Advanced Coordination Protocols: Production-Grade Multi-Agent Orchestration
Date: July 12, 2025
Status: Technical Specification
Scope: Advanced coordination protocols for distributed multi-agent ML systems
Context: Based on lib_old coordination.ex “god file” and unified vision insights
Executive Summary
This document specifies the advanced coordination protocols discovered in lib_old’s sophisticated MABEAM implementation, providing production-grade multi-agent orchestration capabilities. These protocols enable complex ML workflows through hierarchical consensus, Byzantine fault tolerance, economic mechanisms, and ML-native coordination algorithms that scale from small teams to enterprise cluster deployments.
Core Coordination Architecture
Protocol Selection Matrix
defmodule Foundation.MABEAM.Protocols.Selector do
@moduledoc """
Intelligent protocol selection based on coordination requirements
"""
@protocol_matrix %{
# Simple coordination (2-5 agents, low fault tolerance)
{2..5, :low_fault, :standard} => :simple_consensus,
# Hierarchical coordination (6+ agents, scalability needed)
{6..50, :medium_fault, :standard} => :hierarchical_consensus,
# Byzantine coordination (fault tolerance critical)
{4..20, :high_fault, :standard} => :byzantine_consensus,
# Economic coordination (resource optimization needed)
{2..100, :any_fault, :economic} => :market_coordination,
# ML-specific coordination
{2..50, :any_fault, :ml_ensemble} => :ensemble_learning,
{3..20, :any_fault, :ml_optimization} => :hyperparameter_optimization,
{2..10, :any_fault, :ml_reasoning} => :reasoning_consensus,
# Distributed coordination (cluster deployment)
{10..1000, :any_fault, :distributed} => :distributed_coordination
}
def select_protocol(coordination_spec) do
participant_count = length(coordination_spec.participants)
fault_tolerance = coordination_spec.fault_tolerance || :low_fault
coordination_type = coordination_spec.type || :standard
# Find matching protocol
case find_matching_protocol(participant_count, fault_tolerance, coordination_type) do
nil ->
{:error, :no_suitable_protocol}
protocol ->
{:ok, protocol}
end
end
defp find_matching_protocol(count, fault_tolerance, type) do
Enum.find_value(@protocol_matrix, fn {{range, fault, coord_type}, protocol} ->
if count in range and
(fault == fault_tolerance or fault == :any_fault) and
(coord_type == type or coord_type == :standard or fault_tolerance == :any_fault) do
protocol
end
end)
end
end
Advanced Coordination Protocols
1. Hierarchical Consensus Protocol
defmodule Foundation.MABEAM.Protocols.HierarchicalConsensus do
@moduledoc """
Hierarchical consensus for large agent teams (6+ agents)
Features:
- Multi-level delegation trees
- Automatic representative selection
- Load balancing across hierarchy levels
- Fault tolerance with representative replacement
- Scalable to hundreds of agents
"""
use GenServer
require Logger
defstruct [
:coordination_id,
:proposal,
:participants,
:hierarchy,
:delegation_strategy,
:consensus_threshold,
:timeout,
:started_at,
:current_level,
:level_results,
:status
]
def start_coordination(coordination_id, coordination_spec, opts) do
GenServer.start_link(__MODULE__, {coordination_id, coordination_spec, opts})
end
def init({coordination_id, coordination_spec, opts}) do
# Build hierarchy structure
hierarchy = build_hierarchy(
coordination_spec.participants,
opts[:cluster_size] || 5,
opts[:max_levels] || 4
)
state = %__MODULE__{
coordination_id: coordination_id,
proposal: coordination_spec.proposal,
participants: coordination_spec.participants,
hierarchy: hierarchy,
delegation_strategy: opts[:delegation_strategy] || :expertise_based,
consensus_threshold: coordination_spec.consensus_threshold || 0.7,
timeout: coordination_spec.timeout || 30_000,
started_at: DateTime.utc_now(),
current_level: 0,
level_results: %{},
status: :starting
}
# Start coordination at leaf level
send(self(), :start_level_coordination)
# Set overall timeout
Process.send_after(self(), :coordination_timeout, state.timeout)
Logger.info("Started hierarchical consensus: #{coordination_id} with #{length(coordination_spec.participants)} participants")
{:ok, state}
end
def handle_info(:start_level_coordination, state) do
case start_level_coordination(state.current_level, state) do
{:ok, new_state} ->
{:noreply, %{new_state | status: :coordinating}}
{:error, reason} ->
notify_completion({:error, reason}, state)
{:stop, :normal, state}
end
end
def handle_info({:level_complete, level, results}, state) do
# Store level results
updated_state = %{state |
level_results: Map.put(state.level_results, level, results)
}
# Check if we need to continue to next level
case should_continue_to_next_level?(level, results, updated_state) do
true ->
next_level = level + 1
case start_level_coordination(next_level, %{updated_state | current_level: next_level}) do
{:ok, final_state} ->
{:noreply, final_state}
{:error, reason} ->
notify_completion({:error, reason}, updated_state)
{:stop, :normal, updated_state}
end
false ->
# Coordination complete
final_result = compile_final_result(updated_state)
notify_completion({:ok, final_result}, updated_state)
{:stop, :normal, updated_state}
end
end
def handle_info(:coordination_timeout, state) do
Logger.warning("Hierarchical consensus timeout: #{state.coordination_id}")
notify_completion({:error, :timeout}, state)
{:stop, :normal, state}
end
# Private implementation
defp build_hierarchy(participants, cluster_size, max_levels) do
# Build hierarchical structure
hierarchy = participants
|> Enum.chunk_every(cluster_size)
|> build_hierarchy_levels([], 0, max_levels)
Logger.debug("Built hierarchy: #{inspect(hierarchy)}")
hierarchy
end
defp build_hierarchy_levels([], acc, _level, _max_levels), do: Enum.reverse(acc)
defp build_hierarchy_levels([single_cluster], acc, level, _max_levels) when length(single_cluster) <= 1 do
# Single element at top - hierarchy complete
Enum.reverse([%{level: level, clusters: [single_cluster]} | acc])
end
defp build_hierarchy_levels(clusters, acc, level, max_levels) when level >= max_levels do
# Max levels reached - flatten remaining
flat_cluster = List.flatten(clusters)
Enum.reverse([%{level: level, clusters: [flat_cluster]} | acc])
end
defp build_hierarchy_levels(clusters, acc, level, max_levels) do
# Create representatives for each cluster
representatives = Enum.map(clusters, fn cluster ->
select_cluster_representative(cluster)
end)
level_info = %{
level: level,
clusters: clusters,
representatives: representatives
}
# Continue with representatives for next level
next_clusters = [representatives]
build_hierarchy_levels(next_clusters, [level_info | acc], level + 1, max_levels)
end
defp select_cluster_representative(cluster) do
# Select representative based on agent capabilities/reputation
cluster
|> Enum.map(fn agent_id ->
{agent_id, get_agent_coordination_score(agent_id)}
end)
|> Enum.max_by(fn {_agent_id, score} -> score end)
|> elem(0)
end
defp get_agent_coordination_score(agent_id) do
case Foundation.MABEAM.Registry.lookup_agent(agent_id) do
{:ok, agent_info} ->
# Calculate score based on performance, reputation, availability
base_score = 0.5
performance_score = Map.get(agent_info, :performance_score, 0.5)
reputation_score = get_agent_reputation_score(agent_id)
availability_score = get_agent_availability_score(agent_id)
(base_score + performance_score + reputation_score + availability_score) / 4
{:error, _} ->
0.0
end
end
defp start_level_coordination(level, state) do
level_info = Enum.find(state.hierarchy, fn l -> l.level == level end)
case level_info do
nil ->
{:error, :invalid_level}
%{clusters: clusters} ->
# Start coordination within each cluster
cluster_coordinators = Enum.map(clusters, fn cluster ->
start_cluster_coordination(cluster, level, state)
end)
# Monitor cluster coordinators
Enum.each(cluster_coordinators, fn coordinator_pid ->
Process.monitor(coordinator_pid)
end)
{:ok, state}
end
end
defp start_cluster_coordination(cluster, level, state) do
# Start coordination within a single cluster
spawn_link(fn ->
result = coordinate_cluster(cluster, state.proposal, state)
send(self(), {:cluster_result, level, cluster, result})
end)
end
defp coordinate_cluster(cluster, proposal, state) do
# Simple consensus within cluster
case length(cluster) do
1 ->
# Single agent - automatic agreement
{:ok, %{decision: :agree, agents: cluster, confidence: 1.0}}
n when n <= 5 ->
# Small cluster - direct consensus
perform_direct_consensus(cluster, proposal, state)
_ ->
# Large cluster - delegate to sub-coordinator
{:error, :cluster_too_large}
end
end
defp perform_direct_consensus(agents, proposal, state) do
# Collect votes from all agents
votes = Enum.map(agents, fn agent_id ->
case request_agent_vote(agent_id, proposal, state.timeout) do
{:ok, vote} -> {agent_id, vote}
{:error, _} -> {agent_id, %{decision: :abstain, confidence: 0.0}}
end
end)
# Analyze votes
analyze_cluster_votes(votes, state.consensus_threshold)
end
defp request_agent_vote(agent_id, proposal, timeout) do
case Foundation.MABEAM.Registry.lookup_agent(agent_id) do
{:ok, agent_info} ->
# Send vote request to agent
try do
vote_request = %{
type: :coordination_vote,
proposal: proposal,
timeout: timeout
}
case GenServer.call(agent_info.pid, vote_request, timeout) do
{:vote, vote_data} ->
{:ok, vote_data}
_ ->
{:error, :invalid_response}
end
catch
:exit, _ ->
{:error, :agent_timeout}
end
{:error, reason} ->
{:error, reason}
end
end
defp analyze_cluster_votes(votes, consensus_threshold) do
total_votes = length(votes)
# Calculate weighted consensus
{agree_count, agree_confidence} = calculate_agreement_metrics(votes, :agree)
{disagree_count, disagree_confidence} = calculate_agreement_metrics(votes, :disagree)
agree_ratio = agree_count / total_votes
cond do
agree_ratio >= consensus_threshold ->
{:ok, %{
decision: :agree,
confidence: agree_confidence,
vote_ratio: agree_ratio,
detailed_votes: votes
}}
disagree_count / total_votes >= consensus_threshold ->
{:ok, %{
decision: :disagree,
confidence: disagree_confidence,
vote_ratio: 1 - agree_ratio,
detailed_votes: votes
}}
true ->
{:ok, %{
decision: :no_consensus,
confidence: 0.5,
vote_ratio: agree_ratio,
detailed_votes: votes
}}
end
end
defp calculate_agreement_metrics(votes, target_decision) do
matching_votes = Enum.filter(votes, fn {_agent, vote} ->
vote.decision == target_decision
end)
count = length(matching_votes)
avg_confidence = if count > 0 do
matching_votes
|> Enum.map(fn {_agent, vote} -> vote.confidence || 0.5 end)
|> Enum.sum()
|> Kernel./(count)
else
0.0
end
{count, avg_confidence}
end
defp should_continue_to_next_level?(level, results, state) do
# Check if consensus reached at this level
case results do
{:ok, %{decision: :agree}} ->
# Agreement reached - continue up hierarchy
level < get_max_level(state.hierarchy) - 1
{:ok, %{decision: :disagree}} ->
# Clear disagreement - stop coordination
false
{:ok, %{decision: :no_consensus}} ->
# No consensus - escalate to next level
level < get_max_level(state.hierarchy) - 1
{:error, _} ->
# Error - stop coordination
false
end
end
defp get_max_level(hierarchy) do
hierarchy
|> Enum.map(& &1.level)
|> Enum.max()
end
defp compile_final_result(state) do
# Compile results from all levels
final_decision = determine_final_decision(state.level_results)
%{
coordination_id: state.coordination_id,
decision: final_decision,
hierarchy_results: state.level_results,
participants: state.participants,
duration: DateTime.diff(DateTime.utc_now(), state.started_at, :microsecond)
}
end
defp determine_final_decision(level_results) do
# Get highest level result
highest_level = level_results |> Map.keys() |> Enum.max()
case Map.get(level_results, highest_level) do
{:ok, %{decision: decision}} -> decision
_ -> :no_consensus
end
end
defp notify_completion(result, state) do
send(Foundation.MABEAM.Coordination, {:coordination_complete, state.coordination_id, result})
end
defp get_agent_reputation_score(agent_id) do
case Foundation.MABEAM.Economics.get_agent_reputation(agent_id) do
{:ok, reputation} -> reputation.overall_score
{:error, _} -> 0.5
end
end
defp get_agent_availability_score(agent_id) do
case Foundation.MABEAM.Registry.get_agent_health(agent_id) do
{:ok, %{status: :healthy}} -> 1.0
{:ok, %{status: :overloaded}} -> 0.3
_ -> 0.0
end
end
end
2. Byzantine Fault Tolerant Consensus
defmodule Foundation.MABEAM.Protocols.ByzantineConsensus do
@moduledoc """
Byzantine fault tolerant consensus using PBFT algorithm
Features:
- Tolerates up to f faulty nodes in 3f+1 system
- Three-phase consensus protocol (pre-prepare, prepare, commit)
- View change mechanism for leader failures
- Cryptographic message authentication
- Deterministic ordering of requests
"""
use GenServer
require Logger
defstruct [
:coordination_id,
:proposal,
:participants,
:view_number,
:sequence_number,
:primary_node,
:phase,
:message_log,
:prepare_votes,
:commit_votes,
:timeout_timers,
:status,
:f_value, # Maximum number of faulty nodes
:started_at
]
def start_coordination(coordination_id, coordination_spec, opts) do
GenServer.start_link(__MODULE__, {coordination_id, coordination_spec, opts})
end
def init({coordination_id, coordination_spec, opts}) do
participants = coordination_spec.participants
f_value = calculate_f_value(length(participants))
# Verify we have enough nodes for Byzantine tolerance
if length(participants) < 3 * f_value + 1 do
Logger.error("Insufficient nodes for Byzantine consensus: need #{3 * f_value + 1}, have #{length(participants)}")
{:stop, :insufficient_nodes}
else
state = %__MODULE__{
coordination_id: coordination_id,
proposal: coordination_spec.proposal,
participants: participants,
view_number: 0,
sequence_number: 1,
primary_node: select_primary_node(participants, 0),
phase: :pre_prepare,
message_log: [],
prepare_votes: %{},
commit_votes: %{},
timeout_timers: %{},
status: :starting,
f_value: f_value,
started_at: DateTime.utc_now()
}
# Start consensus if we are the primary
if am_primary?(state) do
send(self(), :start_pre_prepare_phase)
end
# Set overall timeout
Process.send_after(self(), :consensus_timeout, opts[:timeout] || 60_000)
Logger.info("Started Byzantine consensus: #{coordination_id} as #{if am_primary?(state), do: "primary", else: "backup"}")
{:ok, state}
end
end
# Pre-prepare phase (primary only)
def handle_info(:start_pre_prepare_phase, state) when state.phase == :pre_prepare do
if am_primary?(state) do
# Create pre-prepare message
pre_prepare_msg = create_pre_prepare_message(state)
# Broadcast to all backup nodes
broadcast_to_backups(pre_prepare_msg, state)
# Log our own message
new_state = log_message(state, pre_prepare_msg)
# Move to prepare phase
updated_state = %{new_state | phase: :prepare}
# Start prepare phase timeout
timeout_ref = Process.send_after(self(), {:phase_timeout, :prepare}, 15_000)
final_state = %{updated_state |
timeout_timers: Map.put(updated_state.timeout_timers, :prepare, timeout_ref)
}
{:noreply, final_state}
else
{:noreply, state}
end
end
# Handle incoming Byzantine messages
def handle_cast({:byzantine_message, message}, state) do
case validate_message(message, state) do
{:ok, validated_message} ->
new_state = process_byzantine_message(validated_message, state)
{:noreply, new_state}
{:error, reason} ->
Logger.warning("Invalid Byzantine message: #{inspect(reason)}")
{:noreply, state}
end
end
# Phase timeouts
def handle_info({:phase_timeout, phase}, state) when state.phase == phase do
Logger.warning("Byzantine consensus phase timeout: #{phase}")
case phase do
:prepare ->
# Prepare phase timeout - might need view change
if should_trigger_view_change?(state) do
start_view_change(state)
else
{:noreply, state}
end
:commit ->
# Commit phase timeout - consensus failed
notify_completion({:error, :commit_timeout}, state)
{:stop, :normal, state}
end
end
def handle_info(:consensus_timeout, state) do
Logger.warning("Byzantine consensus overall timeout: #{state.coordination_id}")
notify_completion({:error, :timeout}, state)
{:stop, :normal, state}
end
# Private implementation
defp calculate_f_value(node_count) do
# f = floor((n-1)/3) where n is total nodes
div(node_count - 1, 3)
end
defp select_primary_node(participants, view_number) do
# Deterministic primary selection based on view number
index = rem(view_number, length(participants))
Enum.at(participants, index)
end
defp am_primary?(state) do
state.primary_node == node()
end
defp create_pre_prepare_message(state) do
%{
type: :pre_prepare,
view: state.view_number,
sequence: state.sequence_number,
proposal: state.proposal,
primary: state.primary_node,
timestamp: DateTime.utc_now(),
signature: sign_message(%{
view: state.view_number,
sequence: state.sequence_number,
proposal: state.proposal
})
}
end
defp broadcast_to_backups(message, state) do
backup_nodes = Enum.reject(state.participants, &(&1 == node()))
Enum.each(backup_nodes, fn backup_node ->
send_byzantine_message(backup_node, message)
end)
end
defp send_byzantine_message(target_node, message) do
# Send message to Byzantine consensus process on target node
case :rpc.call(target_node, GenServer, :cast, [
Foundation.MABEAM.Protocols.ByzantineConsensus,
{:byzantine_message, message}
]) do
{:badrpc, reason} ->
Logger.warning("Failed to send Byzantine message to #{target_node}: #{inspect(reason)}")
_ ->
:ok
end
end
defp validate_message(message, state) do
cond do
not is_map(message) ->
{:error, :invalid_format}
not verify_message_signature(message) ->
{:error, :invalid_signature}
message.view != state.view_number ->
{:error, :wrong_view}
message.sequence != state.sequence_number ->
{:error, :wrong_sequence}
true ->
{:ok, message}
end
end
defp process_byzantine_message(message, state) do
case message.type do
:pre_prepare ->
process_pre_prepare(message, state)
:prepare ->
process_prepare(message, state)
:commit ->
process_commit(message, state)
:view_change ->
process_view_change(message, state)
_ ->
Logger.warning("Unknown Byzantine message type: #{message.type}")
state
end
end
defp process_pre_prepare(message, state) when state.phase == :pre_prepare do
if message.primary == state.primary_node do
# Valid pre-prepare from current primary
prepare_message = create_prepare_message(message, state)
# Broadcast prepare message
broadcast_to_all(prepare_message, state)
# Log messages and update state
state
|> log_message(message)
|> log_message(prepare_message)
|> Map.put(:phase, :prepare)
|> start_prepare_timeout()
else
Logger.warning("Pre-prepare from wrong primary: #{message.primary}")
state
end
end
defp process_pre_prepare(_message, state), do: state
defp process_prepare(message, state) when state.phase == :prepare do
# Count prepare votes
sender = message.sender
new_prepare_votes = Map.put(state.prepare_votes, sender, message)
updated_state = %{state | prepare_votes: new_prepare_votes}
# Check if we have enough prepare votes (2f+1)
if map_size(new_prepare_votes) >= 2 * state.f_value + 1 do
# Move to commit phase
commit_message = create_commit_message(message, updated_state)
broadcast_to_all(commit_message, updated_state)
updated_state
|> log_message(commit_message)
|> Map.put(:phase, :commit)
|> start_commit_timeout()
else
updated_state
end
end
defp process_prepare(_message, state), do: state
defp process_commit(message, state) when state.phase == :commit do
# Count commit votes
sender = message.sender
new_commit_votes = Map.put(state.commit_votes, sender, message)
updated_state = %{state | commit_votes: new_commit_votes}
# Check if we have enough commit votes (2f+1)
if map_size(new_commit_votes) >= 2 * state.f_value + 1 do
# Consensus reached!
result = %{
decision: :commit,
proposal: state.proposal,
view: state.view_number,
sequence: state.sequence_number,
participants: state.participants,
duration: DateTime.diff(DateTime.utc_now(), state.started_at, :microsecond)
}
notify_completion({:ok, result}, updated_state)
updated_state
else
updated_state
end
end
defp process_commit(_message, state), do: state
defp create_prepare_message(pre_prepare_msg, state) do
%{
type: :prepare,
view: state.view_number,
sequence: state.sequence_number,
digest: create_message_digest(pre_prepare_msg),
sender: node(),
timestamp: DateTime.utc_now(),
signature: sign_prepare_message(state.view_number, state.sequence_number, pre_prepare_msg)
}
end
defp create_commit_message(prepare_msg, state) do
%{
type: :commit,
view: state.view_number,
sequence: state.sequence_number,
digest: prepare_msg.digest,
sender: node(),
timestamp: DateTime.utc_now(),
signature: sign_commit_message(state.view_number, state.sequence_number, prepare_msg)
}
end
defp broadcast_to_all(message, state) do
Enum.each(state.participants, fn participant ->
if participant != node() do
send_byzantine_message(participant, message)
end
end)
end
defp log_message(state, message) do
%{state | message_log: [message | state.message_log]}
end
defp start_prepare_timeout(state) do
timeout_ref = Process.send_after(self(), {:phase_timeout, :prepare}, 15_000)
%{state | timeout_timers: Map.put(state.timeout_timers, :prepare, timeout_ref)}
end
defp start_commit_timeout(state) do
timeout_ref = Process.send_after(self(), {:phase_timeout, :commit}, 15_000)
%{state | timeout_timers: Map.put(state.timeout_timers, :commit, timeout_ref)}
end
defp should_trigger_view_change?(state) do
# Trigger view change if prepare phase fails
state.phase == :prepare and map_size(state.prepare_votes) < 2 * state.f_value + 1
end
defp start_view_change(state) do
Logger.info("Starting view change from view #{state.view_number}")
view_change_msg = %{
type: :view_change,
view: state.view_number + 1,
sequence: state.sequence_number,
sender: node(),
timestamp: DateTime.utc_now()
}
broadcast_to_all(view_change_msg, state)
new_state = %{state |
view_number: state.view_number + 1,
primary_node: select_primary_node(state.participants, state.view_number + 1),
phase: :view_change,
prepare_votes: %{},
commit_votes: %{}
}
{:noreply, new_state}
end
defp process_view_change(_message, state) do
# Simplified view change processing
# In production, this would involve more complex view change protocol
state
end
defp sign_message(message_data) do
# Cryptographic signature for message authentication
# In production, use proper cryptographic signing
:crypto.hash(:sha256, :erlang.term_to_binary(message_data))
|> Base.encode16(case: :lower)
end
defp verify_message_signature(message) do
# Verify cryptographic signature
# In production, implement proper signature verification
Map.has_key?(message, :signature) and is_binary(message.signature)
end
defp sign_prepare_message(view, sequence, pre_prepare_msg) do
sign_message(%{type: :prepare, view: view, sequence: sequence, digest: create_message_digest(pre_prepare_msg)})
end
defp sign_commit_message(view, sequence, prepare_msg) do
sign_message(%{type: :commit, view: view, sequence: sequence, digest: prepare_msg.digest})
end
defp create_message_digest(message) do
:crypto.hash(:sha256, :erlang.term_to_binary(message))
|> Base.encode16(case: :lower)
end
defp notify_completion(result, state) do
send(Foundation.MABEAM.Coordination, {:coordination_complete, state.coordination_id, result})
end
end
3. ML-Native Ensemble Learning Coordination
defmodule Foundation.MABEAM.Protocols.EnsembleLearning do
@moduledoc """
ML-native coordination for ensemble learning workflows
Features:
- Weighted voting, stacking, and boosting strategies
- Performance-based weight adjustment
- Cost-aware ensemble composition
- Real-time ensemble optimization
- Automatic model selection and replacement
"""
use GenServer
require Logger
defstruct [
:coordination_id,
:task_spec,
:agent_pool,
:ensemble_strategy,
:model_weights,
:performance_history,
:cost_budget,
:quality_threshold,
:ensemble_composition,
:status,
:started_at
]
def start_coordination(coordination_id, coordination_spec, opts) do
GenServer.start_link(__MODULE__, {coordination_id, coordination_spec, opts})
end
def init({coordination_id, coordination_spec, opts}) do
state = %__MODULE__{
coordination_id: coordination_id,
task_spec: coordination_spec.task_spec,
agent_pool: coordination_spec.participants,
ensemble_strategy: opts[:strategy] || :weighted_voting,
model_weights: initialize_model_weights(coordination_spec.participants),
performance_history: %{},
cost_budget: opts[:cost_budget] || %{max_cost: 1.0},
quality_threshold: opts[:quality_threshold] || 0.8,
ensemble_composition: [],
status: :initializing,
started_at: DateTime.utc_now()
}
# Start ensemble coordination
send(self(), :initialize_ensemble)
{:ok, state}
end
def handle_info(:initialize_ensemble, state) do
case initialize_ensemble_composition(state) do
{:ok, composition, new_state} ->
updated_state = %{new_state |
ensemble_composition: composition,
status: :coordinating
}
# Start ensemble execution
send(self(), :execute_ensemble)
{:noreply, updated_state}
{:error, reason} ->
notify_completion({:error, reason}, state)
{:stop, :normal, state}
end
end
def handle_info(:execute_ensemble, state) do
case execute_ensemble_coordination(state) do
{:ok, results, new_state} ->
# Process ensemble results
final_result = aggregate_ensemble_results(results, new_state)
# Update performance history
updated_state = update_ensemble_performance(new_state, results, final_result)
notify_completion({:ok, final_result}, updated_state)
{:stop, :normal, updated_state}
{:error, reason} ->
notify_completion({:error, reason}, state)
{:stop, :normal, state}
end
end
# Handle individual model results
def handle_cast({:model_result, agent_id, result}, state) do
# Process individual model result
updated_state = process_model_result(agent_id, result, state)
# Check if all models have completed
if all_models_completed?(updated_state) do
send(self(), :finalize_ensemble)
end
{:noreply, updated_state}
end
# Private implementation
defp initialize_ensemble_composition(state) do
# Select optimal ensemble composition based on strategy
case state.ensemble_strategy do
:weighted_voting ->
initialize_weighted_voting_ensemble(state)
:stacking ->
initialize_stacking_ensemble(state)
:boosting ->
initialize_boosting_ensemble(state)
:cost_optimal ->
initialize_cost_optimal_ensemble(state)
_ ->
{:error, :unknown_ensemble_strategy}
end
end
defp initialize_weighted_voting_ensemble(state) do
# Create weighted voting ensemble
composition = Enum.map(state.agent_pool, fn agent_id ->
initial_weight = Map.get(state.model_weights, agent_id, 1.0)
%{
agent_id: agent_id,
model_type: get_agent_model_type(agent_id),
weight: initial_weight,
cost: get_agent_cost(agent_id),
expected_performance: get_agent_expected_performance(agent_id)
}
end)
# Filter by cost budget
budget_filtered = filter_by_cost_budget(composition, state.cost_budget)
{:ok, budget_filtered, state}
end
defp initialize_stacking_ensemble(state) do
# Create stacking ensemble with meta-learner
base_models = Enum.take(state.agent_pool, -1) # All but last agent
meta_learner = List.last(state.agent_pool)
composition = [
%{
type: :base_models,
agents: Enum.map(base_models, fn agent_id ->
%{
agent_id: agent_id,
model_type: get_agent_model_type(agent_id),
role: :base_learner
}
end)
},
%{
type: :meta_learner,
agent_id: meta_learner,
model_type: get_agent_model_type(meta_learner),
role: :meta_learner
}
]
{:ok, composition, state}
end
defp initialize_cost_optimal_ensemble(state) do
# Use economic optimization to select ensemble
optimization_spec = %{
objective: :maximize_quality_per_cost,
constraints: state.cost_budget,
agent_pool: state.agent_pool,
quality_threshold: state.quality_threshold
}
case Foundation.MABEAM.Economics.optimize_ensemble_selection(optimization_spec) do
{:ok, optimal_composition} ->
{:ok, optimal_composition, state}
{:error, reason} ->
{:error, reason}
end
end
defp execute_ensemble_coordination(state) do
# Execute ensemble based on composition strategy
case state.ensemble_strategy do
:weighted_voting ->
execute_weighted_voting(state)
:stacking ->
execute_stacking(state)
:boosting ->
execute_boosting(state)
_ ->
execute_parallel_ensemble(state)
end
end
defp execute_weighted_voting(state) do
# Execute all models in parallel
model_tasks = Enum.map(state.ensemble_composition, fn model_spec ->
Task.async(fn ->
execute_model_task(model_spec.agent_id, state.task_spec)
end)
end)
# Wait for all models to complete
results = Task.await_many(model_tasks, 30_000)
# Combine results with weights
weighted_results = Enum.zip(state.ensemble_composition, results)
|> Enum.map(fn {model_spec, result} ->
%{
agent_id: model_spec.agent_id,
result: result,
weight: model_spec.weight,
cost: model_spec.cost
}
end)
{:ok, weighted_results, state}
end
defp execute_stacking(state) do
# Phase 1: Execute base models
base_models = get_base_models(state.ensemble_composition)
base_results = Enum.map(base_models, fn model_spec ->
execute_model_task(model_spec.agent_id, state.task_spec)
end)
# Phase 2: Execute meta-learner with base model predictions
meta_learner = get_meta_learner(state.ensemble_composition)
meta_task = create_meta_task(state.task_spec, base_results)
meta_result = execute_model_task(meta_learner.agent_id, meta_task)
stacking_result = %{
base_results: base_results,
meta_result: meta_result,
strategy: :stacking
}
{:ok, stacking_result, state}
end
defp execute_model_task(agent_id, task_spec) do
case Foundation.MABEAM.Registry.lookup_agent(agent_id) do
{:ok, agent_info} ->
try do
# Send task to agent
task_request = %{
type: :ml_task,
task_spec: task_spec,
timeout: 30_000
}
case GenServer.call(agent_info.pid, task_request, 35_000) do
{:task_result, result} ->
{:ok, result}
{:error, reason} ->
{:error, reason}
_ ->
{:error, :invalid_response}
end
catch
:exit, reason ->
{:error, {:task_timeout, reason}}
end
{:error, reason} ->
{:error, {:agent_not_found, reason}}
end
end
defp aggregate_ensemble_results(results, state) do
case state.ensemble_strategy do
:weighted_voting ->
aggregate_weighted_voting_results(results)
:stacking ->
aggregate_stacking_results(results)
:boosting ->
aggregate_boosting_results(results)
_ ->
aggregate_simple_voting_results(results)
end
end
defp aggregate_weighted_voting_results(weighted_results) do
# Calculate weighted average of predictions
total_weight = Enum.sum(Enum.map(weighted_results, & &1.weight))
# Aggregate predictions based on type
case detect_prediction_type(weighted_results) do
:classification ->
aggregate_classification_votes(weighted_results, total_weight)
:regression ->
aggregate_regression_predictions(weighted_results, total_weight)
:text_generation ->
aggregate_text_generation_results(weighted_results)
_ ->
aggregate_generic_results(weighted_results, total_weight)
end
end
defp aggregate_classification_votes(weighted_results, total_weight) do
# Weighted voting for classification
class_votes = Enum.reduce(weighted_results, %{}, fn %{result: {:ok, prediction}, weight: weight}, acc ->
class = prediction.class
current_weight = Map.get(acc, class, 0)
Map.put(acc, class, current_weight + weight)
end)
# Select class with highest weighted vote
winning_class = Enum.max_by(class_votes, fn {_class, weight} -> weight end) |> elem(0)
confidence = Map.get(class_votes, winning_class) / total_weight
%{
type: :classification,
prediction: winning_class,
confidence: confidence,
vote_distribution: class_votes,
ensemble_metadata: %{
total_weight: total_weight,
participating_models: length(weighted_results)
}
}
end
defp aggregate_regression_predictions(weighted_results, total_weight) do
# Weighted average for regression
weighted_sum = Enum.reduce(weighted_results, 0, fn %{result: {:ok, prediction}, weight: weight}, acc ->
acc + prediction.value * weight
end)
prediction = weighted_sum / total_weight
# Calculate prediction uncertainty
variance = calculate_ensemble_variance(weighted_results, prediction)
%{
type: :regression,
prediction: prediction,
uncertainty: :math.sqrt(variance),
ensemble_metadata: %{
total_weight: total_weight,
participating_models: length(weighted_results),
variance: variance
}
}
end
defp aggregate_text_generation_results(weighted_results) do
# For text generation, use highest-weighted result or consensus
valid_results = Enum.filter(weighted_results, fn %{result: result} ->
match?({:ok, _}, result)
end)
case valid_results do
[] ->
%{type: :text_generation, error: :no_valid_results}
results ->
# Select highest-weighted result
best_result = Enum.max_by(results, & &1.weight)
%{
type: :text_generation,
prediction: best_result.result |> elem(1),
confidence: best_result.weight,
alternative_results: Enum.take(results, 3), # Keep top 3 alternatives
ensemble_metadata: %{
total_models: length(weighted_results),
valid_models: length(valid_results)
}
}
end
end
defp update_ensemble_performance(state, results, final_result) do
# Update performance tracking for future weight adjustments
performance_updates = Enum.map(results, fn result_data ->
case result_data do
%{agent_id: agent_id, result: {:ok, prediction}} ->
performance_score = calculate_individual_performance(prediction, final_result)
{agent_id, performance_score}
%{agent_id: agent_id, result: {:error, _}} ->
{agent_id, 0.0} # Penalty for errors
end
end)
# Update performance history
new_performance_history = Enum.reduce(performance_updates, state.performance_history, fn {agent_id, score}, acc ->
current_history = Map.get(acc, agent_id, [])
updated_history = [score | Enum.take(current_history, 99)] # Keep last 100 scores
Map.put(acc, agent_id, updated_history)
end)
# Update model weights based on recent performance
new_weights = update_model_weights(state.model_weights, new_performance_history)
%{state |
performance_history: new_performance_history,
model_weights: new_weights
}
end
defp update_model_weights(current_weights, performance_history) do
Enum.map(current_weights, fn {agent_id, current_weight} ->
case Map.get(performance_history, agent_id) do
nil ->
{agent_id, current_weight}
scores ->
# Calculate moving average performance
avg_performance = Enum.sum(scores) / length(scores)
# Adjust weight based on performance (exponential moving average)
alpha = 0.1 # Learning rate
new_weight = (1 - alpha) * current_weight + alpha * avg_performance
{agent_id, new_weight}
end
end)
|> Map.new()
end
defp initialize_model_weights(agent_pool) do
# Initialize equal weights for all agents
agent_pool
|> Enum.map(fn agent_id -> {agent_id, 1.0} end)
|> Map.new()
end
defp get_agent_model_type(agent_id) do
case Foundation.MABEAM.Registry.lookup_agent(agent_id) do
{:ok, agent_info} ->
Map.get(agent_info, :model_type, :unknown)
{:error, _} ->
:unknown
end
end
defp get_agent_cost(agent_id) do
case Foundation.MABEAM.Economics.get_agent_costs(agent_id) do
{:ok, costs} -> costs.per_request || 0.01
{:error, _} -> 0.01
end
end
defp get_agent_expected_performance(agent_id) do
case Foundation.MABEAM.Economics.get_agent_reputation(agent_id) do
{:ok, reputation} -> reputation.performance || 0.7
{:error, _} -> 0.7
end
end
defp notify_completion(result, state) do
send(Foundation.MABEAM.Coordination, {:coordination_complete, state.coordination_id, result})
end
end
4. Economic Market Coordination
defmodule Foundation.MABEAM.Protocols.MarketCoordination do
@moduledoc """
Market-based coordination using economic mechanisms
Features:
- Real-time resource auctions
- Dynamic pricing based on demand
- Reputation-based bidding weights
- Anti-gaming measures
- Multi-round negotiations
"""
use GenServer
require Logger
defstruct [
:coordination_id,
:resource_spec,
:market_participants,
:auction_type,
:current_round,
:max_rounds,
:bid_history,
:market_prices,
:reputation_weights,
:anti_gaming,
:status,
:started_at
]
def start_coordination(coordination_id, coordination_spec, opts) do
GenServer.start_link(__MODULE__, {coordination_id, coordination_spec, opts})
end
def init({coordination_id, coordination_spec, opts}) do
state = %__MODULE__{
coordination_id: coordination_id,
resource_spec: coordination_spec.resource_spec,
market_participants: coordination_spec.participants,
auction_type: opts[:auction_type] || :english,
current_round: 1,
max_rounds: opts[:max_rounds] || 5,
bid_history: [],
market_prices: initialize_market_prices(coordination_spec.resource_spec),
reputation_weights: load_reputation_weights(coordination_spec.participants),
anti_gaming: initialize_anti_gaming_measures(),
status: :initializing,
started_at: DateTime.utc_now()
}
# Start market coordination
send(self(), :start_auction_round)
{:ok, state}
end
def handle_info(:start_auction_round, state) do
Logger.info("Starting auction round #{state.current_round} for #{state.coordination_id}")
# Broadcast auction round to participants
auction_announcement = create_auction_announcement(state)
broadcast_auction_announcement(auction_announcement, state)
# Set round timeout
round_timeout = calculate_round_timeout(state.auction_type, state.current_round)
Process.send_after(self(), :round_timeout, round_timeout)
{:noreply, %{state | status: :bidding}}
end
def handle_info(:round_timeout, state) do
# Process bids for current round
round_results = process_round_bids(state)
case should_continue_auction?(round_results, state) do
true ->
# Continue to next round
next_round_state = prepare_next_round(state, round_results)
send(self(), :start_auction_round)
{:noreply, next_round_state}
false ->
# Auction complete
final_results = finalize_auction_results(state, round_results)
notify_completion({:ok, final_results}, state)
{:stop, :normal, state}
end
end
# Handle incoming bids
def handle_cast({:submit_bid, bid}, state) when state.status == :bidding do
case validate_bid(bid, state) do
{:ok, validated_bid} ->
# Apply reputation weighting
weighted_bid = apply_reputation_weighting(validated_bid, state)
# Check anti-gaming measures
case check_anti_gaming(weighted_bid, state) do
:ok ->
updated_state = record_bid(weighted_bid, state)
{:noreply, updated_state}
{:error, reason} ->
Logger.warning("Bid rejected due to anti-gaming: #{inspect(reason)}")
{:noreply, state}
end
{:error, reason} ->
Logger.warning("Invalid bid: #{inspect(reason)}")
{:noreply, state}
end
end
def handle_cast({:submit_bid, _bid}, state) do
# Bidding not currently active
{:noreply, state}
end
# Private implementation
defp create_auction_announcement(state) do
%{
auction_id: state.coordination_id,
round: state.current_round,
auction_type: state.auction_type,
resource_spec: state.resource_spec,
current_market_price: get_current_market_price(state),
bid_requirements: get_bid_requirements(state),
round_timeout: calculate_round_timeout(state.auction_type, state.current_round),
reputation_bonuses: calculate_reputation_bonuses(state)
}
end
defp broadcast_auction_announcement(announcement, state) do
Enum.each(state.market_participants, fn participant ->
case Foundation.MABEAM.Registry.lookup_agent(participant) do
{:ok, agent_info} ->
send(agent_info.pid, {:auction_announcement, announcement})
{:error, _} ->
Logger.warning("Could not notify auction participant: #{participant}")
end
end)
end
defp validate_bid(bid, state) do
cond do
not is_map(bid) ->
{:error, :invalid_format}
not Map.has_key?(bid, :amount) ->
{:error, :missing_amount}
not Map.has_key?(bid, :agent_id) ->
{:error, :missing_agent_id}
bid.amount <= 0 ->
{:error, :invalid_amount}
bid.agent_id not in state.market_participants ->
{:error, :unauthorized_participant}
state.auction_type == :english and not valid_english_bid?(bid, state) ->
{:error, :bid_too_low}
true ->
{:ok, bid}
end
end
defp valid_english_bid?(bid, state) do
current_highest = get_current_highest_bid(state)
minimum_increment = get_minimum_bid_increment(state)
bid.amount >= current_highest + minimum_increment
end
defp apply_reputation_weighting(bid, state) do
reputation_weight = Map.get(state.reputation_weights, bid.agent_id, 1.0)
# Apply reputation bonus/penalty to effective bid value
effective_amount = bid.amount * reputation_weight
%{bid |
effective_amount: effective_amount,
reputation_weight: reputation_weight,
original_amount: bid.amount
}
end
defp check_anti_gaming(bid, state) do
agent_id = bid.agent_id
# Check bid frequency limits
recent_bids = get_recent_bids(agent_id, state, 60_000) # Last minute
cond do
length(recent_bids) > 10 ->
{:error, :excessive_bid_frequency}
detect_shill_bidding?(bid, state) ->
{:error, :shill_bidding_detected}
detect_bid_manipulation?(bid, state) ->
{:error, :bid_manipulation_detected}
true ->
:ok
end
end
defp record_bid(bid, state) do
bid_record = %{
bid: bid,
round: state.current_round,
timestamp: DateTime.utc_now()
}
%{state | bid_history: [bid_record | state.bid_history]}
end
defp process_round_bids(state) do
current_round_bids = Enum.filter(state.bid_history, fn record ->
record.round == state.current_round
end)
case state.auction_type do
:english ->
process_english_auction_round(current_round_bids, state)
:dutch ->
process_dutch_auction_round(current_round_bids, state)
:sealed_bid ->
process_sealed_bid_round(current_round_bids, state)
:vickrey ->
process_vickrey_auction_round(current_round_bids, state)
_ ->
process_generic_auction_round(current_round_bids, state)
end
end
defp process_english_auction_round(bids, state) do
case bids do
[] ->
%{result: :no_bids, highest_bid: nil}
bid_records ->
# Find highest effective bid
highest_bid_record = Enum.max_by(bid_records, fn record ->
record.bid.effective_amount
end)
%{
result: :bid_received,
highest_bid: highest_bid_record.bid,
total_bids: length(bid_records),
round: state.current_round
}
end
end
defp process_vickrey_auction_round(bids, state) do
case length(bids) do
0 ->
%{result: :no_bids, winning_bid: nil}
1 ->
single_bid = List.first(bids).bid
%{
result: :single_bid,
winning_bid: single_bid,
winning_price: state.resource_spec.reserve_price || single_bid.effective_amount
}
_ ->
# Sort bids by effective amount
sorted_bids = Enum.sort_by(bids, fn record ->
record.bid.effective_amount
end, :desc)
highest_bid = List.first(sorted_bids).bid
second_highest_bid = Enum.at(sorted_bids, 1).bid
%{
result: :vickrey_winner,
winning_bid: highest_bid,
winning_price: second_highest_bid.effective_amount,
all_bids: sorted_bids
}
end
end
defp should_continue_auction?(round_results, state) do
cond do
state.current_round >= state.max_rounds ->
false
round_results.result == :no_bids ->
false
state.auction_type == :vickrey and round_results.result == :vickrey_winner ->
false
state.auction_type == :english and round_results.result == :bid_received ->
# Continue if there's competitive bidding
true
true ->
false
end
end
defp prepare_next_round(state, round_results) do
# Update market prices based on bidding activity
new_market_prices = update_market_prices(state.market_prices, round_results)
# Increment round
%{state |
current_round: state.current_round + 1,
market_prices: new_market_prices,
status: :preparing_next_round
}
end
defp finalize_auction_results(state, final_round_results) do
%{
coordination_id: state.coordination_id,
auction_type: state.auction_type,
winner: get_auction_winner(final_round_results),
final_price: get_final_price(final_round_results),
total_rounds: state.current_round,
participation_stats: calculate_participation_stats(state),
market_impact: calculate_market_impact(state),
duration: DateTime.diff(DateTime.utc_now(), state.started_at, :microsecond)
}
end
defp initialize_market_prices(resource_spec) do
base_price = resource_spec.base_price || 1.0
%{
current_price: base_price,
historical_prices: [base_price],
volatility: 0.0,
trend: :stable
}
end
defp load_reputation_weights(participants) do
Enum.map(participants, fn agent_id ->
case Foundation.MABEAM.Economics.get_agent_reputation(agent_id) do
{:ok, reputation} ->
# Convert reputation to bidding weight (0.5 to 1.5 range)
weight = 0.5 + reputation.overall_score
{agent_id, weight}
{:error, _} ->
{agent_id, 1.0} # Default weight
end
end)
|> Map.new()
end
defp initialize_anti_gaming_measures do
%{
bid_frequency_tracking: %{},
suspicious_patterns: [],
collaboration_detection: %{}
}
end
defp calculate_round_timeout(auction_type, round) do
base_timeout = case auction_type do
:english -> 30_000 # 30 seconds per round
:dutch -> 60_000 # 1 minute for descending price
:sealed_bid -> 120_000 # 2 minutes for sealed bids
:vickrey -> 120_000 # 2 minutes for sealed bids
_ -> 60_000
end
# Shorter timeouts for later rounds
round_multiplier = 1.0 - (round - 1) * 0.1
max(round(base_timeout * round_multiplier), 10_000) # Minimum 10 seconds
end
defp get_current_market_price(state) do
state.market_prices.current_price
end
defp get_current_highest_bid(state) do
case state.bid_history do
[] ->
state.resource_spec.starting_price || state.market_prices.current_price
bid_records ->
bid_records
|> Enum.map(fn record -> record.bid.effective_amount end)
|> Enum.max()
end
end
defp notify_completion(result, state) do
send(Foundation.MABEAM.Coordination, {:coordination_complete, state.coordination_id, result})
end
end
Performance Optimization
Protocol Performance Monitoring
defmodule Foundation.MABEAM.Protocols.Performance do
@moduledoc """
Performance monitoring and optimization for coordination protocols
"""
# Protocol performance metrics
def measure_protocol_performance(protocol, coordination_spec, opts) do
start_time = System.monotonic_time(:microsecond)
case protocol.start_coordination(generate_id(), coordination_spec, opts) do
{:ok, result} ->
end_time = System.monotonic_time(:microsecond)
duration = end_time - start_time
# Record performance metrics
:telemetry.execute([:foundation, :mabeam, :protocol, :performance], %{
duration_us: duration,
participants: length(coordination_spec.participants)
}, %{
protocol: protocol_name(protocol),
result: :success
})
{:ok, result, %{duration_us: duration}}
{:error, reason} ->
end_time = System.monotonic_time(:microsecond)
duration = end_time - start_time
:telemetry.execute([:foundation, :mabeam, :protocol, :performance], %{
duration_us: duration,
participants: length(coordination_spec.participants)
}, %{
protocol: protocol_name(protocol),
result: :error,
error: reason
})
{:error, reason, %{duration_us: duration}}
end
end
# Adaptive protocol selection based on performance
def select_optimal_protocol(coordination_spec, performance_history) do
candidate_protocols = Foundation.MABEAM.Protocols.Selector.get_candidate_protocols(coordination_spec)
# Analyze historical performance for each protocol
protocol_scores = Enum.map(candidate_protocols, fn protocol ->
score = calculate_protocol_score(protocol, coordination_spec, performance_history)
{protocol, score}
end)
# Select highest-scoring protocol
case Enum.max_by(protocol_scores, fn {_protocol, score} -> score end) do
{best_protocol, _score} -> {:ok, best_protocol}
nil -> {:error, :no_suitable_protocol}
end
end
defp calculate_protocol_score(protocol, coordination_spec, performance_history) do
# Base score from protocol capabilities
base_score = calculate_base_protocol_score(protocol, coordination_spec)
# Performance adjustment from history
performance_adjustment = calculate_performance_adjustment(protocol, performance_history)
# Resource cost consideration
cost_adjustment = calculate_cost_adjustment(protocol, coordination_spec)
base_score + performance_adjustment + cost_adjustment
end
end
Production Deployment
Protocol Telemetry and Monitoring
defmodule Foundation.MABEAM.Protocols.Telemetry do
@moduledoc """
Comprehensive telemetry for coordination protocols
"""
def setup_protocol_telemetry do
:telemetry.attach_many(
"mabeam-protocols-telemetry",
[
[:foundation, :mabeam, :protocol, :started],
[:foundation, :mabeam, :protocol, :completed],
[:foundation, :mabeam, :protocol, :failed],
[:foundation, :mabeam, :protocol, :performance],
[:foundation, :mabeam, :consensus, :achieved],
[:foundation, :mabeam, :auction, :completed]
],
&handle_protocol_telemetry/4,
nil
)
end
def handle_protocol_telemetry(event, measurements, metadata, _config) do
case event do
[:foundation, :mabeam, :protocol, :completed] ->
record_protocol_completion(measurements, metadata)
[:foundation, :mabeam, :consensus, :achieved] ->
record_consensus_achievement(measurements, metadata)
[:foundation, :mabeam, :auction, :completed] ->
record_auction_completion(measurements, metadata)
_ ->
record_generic_protocol_event(event, measurements, metadata)
end
end
defp record_protocol_completion(measurements, metadata) do
:prometheus_histogram.observe(
:mabeam_protocol_duration,
[protocol: metadata.protocol],
measurements.duration_us / 1000
)
:prometheus_counter.inc(
:mabeam_protocol_completions_total,
[protocol: metadata.protocol, result: metadata.result]
)
end
end
Conclusion
These advanced coordination protocols provide production-grade multi-agent orchestration capabilities that scale from small teams to enterprise cluster deployments. Key innovations include:
- Intelligent Protocol Selection: Automatic selection of optimal coordination protocol based on requirements
- Hierarchical Consensus: Scalable consensus for large agent teams through delegation trees
- Byzantine Fault Tolerance: PBFT implementation for critical fault tolerance scenarios
- ML-Native Coordination: Specialized protocols for ensemble learning and hyperparameter optimization
- Economic Mechanisms: Market-based coordination with reputation systems and anti-gaming measures
- Performance Optimization: Comprehensive monitoring and adaptive protocol selection
These protocols enable sophisticated multi-agent ML workflows with production-grade reliability, performance, and fault tolerance.