok, payload}
  end
  
  defp make_api_request(payload, config) do
    headers = [
      {"Content-Type", "application/json"},
      {"Authorization", "Bearer #{config[:api_key]}"}
    ]
    
    body = Jason.encode!(payload)
    
    case NativeClient.request(:openai, :post, "/chat/completions", body, headers) do
      {:ok, response} ->
        {:ok, response}
      
      {:error, reason} ->
        {:error, {:api_request_failed, reason}}
    end
  end
  
  defp parse_response(response, signature) do
    case Jason.decode(response.body) do
      {:ok, %{"choices" => [choice | _]} = response_data} ->
        parse_choice_content(choice, signature, response_data)
      
      {:ok, %{"error" => error}} ->
        {:error, {:api_error, error}}
      
      {:error, decode_error} ->
        {:error, {:json_decode_error, decode_error}}
    end
  end
  
  defp parse_choice_content(choice, signature, response_data) do
    cond do
      # Function calling response
      tool_calls = choice["message"]["tool_calls"] ->
        parse_function_calling_response(tool_calls, signature)
      
      # Structured output or JSON mode
      content = choice["message"]["content"] ->
        parse_content_response(content, signature)
      
      true ->
        {:error, :no_parseable_content}
    end
  end
  
  defp parse_function_calling_response([tool_call | _], signature) do
    case tool_call do
      %{"function" => %{"arguments" => arguments_json}} ->
        case Jason.decode(arguments_json) do
          {:ok, arguments} ->
            # Validate against output schema
            {:ok, arguments}
          
          {:error, reason} ->
            {:error, {:function_arguments_decode_error, reason}}
        end
      
      _ ->
        {:error, :invalid_function_call_format}
    end
  end
  
  defp parse_content_response(content, signature) do
    # Try to extract JSON from content
    case extract_json_from_content(content) do
      {:ok, json_data} ->
        {:ok, json_data}
      
      {:error, _} ->
        # Fallback to structured extraction
        extract_structured_data(content, signature)
    end
  end
  
  defp validate_outputs(signature, outputs) do
    case Validation.validate_data(outputs, signature.output_schema) do
      {:ok, validated} ->
        {:ok, validated}
      
      {:error, validation_errors} ->
        {:error, {:output_validation_failed, validation_errors}}
    end
  end
  
  # Helper functions for schema generation and prompt building
  defp generate_input_properties(input_schema) do
    # Convert ExDantic schema to OpenAI function parameters
    Conversion.exdantic_to_openai_properties(input_schema)
  end
  
  defp generate_response_schema(output_schema) do
    # Convert ExDantic schema to OpenAI structured output schema
    Conversion.exdantic_to_openai_schema(output_schema)
  end
  
  defp build_system_prompt(signature, config) do
    base_prompt = signature.description || "You are a helpful AI assistant."
    
    case config[:chain_of_thought] do
      true ->
        base_prompt <> "\n\nThink step by step and provide detailed reasoning."
      
      false ->
        base_prompt
      
      nil ->
        if signature.requires_reasoning? do
          base_prompt <> "\n\nProvide clear reasoning for your response."
        else
          base_prompt
        end
    end
  end
  
  defp build_user_prompt(signature, inputs, config) do
    # Generate dynamic prompt based on signature and inputs
    prompt_parts = Enum.map(signature.input_fields, fn field ->
      value = Map.get(inputs, field.name)
      "#{field.description || field.name}: #{format_input_value(value, field.type)}"
    end)
    
    Enum.join(prompt_parts, "\n")
  end
end

Component 4: Prediction Pipeline System

4.1 Native Prediction Engine

From DSPy predict/predict.py Analysis:

DSPy’s Predict class handles signature execution with provider interaction. The native Elixir implementation uses GenServer-based execution with comprehensive monitoring.

defmodule DSPex.Predict.Engine do
  @moduledoc """
  Native prediction engine with advanced execution strategies.
  """
  
  use GenServer
  
  alias DSPex.Signature.{Registry, Cache}
  alias DSPex.Providers.ProviderManager
  alias DSPex.Execution.{Context, Monitor}
  
  defstruct [
    :signature,
    :provider,
    :config,
    :execution_history,
    :performance_metrics,
    :optimization_state
  ]
  
  def start_link([signature, provider, config]) do
    GenServer.start_link(__MODULE__, [signature, provider, config])
  end
  
  def init([signature, provider, config]) do
    state = %__MODULE__{
      signature: signature,
      provider: provider,
      config: config,
      execution_history: :queue.new(),
      performance_metrics: %{},
      optimization_state: %{}
    }
    
    {:ok, state}
  end
  
  @doc """
  Execute prediction with comprehensive monitoring and optimization.
  """
  def predict(pid, inputs, opts \\ []) do
    GenServer.call(pid, {:predict, inputs, opts})
  end
  
  def handle_call({:predict, inputs, opts}, from, state) do
    execution_id = generate_execution_id()
    
    # Start execution with telemetry span
    :telemetry.span([:dspex, :predict, :execution],
      %{
        signature: state.signature.name,
        provider: state.provider,
        execution_id: execution_id
      }, fn ->
      
      # Execute prediction with full monitoring
      task = Task.async(fn ->
        execute_prediction_with_monitoring(inputs, opts, state)
      end)
      
      monitor_ref = Process.monitor(task.pid)
      
      execution_context = %Context{
        execution_id: execution_id,
        task: task,
        monitor_ref: monitor_ref,
        from: from,
        start_time: System.monotonic_time(:microsecond),
        inputs: inputs,
        opts: opts
      }
      
      new_pending = Map.put(state.pending_executions || %{}, monitor_ref, execution_context)
      
      {:noreply, %{state | pending_executions: new_pending}}
    end)
  end
  
  def handle_info({:DOWN, monitor_ref, :process, _pid, result}, state) do
    case Map.pop(state.pending_executions || %{}, monitor_ref) do
      {execution_context, remaining_pending} when execution_context != nil ->
        # Calculate execution metrics
        duration = System.monotonic_time(:microsecond) - execution_context.start_time
        
        # Update execution history
        history_entry = %{
          execution_id: execution_context.execution_id,
          inputs: execution_context.inputs,
          result: result,
          duration: duration,
          timestamp: System.system_time(:millisecond)
        }
        
        new_history = add_to_history(state.execution_history, history_entry)
        
        # Update performance metrics
        new_metrics = update_performance_metrics(state.performance_metrics, history_entry)
        
        # Emit telemetry
        :telemetry.execute([:dspex, :predict, :completed],
          %{duration: duration},
          %{
            signature: state.signature.name,
            provider: state.provider,
            result: categorize_result(result)
          }
        )
        
        # Reply to caller
        GenServer.reply(execution_context.from, result)
        
        new_state = %{state |
          pending_executions: remaining_pending,
          execution_history: new_history,
          performance_metrics: new_metrics
        }
        
        {:noreply, new_state}
      
      {nil, _} ->
        {:noreply, state}
    end
  end
  
  defp execute_prediction_with_monitoring(inputs, opts, state) do
    # Get compiled signature from cache
    case Cache.get_compiled(state.signature.hash) do
      {:ok, compiled_signature} ->
        execute_with_compiled_signature(inputs, opts, compiled_signature, state)
      
      {:error, :not_cached} ->
        # Compile signature on demand
        case compile_signature_on_demand(state.signature) do
          {:ok, compiled_signature} ->
            execute_with_compiled_signature(inputs, opts, compiled_signature, state)
          
          {:error, reason} ->
            {:error, {:signature_compilation_failed, reason}}
        end
      
      {:error, reason} ->
        {:error, {:signature_cache_error, reason}}
    end
  end
  
  defp execute_with_compiled_signature(inputs, opts, compiled_signature, state) do
    # Apply execution strategy
    execution_strategy = determine_execution_strategy(compiled_signature, opts, state)
    
    case execution_strategy do
      :standard ->
        execute_standard_prediction(inputs, compiled_signature, state)
      
      :chain_of_thought ->
        execute_chain_of_thought(inputs, compiled_signature, state)
      
      :multi_provider ->
        execute_multi_provider(inputs, compiled_signature, state)
      
      :optimized ->
        execute_optimized_prediction(inputs, compiled_signature, state)
    end
  end
  
  defp execute_standard_prediction(inputs, compiled_signature, state) do
    # Standard prediction execution
    case ProviderManager.execute_signature(
      state.provider, 
      compiled_signature, 
      inputs, 
      state.config
    ) do
      {:ok, result} ->
        {:ok, result}
      
      {:error, reason} ->
        {:error, {:provider_execution_failed, reason}}
    end
  end
  
  defp execute_chain_of_thought(inputs, compiled_signature, state) do
    # Multi-step chain of thought execution
    cot_config = Map.merge(state.config, %{
      chain_of_thought: true,
      reasoning_steps: true,
      intermediate_validation: true
    })
    
    case ProviderManager.execute_signature(
      state.provider,
      compiled_signature,
      inputs,
      cot_config
    ) do
      {:ok, result} ->
        # Validate reasoning chain
        case validate_reasoning_chain(result) do
          {:ok, validated_result} ->
            {:ok, validated_result}
          
          {:error, validation_errors} ->
            # Retry with improved prompting
            retry_with_improved_prompting(inputs, compiled_signature, state, validation_errors)
        end
      
      {:error, reason} ->
        {:error, {:chain_of_thought_failed, reason}}
    end
  end
  
  defp execute_multi_provider(inputs, compiled_signature, state) do
    # Execute on multiple providers for comparison
    providers = get_configured_providers(state.config)
    
    # Execute in parallel
    tasks = Enum.map(providers, fn provider ->
      Task.async(fn ->
        ProviderManager.execute_signature(provider, compiled_signature, inputs, state.config)
      end)
    end)
    
    # Wait for results with timeout
    case Task.await_many(tasks, 30_000) do
      results when is_list(results) ->
        # Analyze and select best result
        select_best_result(results, providers, compiled_signature)
      
      {:timeout, _} ->
        {:error, :multi_provider_timeout}
    end
  end
  
  defp determine_execution_strategy(compiled_signature, opts, state) do
    cond do
      opts[:force_strategy] ->
        opts[:force_strategy]
      
      compiled_signature.requires_reasoning? ->
        :chain_of_thought
      
      length(get_configured_providers(state.config)) > 1 ->
        :multi_provider
      
      should_use_optimization?(state.performance_metrics) ->
        :optimized
      
      true ->
        :standard
    end
  end
end

4.2 Chain of Thought Implementation

Native CoT with Step Validation:

defmodule DSPex.Predict.ChainOfThought do
  @moduledoc """
  Native Chain of Thought implementation with step-by-step validation.
  """
  
  alias DSPex.Signature.Enhanced
  alias DSPex.Validation.ReasoningChain
  
  def execute(signature, inputs, config) do
    # Build enhanced signature for CoT
    cot_signature = build_cot_signature(signature)
    
    # Execute with reasoning tracking
    case execute_with_reasoning(cot_signature, inputs, config) do
      {:ok, result} ->
        validate_and_extract_reasoning(result, signature)
      
      {:error, reason} ->
        {:error, reason}
    end
  end
  
  defp build_cot_signature(original_signature) do
    # Enhance signature with reasoning fields
    Enhanced.add_reasoning_fields(original_signature, %{
      reasoning_steps: %{
        type: :list,
        item_type: :reasoning_step,
        description: "Step-by-step reasoning process"
      },
      confidence: %{
        type: :confidence_score,
        description: "Confidence in the reasoning and conclusion"
      }
    })
  end
  
  defp execute_with_reasoning(cot_signature, inputs, config) do
    # Build CoT-specific prompt
    cot_prompt = build_cot_prompt(cot_signature, inputs)
    
    # Execute with enhanced configuration
    enhanced_config = Map.merge(config, %{
      temperature: config[:temperature] || 0.3,  # Lower temperature for reasoning
      max_tokens: config[:max_tokens] || 4096,   # More tokens for reasoning
      reasoning_prompt: cot_prompt,
      step_validation: true
    })
    
    DSPex.Providers.ProviderManager.execute_signature(
      config[:provider] || :openai,
      cot_signature,
      inputs,
      enhanced_config
    )
  end
  
  defp build_cot_prompt(signature, inputs) do
    base_description = signature.description || ""
    
    """
    #{base_description}
    
    Think step by step and provide your reasoning process. For each step:
    1. State what you're thinking about
    2. Explain your reasoning
    3. Identify any assumptions you're making
    4. Note any uncertainties
    
    Structure your response to include:
    - Clear reasoning steps
    - Logical connections between steps
    - A confidence assessment
    - The final answer based on your reasoning
    
    Be thorough but concise in your reasoning.
    """
  end
  
  defp validate_and_extract_reasoning(result, original_signature) do
    case ReasoningChain.validate_reasoning(result) do
      {:ok, validated_reasoning} ->
        # Extract final answer according to original signature
        extract_final_answer(validated_reasoning, original_signature)
      
      {:error, validation_errors} ->
        {:error, {:reasoning_validation_failed, validation_errors}}
    end
  end
  
  defp extract_final_answer(reasoning_result, original_signature) do
    # Extract fields that match the original signature
    final_answer = Enum.reduce(original_signature.output_fields, %{}, fn field, acc ->
      case Map.get(reasoning_result, field.name) do
        nil ->
          # Try to extract from reasoning steps
          extract_from_reasoning_steps(reasoning_result.reasoning_steps, field)
        
        value ->
          Map.put(acc, field.name, value)
      end
    end)
    
    # Include reasoning metadata
    enriched_result = Map.merge(final_answer, %{
      reasoning_chain: reasoning_result.reasoning_steps,
      confidence: reasoning_result.confidence,
      reasoning_quality: assess_reasoning_quality(reasoning_result)
    })
    
    {:ok, enriched_result}
  end
  
  defp assess_reasoning_quality(reasoning_result) do
    steps = reasoning_result.reasoning_steps
    
    %{
      step_count: length(steps),
      logical_consistency: check_logical_consistency(steps),
      evidence_strength: assess_evidence_strength(steps),
      uncertainty_handling: assess_uncertainty_handling(steps),
      overall_score: calculate_overall_reasoning_score(steps)
    }
  end
  
  defp check_logical_consistency(steps) do
    # Analyze logical flow between steps
    step_pairs = Enum.zip(steps, Enum.drop(steps, 1))
    
    consistency_scores = Enum.map(step_pairs, fn {step1, step2} ->
      analyze_step_consistency(step1, step2)
    end)
    
    case consistency_scores do
      [] -> 1.0
      scores -> Enum.sum(scores) / length(scores)
    end
  end
  
  defp analyze_step_consistency(step1, step2) do
    # Simple heuristic-based consistency check
    # In production, this could use more sophisticated NLP analysis
    
    step1_conclusion = extract_step_conclusion(step1)
    step2_premise = extract_step_premise(step2)
    
    if conclusion_supports_premise?(step1_conclusion, step2_premise) do
      1.0
    else
      0.5  # Partial consistency
    end
  end
end

Component 5: Advanced Type System and Validation

5.1 ML-Specific Type Registry

Comprehensive ML Type System:

defmodule DSPex.Types.MLRegistry do
  @moduledoc """
  Comprehensive type registry for ML-specific types with ExDantic integration.
  """
  
  use GenServer
  
  alias Exdantic.{TypeAdapter, Validator}
  alias DSPex.Types.{Constraints, Coercion, Validation}
  
  # Core ML Types
  @ml_types %{
    # Text and Language Types
    :prompt_template => %{
      base_type: :string,
      constraints: [min_length: 1, max_length: 100_000],
      validators: [:template_syntax, :variable_consistency],
      coercion: :string_coercion,
      metadata: %{category: :text, provider_hints: %{openai: :text, anthropic: :text}}
    },
    
    :reasoning_chain => %{
      base_type: {:list, :reasoning_step},
      constraints: [min_items: 1, max_items: 50],
      validators: [:reasoning_consistency, :logical_flow],
      coercion: :reasoning_chain_coercion,
      metadata: %{category: :reasoning, structured: true}
    },
    
    :reasoning_step => %{
      base_type: :map,
      schema: %{
        step_number: {:integer, [min: 1]},
        thought: {:string, [min_length: 10, max_length: 1000]},
        reasoning: {:string, [min_length: 20, max_length: 2000]},
        confidence: {:confidence_score, []}
      },
      validators: [:step_completeness, :reasoning_quality],
      metadata: %{category: :reasoning, required_fields: [:thought, :reasoning]}
    },
    
    # Numeric and Score Types
    :confidence_score => %{
      base_type: :float,
      constraints: [min: 0.0, max: 1.0],
      validators: [:confidence_validation],
      coercion: :confidence_coercion,
      metadata: %{category: :numeric, precision: 3}
    },
    
    :probability => %{
      base_type: :float,
      constraints: [min: 0.0, max: 1.0],
      validators: [:probability_validation],
      coercion: :probability_coercion,
      metadata: %{category: :numeric, precision: 6}
    },
    
    :token_count => %{
      base_type: :integer,
      constraints: [min: 0, max: 1_000_000],
      validators: [:token_count_validation],
      coercion: :integer_coercion,
      metadata: %{category: :metrics, provider_specific: true}
    },
    
    # Embedding and Vector Types
    :embedding => %{
      base_type: {:list, :float},
      constraints: [min_items: 1, max_items: 10_000],
      validators: [:embedding_dimension, :embedding_normalization],
      coercion: :embedding_coercion,
      metadata: %{category: :vector, high_memory: true}
    },
    
    :similarity_score => %{
      base_type: :float,
      constraints: [min: -1.0, max: 1.0],
      validators: [:similarity_validation],
      coercion: :similarity_coercion,
      metadata: %{category: :numeric, precision: 4}
    },
    
    # Function and Tool Types
    :function_call => %{
      base_type: :map,
      schema: %{
        function_name: {:string, [min_length: 1, max_length: 100]},
        arguments: {:map, []},
        call_id: {:optional, {:string, []}}
      },
      validators: [:function_call_validation, :arguments_validation],
      metadata: %{category: :function, provider_specific: true}
    },
    
    :tool_result => %{
      base_type: :map,
      schema: %{
        tool_name: {:string, [min_length: 1, max_length: 100]},
        result: :any,
        success: {:boolean, []},
        error: {:optional, {:string, []}}
      },
      validators: [:tool_result_validation],
      metadata: %{category: :function, structured: true}
    },
    
    # Model and Provider Types
    :model_output => %{
      base_type: :map,
      schema: %{
        content: {:string, []},
        usage: {:optional, :token_usage},
        model: {:string, []},
        finish_reason: {:optional, {:string, []}}
      },
      validators: [:model_output_validation],
      metadata: %{category: :model, provider_metadata: true}
    },
    
    :token_usage => %{
      base_type: :map,
      schema: %{
        prompt_tokens: {:integer, [min: 0]},
        completion_tokens: {:integer, [min: 0]},
        total_tokens: {:integer, [min: 0]}
      },
      validators: [:token_usage_consistency],
      metadata: %{category: :metrics, cost_relevant: true}
    }
  }
  
  def start_link(opts) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def init(_opts) do
    # Initialize type adapters for all ML types
    type_adapters = initialize_type_adapters(@ml_types)
    
    state = %{
      ml_types: @ml_types,
      type_adapters: type_adapters,
      custom_types: %{},
      validation_cache: :ets.new(:type_validation_cache, [:named_table, :public, {:read_concurrency, true}])
    }
    
    {:ok, state}
  end
  
  @doc """
  Register a custom ML type with the registry.
  """
  def register_custom_type(type_name, type_definition) do
    GenServer.call(__MODULE__, {:register_custom_type, type_name, type_definition})
  end
  
  @doc """
  Get type adapter for a given type.
  """
  def get_type_adapter(type_name) do
    GenServer.call(__MODULE__, {:get_type_adapter, type_name})
  end
  
  @doc """
  Validate value against ML type with caching.
  """
  def validate_value(value, type_name, opts \\ []) do
    cache_key = {type_name, :erlang.phash2(value), opts}
    
    case :ets.lookup(:type_validation_cache, cache_key) do
      [{^cache_key, cached_result}] ->
        cached_result
      
      [] ->
        result = perform_validation(value, type_name, opts)
        
        # Cache result if successful
        if match?({:ok, _}, result) do
          :ets.insert(:type_validation_cache, {cache_key, result})
        end
        
        result
    end
  end
  
  def handle_call({:register_custom_type, type_name, type_definition}, _from, state) do
    # Create type adapter for custom type
    case create_type_adapter(type_name, type_definition) do
      {:ok, adapter} ->
        new_custom_types = Map.put(state.custom_types, type_name, type_definition)
        new_adapters = Map.put(state.type_adapters, type_name, adapter)
        
        new_state = %{state | 
          custom_types: new_custom_types,
          type_adapters: new_adapters
        }
        
        {:reply, :ok, new_state}
      
      {:error, reason} ->
        {:reply, {:error, reason}, state}
    end
  end
  
  def handle_call({:get_type_adapter, type_name}, _from, state) do
    case Map.get(state.type_adapters, type_name) do
      nil ->
        {:reply, {:error, :type_not_found}, state}
      
      adapter ->
        {:reply, {:ok, adapter}, state}
    end
  end
  
  defp initialize_type_adapters(ml_types) do
    Enum.reduce(ml_types, %{}, fn {type_name, type_def}, acc ->
      case create_type_adapter(type_name, type_def) do
        {:ok, adapter} ->
          Map.put(acc, type_name, adapter)
        
        {:error, _reason} ->
          # Log error but continue
          Logger.warning("Failed to create type adapter for #{type_name}")
          acc
      end
    end)
  end
  
  defp create_type_adapter(type_name, type_definition) do
    # Create ExDantic TypeAdapter with ML-specific enhancements
    adapter_config = %{
      type: type_definition.base_type,
      constraints: type_definition.constraints || [],
      validators: build_validator_pipeline(type_definition.validators || []),
      coercion: get_coercion_function(type_definition.coercion),
      metadata: type_definition.metadata || %{}
    }
    
    case TypeAdapter.create(type_name, adapter_config) do
      {:ok, adapter} ->
        {:ok, enhance_adapter_for_ml(adapter, type_definition)}
      
      {:error, reason} ->
        {:error, reason}
    end
  end
  
  defp build_validator_pipeline(validator_names) do
    Enum.map(validator_names, fn validator_name ->
      case validator_name do
        :template_syntax ->
          &validate_template_syntax/1
        
        :reasoning_consistency ->
          &validate_reasoning_consistency/1
        
        :confidence_validation ->
          &validate_confidence_score/1
        
        :embedding_dimension ->
          &validate_embedding_dimension/1
        
        :function_call_validation ->
          &validate_function_call/1
        
        custom_validator when is_function(custom_validator) ->
          custom_validator
        
        _ ->
          # Default validation
          &default_validation/1
      end
    end)
  end
  
  defp perform_validation(value, type_name, opts) do
    case get_type_adapter(type_name) do
      {:ok, adapter} ->
        # Use ExDantic validation with ML enhancements
        case TypeAdapter.validate(adapter, value, opts) do
          {:ok, validated_value} ->
            # Apply ML-specific post-validation
            apply_ml_post_validation(validated_value, type_name, opts)
          
          {:error, validation_errors} ->
            {:error, validation_errors}
        end
      
      {:error, :type_not_found} ->
        {:error, {:unknown_type, type_name}}
    end
  end
  
  defp apply_ml_post_validation(value, type_name, opts) do
    case type_name do
      :reasoning_chain ->
        # Additional reasoning chain validation
        validate_reasoning_chain_quality(value, opts)
      
      :embedding ->
        # Embedding normalization and validation
        validate_and_normalize_embedding(value, opts)
      
      :confidence_score ->
        # Confidence score calibration
        calibrate_confidence_score(value, opts)
      
      _ ->
        {:ok, value}
    end
  end
  
  # ML-specific validation functions
  defp validate_template_syntax(template) when is_binary(template) do
    # Validate template syntax and variable consistency
    case parse_template_variables(template) do
      {:ok, variables} ->
        if variables_are_consistent?(variables) do
          {:ok, template}
        else
          {:error, :inconsistent_template_variables}
        end
      
      {:error, reason} ->
        {:error, {:template_syntax_error, reason}}
    end
  end
  
  defp validate_reasoning_consistency(reasoning_chain) when is_list(reasoning_chain) do
    # Check logical consistency between reasoning steps
    case analyze_reasoning_flow(reasoning_chain) do
      {:ok, _flow_analysis} ->
        {:ok, reasoning_chain}
      
      {:error, inconsistencies} ->
        {:error, {:reasoning_inconsistency, inconsistencies}}
    end
  end
  
  defp validate_confidence_score(score) when is_number(score) do
    cond do
      score < 0.0 ->
        {:error, :confidence_below_minimum}
      
      score > 1.0 ->
        {:error, :confidence_above_maximum}
      
      true ->
        {:ok, Float.round(score, 3)}
    end
  end
  
  defp validate_embedding_dimension(embedding) when is_list(embedding) do
    # Validate embedding dimensions and normalization
    dimension = length(embedding)
    
    cond do
      dimension < 1 ->
        {:error, :embedding_too_small}
      
      dimension > 10_000 ->
        {:error, :embedding_too_large}
      
      not all_numbers?(embedding) ->
        {:error, :embedding_non_numeric}
      
      true ->
        # Check if normalized (optional)
        magnitude = calculate_magnitude(embedding)
        
        if magnitude > 0 do
          {:ok, embedding}
        else
          {:error, :zero_magnitude_embedding}
        end
    end
  end
  
  # Helper functions
  defp parse_template_variables(template) do
    # Simple regex-based variable extraction
    # In production, use a proper template parser
    variables = Regex.scan(~r/\{\{(\w+)\}\}/, template)
    |> Enum.map(fn [_, var] -> var end)
    |> Enum.uniq()
    
    {:ok, variables}
  rescue
    _ -> {:error, :invalid_template_syntax}
  end
  
  defp variables_are_consistent?(variables) do
    # Check if all variables follow naming conventions
    Enum.all?(variables, fn var ->
      String.match?(var, ~r/^[a-zA-Z_][a-zA-Z0-9_]*$/)
    end)
  end
  
  defp all_numbers?(list) do
    Enum.all?(list, &is_number/1)
  end
  
  defp calculate_magnitude(vector) do
    vector
    |> Enum.map(&(&1 * &1))
    |> Enum.sum()
    |> :math.sqrt()
  end
end

Component 6: Production Features and Monitoring

6.1 Comprehensive Telemetry System

Advanced ML Metrics Collection:

defmodule DSPex.Telemetry.MLMetrics do
  @moduledoc """
  Comprehensive telemetry system optimized for ML workloads.
  """
  
  use GenServer
  
  alias DSPex.Telemetry.{Aggregator, Exporter, Alerting}
  
  # Telemetry events for ML operations
  @ml_events [
    [:dspex, :signature, :compilation],
    [:dspex, :signature, :validation],
    [:dspex, :prediction, :execution],
    [:dspex, :prediction, :chain_of_thought],
    [:dspex, :provider, :request],
    [:dspex, :provider, :response],
    [:dspex, :module, :execution],
    [:dspex, :program, :execution],
    [:dspex, :cache, :hit],
    [:dspex, :cache, :miss],
    [:dspex, :memory, :pressure],
    [:dspex, :optimization, :iteration],
    [:dspex, :evaluation, :metric],
    [:dspex, :distributed, :coordination],
    [:dspex, :error, :recovery]
  ]
  
  def start_link(opts) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def init(opts) do
    # Attach telemetry handlers
    :telemetry.attach_many(
      "ash-dspy-ml-metrics",
      @ml_events,
      &handle_ml_event/4,
      %{config: opts}
    )
    
    # Initialize metrics storage
    metrics_store = :ets.new(:ml_metrics, [
      :named_table,
      :public,
      {:write_concurrency, true},
      {:read_concurrency, true}
    ])
    
    # Initialize aggregation windows
    aggregation_windows = initialize_aggregation_windows()
    
    state = %{
      config: opts,
      metrics_store: metrics_store,
      aggregation_windows: aggregation_windows,
      alert_rules: load_alert_rules(opts),
      exporters: initialize_exporters(opts)
    }
    
    # Schedule periodic aggregation and export
    :timer.send_interval(60_000, :aggregate_metrics)   # 1 minute
    :timer.send_interval(300_000, :export_metrics)     # 5 minutes
    :timer.send_interval(30_000, :check_alerts)        # 30 seconds
    
    {:ok, state}
  end
  
  def handle_ml_event([:dspex, :prediction, :execution], measurements, metadata, config) do
    # Record prediction execution metrics
    record_metric(:prediction_duration, measurements.duration, %{
      signature: metadata.signature,
      provider: metadata.provider,
      success: metadata.success
    })
    
    # Track token usage if available
    if metadata[:token_usage] do
      record_metric(:token_usage, metadata.token_usage.total_tokens, %{
        type: :total,
        provider: metadata.provider,
        model: metadata.model
      })
      
      record_metric(:token_usage, metadata.token_usage.prompt_tokens, %{
        type: :prompt,
        provider: metadata.provider,
        model: metadata.model
      })
      
      record_metric(:token_usage, metadata.token_usage.completion_tokens, %{
        type: :completion,
        provider: metadata.provider,
        model: metadata.model
      })
    end
    
    # Track cost if available
    if metadata[:cost] do
      record_metric(:execution_cost, metadata.cost, %{
        provider: metadata.provider,
        model: metadata.model
      })
    end
    
    # Track quality metrics if available
    if metadata[:confidence] do
      record_metric(:confidence_score, metadata.confidence, %{
        signature: metadata.signature,
        provider: metadata.provider
      })
    end
    
    # Increment execution counter
    increment_counter(:prediction_executions, %{
      signature: metadata.signature,
      provider: metadata.provider,
      success: metadata.success
    })
  end
  
  def handle_ml_event([:dspex, :provider, :request], measurements, metadata, config) do
    # Track provider performance
    record_metric(:provider_latency, measurements.duration, %{
      provider: metadata.provider,
      endpoint: metadata.endpoint
    })
    
    # Track provider reliability
    case metadata.result do
      :success ->
        increment_counter(:provider_requests_success, %{provider: metadata.provider})
      
      {:error, error_type} ->
        increment_counter(:provider_requests_error, %{
          provider: metadata.provider,
          error_type: error_type
        })
      
      :timeout ->
        increment_counter(:provider_requests_timeout, %{provider: metadata.provider})
    end
    
    # Track rate limiting
    if metadata[:rate_limited] do
      increment_counter(:provider_rate_limited, %{provider: metadata.provider})
    end
  end
  
  def handle_ml_event([:dspex, :signature, :compilation], measurements, metadata, config) do
    # Track signature compilation performance
    record_metric(:signature_compilation_duration, measurements.duration, %{
      signature_hash: metadata.signature_hash,
      cache_hit: metadata.cache_hit
    })
    
    # Track compilation cache effectiveness
    if metadata.cache_hit do
      increment_counter(:signature_cache_hits, %{})
    else
      increment_counter(:signature_cache_misses, %{})
    end
    
    # Track compilation complexity
    if metadata[:complexity_score] do
      record_metric(:signature_complexity, metadata.complexity_score, %{
        signature_type: metadata.signature_type
      })
    end
  end
  
  def handle_ml_event([:dspex, :memory, :pressure], measurements, metadata, config) do
    # Track memory usage patterns
    record_gauge(:memory_usage, measurements.memory_usage, %{
      component: metadata.component
    })
    
    record_gauge(:memory_pressure_level, measurements.pressure_level, %{})
    
    # Track garbage collection events
    if metadata[:gc_triggered] do
      increment_counter(:gc_events, %{
        component: metadata.component,
        gc_type: metadata.gc_type
      })
    end
    
    # Track backpressure events
    if metadata[:backpressure_active] do
      increment_counter(:backpressure_activations, %{
        component: metadata.component
      })
    end
  end
  
  def handle_ml_event([:dspex, :optimization, :iteration], measurements, metadata, config) do
    # Track optimization progress
    record_metric(:optimization_score, measurements.score, %{
      optimizer: metadata.optimizer,
      signature: metadata.signature,
      iteration: metadata.iteration
    })
    
    record_metric(:optimization_duration, measurements.duration, %{
      optimizer: metadata.optimizer,
      signature: metadata.signature
    })
    
    # Track optimization convergence
    if metadata[:converged] do
      increment_counter(:optimization_convergence, %{
        optimizer: metadata.optimizer,
        iterations: metadata.iteration
      })
    end
  end
  
  def handle_info(:aggregate_metrics, state) do
    # Perform metric aggregation
    current_time = System.system_time(:second)
    
    # Aggregate metrics for different time windows
    Enum.each(state.aggregation_windows, fn {window_name, window_seconds} ->
      window_start = current_time - window_seconds
      aggregate_window_metrics(window_name, window_start, current_time, state)
    end)
    
    {:noreply, state}
  end
  
  def handle_info(:export_metrics, state) do
    # Export metrics to configured backends
    current_metrics = get_current_metrics(state.metrics_store)
    
    Enum.each(state.exporters, fn exporter ->
      Task.start(fn ->
        Exporter.export_metrics(exporter, current_metrics)
      end)
    end)
    
    {:noreply, state}
  end
  
  def handle_info(:check_alerts, state) do
    # Check alert conditions
    current_metrics = get_current_metrics(state.metrics_store)
    
    Enum.each(state.alert_rules, fn alert_rule ->
      case evaluate_alert_rule(alert_rule, current_metrics) do
        {:triggered, alert_data} ->
          Alerting.trigger_alert(alert_rule.name, alert_data)
        
        :ok ->
          :ok
      end
    end)
    
    {:noreply, state}
  end
  
  # Metric recording functions
  defp record_metric(metric_name, value, tags) do
    timestamp = System.system_time(:millisecond)
    
    :ets.insert(:ml_metrics, {
      {metric_name, tags, timestamp},
      value
    })
  end
  
  defp record_gauge(metric_name, value, tags) do
    # For gauges, we want the latest value
    :ets.insert(:ml_metrics, {
      {metric_name, tags, :gauge},
      value
    })
  end
  
  defp increment_counter(metric_name, tags) do
    counter_key = {metric_name, tags, :counter}
    
    case :ets.lookup(:ml_metrics, counter_key) do
      [{^counter_key, current_value}] ->
        :ets.update_element(:ml_metrics, counter_key, {2, current_value + 1})
      
      [] ->
        :ets.insert(:ml_metrics, {counter_key, 1})
    end
  end
  
  defp initialize_aggregation_windows do
    %{
      "1m" => 60,        # 1 minute
      "5m" => 300,       # 5 minutes  
      "15m" => 900,      # 15 minutes
      "1h" => 3600,      # 1 hour
      "24h" => 86400     # 24 hours
    }
  end
  
  defp aggregate_window_metrics(window_name, window_start, window_end, state) do
    # Get all metrics in the time window
    window_metrics = :ets.select(:ml_metrics, [
      {{{:'$1', :'$2', :'$3'}, :'$4'}, 
       [{:andalso, {:is_integer, :'$3'}, 
         {:andalso, {:>=, :'$3', window_start * 1000}, 
          {:<, :'$3', window_end * 1000}}}],
       [{{:'$1', :'$2', :'$3'}, :'$4'}]}
    ])
    
    # Group by metric name and tags
    grouped_metrics = Enum.group_by(window_metrics, fn {{metric_name, tags, _timestamp}, _value} ->
      {metric_name, tags}
    end)
    
    # Calculate aggregations for each metric group
    Enum.each(grouped_metrics, fn {{metric_name, tags}, metric_points} ->
      values = Enum.map(metric_points, fn {_, value} -> value end)
      
      aggregations = %{
        count: length(values),
        sum: Enum.sum(values),
        avg: Enum.sum(values) / length(values),
        min: Enum.min(values),
        max: Enum.max(values),
        p50: percentile(values, 50),
        p95: percentile(values, 95),
        p99: percentile(values, 99)
      }
      
      # Store aggregated metrics
      store_aggregated_metric(window_name, metric_name, tags, aggregations, window_end)
    end)
  end
  
  defp percentile(values, p) do
    sorted = Enum.sort(values)
    index = (length(sorted) * p / 100) |> Float.ceil() |> round() |> max(1) |> min(length(sorted))
    Enum.at(sorted, index - 1)
  end
  
  defp store_aggregated_metric(window, metric_name, tags, aggregations, timestamp) do
    aggregation_key = {:aggregated, window, metric_name, tags, timestamp}
    :ets.insert(:ml_metrics, {aggregation_key, aggregations})
  end
end

6.2 Hot Code Deployment System

Zero-Downtime Model Updates:

defmodule DSPex.Deployment.HotSwap do
  @moduledoc """
  Hot code deployment system for zero-downtime model updates and feature rollouts.
  """
  
  use GenServer
  
  alias DSPex.Module.Registry
  alias DSPex.Telemetry.Tracker
  alias DSPex.Deployment.{VersionManager, TrafficSplitter, HealthChecker}
  
  defstruct [
    :active_versions,
    :staged_versions,
    :rollout_configs,
    :traffic_splits,
    :health_monitors,
    :rollback_snapshots
  ]
  
  def start_link(opts) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def init(_opts) do
    state = %__MODULE__{
      active_versions: %{},
      staged_versions: %{},
      rollout_configs: %{},
      traffic_splits: %{},
      health_monitors: %{},
      rollback_snapshots: %{}
    }
    
    # Start health monitoring
    :timer.send_interval(30_000, :health_check)
    
    {:ok, state}
  end
  
  @doc """
  Deploy new version of a signature or module with gradual rollout.
  """
  def deploy_version(component_id, new_version, rollout_config) do
    GenServer.call(__MODULE__, {:deploy_version, component_id, new_version, rollout_config})
  end
  
  @doc """
  Rollback to previous version immediately.
  """
  def rollback_version(component_id) do
    GenServer.call(__MODULE__, {:rollback_version, component_id})
  end
  
  def handle_call({:deploy_version, component_id, new_version, rollout_config}, _from, state) do
    case prepare_deployment(component_id, new_version, rollout_config) do
      {:ok, deployment_context} ->
        # Create rollback snapshot
        snapshot = create_rollback_snapshot(component_id, state)
        
        # Stage the new version
        new_staged = Map.put(state.staged_versions, component_id, new_version)
        new_snapshots = Map.put(state.rollback_snapshots, component_id, snapshot)
        new_configs = Map.put(state.rollout_configs, component_id, rollout_config)
        
        # Start gradual rollout
        {:ok, rollout_pid} = start_gradual_rollout(component_id, rollout_config)
        
        new_state = %{state |
          staged_versions: new_staged,
          rollback_snapshots: new_snapshots,
          rollout_configs: new_configs
        }
        
        {:reply, {:ok, :deployment_started}, new_state}
      
      {:error, reason} ->
        {:reply, {:error, reason}, state}
    end
  end
  
  def handle_call({:rollback_version, component_id}, _from, state) do
    case Map.get(state.rollback_snapshots, component_id) do
      nil ->
        {:reply, {:error, :no_snapshot_available}, state}
      
      snapshot ->
        # Perform immediate rollback
        case perform_rollback(component_id, snapshot) do
          :ok ->
            # Clean up rollout state
            new_state = %{state |
              staged_versions: Map.delete(state.staged_versions, component_id),
              rollout_configs: Map.delete(state.rollout_configs, component_id),
              traffic_splits: Map.delete(state.traffic_splits, component_id),
              rollback_snapshots: Map.delete(state.rollback_snapshots, component_id)
            }
            
            {:reply, :ok, new_state}
          
          {:error, reason} ->
            {:reply, {:error, reason}, state}
        end
    end
  end
  
  # Handle rollout progress updates
  def handle_info({:rollout_progress, component_id, percentage}, state) do
    # Update traffic split
    new_traffic_splits = Map.put(state.traffic_splits, component_id, percentage)
    
    # Update traffic splitter
    TrafficSplitter.update_split(component_id, percentage)
    
    Logger.info("Rollout progress for #{component_id}: #{percentage}%")
    
    # Check if rollout is complete
    if percentage >= 100 do
      complete_rollout(component_id, state)
    else
      {:noreply, %{state | traffic_splits: new_traffic_splits}}
    end
  end
  
  def handle_info({:rollout_failed, component_id, reason}, state) do
    Logger.error("Rollout failed for #{component_id}: #{reason}. Initiating automatic rollback.")
    
    # Trigger automatic rollback
    case perform_automatic_rollback(component_id, state) do
      :ok ->
        new_state = cleanup_failed_rollout(component_id, state)
        {:noreply, new_state}
      
      {:error, rollback_error} ->
        Logger.critical("Rollback failed for #{component_id}: #{rollback_error}")
        {:noreply, state}
    end
  end
  
  def handle_info(:health_check, state) do
    # Check health of all active rollouts
    Enum.each(state.traffic_splits, fn {component_id, _percentage} ->
      case check_rollout_health(component_id) do
        :healthy ->
          :ok
        
        {:unhealthy, reason} ->
          # Trigger rollout failure
          send(self(), {:rollout_failed, component_id, reason})
      end
    end)
    
    {:noreply, state}
  end
  
  defp prepare_deployment(component_id, new_version, rollout_config) do
    # Validate new version
    case validate_new_version(component_id, new_version) do
      :ok ->
        # Prepare deployment environment
        case setup_deployment_environment(component_id, new_version) do
          {:ok, context} ->
            {:ok, context}
          
          {:error, reason} ->
            {:error, {:environment_setup_failed, reason}}
        end
      
      {:error, reason} ->
        {:error, {:version_validation_failed, reason}}
    end
  end
  
  defp validate_new_version(component_id, new_version) do
    # Perform various validation checks
    with :ok <- validate_version_format(new_version),
         :ok <- validate_compatibility(component_id, new_version),
         :ok <- validate_dependencies(new_version),
         :ok <- validate_security(new_version) do
      :ok
    else
      {:error, reason} -> {:error, reason}
    end
  end
  
  defp start_gradual_rollout(component_id, rollout_config) do
    Task.start(fn ->
      execute_gradual_rollout(component_id, rollout_config)
    end)
  end
  
  defp execute_gradual_rollout(component_id, config) do
    steps = config[:rollout_steps] || [5, 10, 25, 50, 100]
    step_duration = config[:step_duration] || 300_000  # 5 minutes
    health_check_interval = config[:health_check_interval] || 30_000  # 30 seconds
    
    Enum.each(steps, fn percentage ->
      # Update traffic split
      send(DSPex.Deployment.HotSwap, {:rollout_progress, component_id, percentage})
      
      # Wait for step duration with periodic health checks
      monitor_step_health(component_id, step_duration, health_check_interval)
    end)
    
    # Rollout completed successfully
    send(DSPex.Deployment.HotSwap, {:rollout_complete, component_id})
  end
  
  defp monitor_step_health(component_id, total_duration, check_interval) do
    end_time = System.monotonic_time(:millisecond) + total_duration
    
    monitor_loop(component_id, end_time, check_interval)
  end
  
  defp monitor_loop(component_id, end_time, check_interval) do
    current_time = System.monotonic_time(:millisecond)
    
    if current_time >= end_time do
      :ok
    else
      case check_rollout_health(component_id) do
        :healthy ->
          # Wait for next check
          Process.sleep(min(check_interval, end_time - current_time))
          monitor_loop(component_id, end_time, check_interval)
        
        {:unhealthy, reason} ->
          # Abort rollout
          send(DSPex.Deployment.HotSwap, {:rollout_failed, component_id, reason})
          exit(:rollout_failed)
      end
    end
  end
  
  defp check_rollout_health(component_id) do
    # Get recent metrics for the component
    metrics = get_component_metrics(component_id, 60_000)  # Last minute
    
    cond do
      metrics[:error_rate] > 0.05 ->  # 5% error rate threshold
        {:unhealthy, :high_error_rate}
      
      metrics[:avg_latency] > metrics[:baseline_latency] * 1.5 ->
        {:unhealthy, :high_latency}
      
      metrics[:memory_usage] > get_memory_threshold(component_id) ->
        {:unhealthy, :memory_pressure}
      
      metrics[:throughput] < metrics[:baseline_throughput] * 0.8 ->
        {:unhealthy, :low_throughput}
      
      true ->
        :healthy
    end
  end
  
  defp create_rollback_snapshot(component_id, state) do
    case Map.get(state.active_versions, component_id) do
      nil ->
        %{version: nil, config: nil, timestamp: System.system_time(:second)}
      
      active_version ->
        %{
          version: active_version,
          config: get_current_config(component_id),
          registry_state: Registry.get_component_state(component_id),
          timestamp: System.system_time(:second)
        }
    end
  end
  
  defp perform_rollback(component_id, snapshot) do
    Logger.info("Performing rollback for #{component_id}")
    
    try do
      # Stop traffic to new version immediately
      TrafficSplitter.set_split(component_id, 0)
      
      # Restore previous version if available
      case snapshot.version do
        nil ->
          # No previous version, disable component
          Registry.disable_component(component_id)
        
        previous_version ->
          # Restore previous version
          Registry.restore_component(component_id, previous_version, snapshot.registry_state)
      end
      
      # Reset traffic to 100% old version
      TrafficSplitter.reset_split(component_id)
      
      Logger.info("Rollback completed successfully for #{component_id}")
      :ok
      
    rescue
      error ->
        Logger.error("Rollback failed for #{component_id}: #{inspect(error)}")
        {:error, error}
    end
  end
  
  defp complete_rollout(component_id, state) do
    Logger.info("Completing rollout for #{component_id}")
    
    # Move staged version to active
    case Map.get(state.staged_versions, component_id) do
      nil ->
        {:noreply, state}
      
      staged_version ->
        # Activate new version
        Registry.activate_version(component_id, staged_version)
        
        # Clean up rollout state
        new_state = %{state |
          active_versions: Map.put(state.active_versions, component_id, staged_version),
          staged_versions: Map.delete(state.staged_versions, component_id),
          rollout_configs: Map.delete(state.rollout_configs, component_id),
          traffic_splits: Map.delete(state.traffic_splits, component_id)
        }
        
        Logger.info("Rollout completed successfully for #{component_id}")
        {:noreply, new_state}
    end
  end
end

Implementation Timeline and Success Metrics

12-Week Implementation Schedule

Weeks 1-2: Foundation Components

  • Native signature compilation system with ExDantic integration
  • Core module and program architecture
  • Provider integration framework foundation
  • Success Metrics: Signature compilation <1ms, 100% DSPy compatibility

Weeks 3-4: Prediction and Types

  • Prediction pipeline system with CoT implementation
  • Advanced type system and validation engine
  • Success Metrics: Prediction execution <2s, comprehensive type coverage

Weeks 5-6: Advanced Features

  • Optimization and teleprompt systems
  • Evaluation and metrics framework
  • Success Metrics: Optimization convergence, comprehensive metrics collection

Weeks 7-8: Production Features

  • Streaming and async operations
  • Memory management and performance optimization
  • Success Metrics: Memory efficiency >90%, streaming support

Weeks 9-10: Integration

  • Complete Ash framework integration
  • Distributed computing capabilities
  • Success Metrics: Seamless Ash integration, clustering support

Weeks 11-12: Validation and Deployment

  • Comprehensive testing and validation
  • Production deployment preparation
  • Success Metrics: All tests passing, production readiness

Performance Targets

  • 10x Performance Improvement over Python bridge
  • <100ms signature compilation time
  • 50+ concurrent ML operations supported
  • 99.9% uptime under production load
  • <500MB memory baseline usage
  • Sub-second hot code deployment

Compatibility Requirements

  • 100% DSPy API compatibility for core features
  • Complete provider ecosystem support (OpenAI, Anthropic, etc.)
  • Seamless migration from Stage 1 Python bridge
  • Backward compatibility with existing Stage 1 implementations

This technical specification provides the comprehensive foundation for implementing a production-ready, high-performance native Elixir DSPy system that exceeds the capabilities of the Python-based approach while maintaining full compatibility and extending the DSPy ecosystem with advanced features only possible in the Elixir/OTP environment.