Cognitive Variables Architecture: From Parameters to Intelligent Coordination Primitives
Date: July 12, 2025
Status: Technical Architecture Specification
Scope: Complete cognitive Variables system built on Jido-first foundation
Context: Revolutionary Variables implementation for DSPEx platform
Executive Summary
This document specifies the complete architecture for Cognitive Variables - the revolutionary transformation of ML parameters from passive values into active intelligent coordination primitives that orchestrate distributed agent teams. Built on a Jido-first foundation, this system enables unprecedented capabilities in distributed ML workflows and represents the core innovation of the DSPEx platform.
Revolutionary Concept: Variables as Intelligent Agents
The Paradigm Shift
Traditional ML Parameters: Static values optimized by external systems
# Traditional approach - passive parameters
temperature = 0.7
max_tokens = 1000
model = "gpt-4"
Cognitive Variables: Intelligent agent coordinators that actively manage ML workflows
# Revolutionary approach - active coordination primitives
{:ok, temperature} = DSPEx.Variables.CognitiveFloat.start_link(
name: :temperature,
range: {0.0, 2.0},
default: 0.7,
coordination_scope: :cluster,
affected_agents: [:llm_agents, :optimizer_agents],
adaptation_strategy: :performance_feedback,
economic_coordination: true
)
Core Innovations
- Variables ARE Agents: Each Variable is a full Jido agent with actions, sensors, and intelligence
- Active Coordination: Variables directly coordinate and communicate with other agents
- Real-Time Adaptation: Variables adapt their values based on multi-dimensional feedback
- Economic Optimization: Variables use market mechanisms for resource allocation
- Cluster-Wide Intelligence: Variables coordinate across distributed environments
Cognitive Variable Agent Architecture
Base Cognitive Variable Agent
defmodule DSPEx.Variables.CognitiveVariable do
@moduledoc """
Base agent for all cognitive variables with intelligent coordination capabilities
"""
use Jido.Agent
@actions [
DSPEx.Variables.Actions.UpdateValue,
DSPEx.Variables.Actions.CoordinateAffectedAgents,
DSPEx.Variables.Actions.AdaptBasedOnFeedback,
DSPEx.Variables.Actions.SyncAcrossCluster,
DSPEx.Variables.Actions.NegotiateEconomicChange,
DSPEx.Variables.Actions.ResolveConflicts,
DSPEx.Variables.Actions.PredictOptimalValue,
DSPEx.Variables.Actions.AnalyzePerformanceImpact
]
@sensors [
DSPEx.Variables.Sensors.PerformanceFeedbackSensor,
DSPEx.Variables.Sensors.AgentHealthMonitor,
DSPEx.Variables.Sensors.ClusterStateSensor,
DSPEx.Variables.Sensors.CostMonitorSensor,
DSPEx.Variables.Sensors.ConflictDetectionSensor,
DSPEx.Variables.Sensors.NetworkLatencySensor
]
@skills [
DSPEx.Variables.Skills.PerformanceAnalysis,
DSPEx.Variables.Skills.ConflictResolution,
DSPEx.Variables.Skills.EconomicNegotiation,
DSPEx.Variables.Skills.PredictiveOptimization
]
defstruct [
:name, # Variable identifier
:type, # :float, :choice, :composite, :agent_team
:current_value, # Current variable value
:valid_range, # Valid value range/choices
:coordination_scope, # :local, :cluster, :global
:affected_agents, # List of agent IDs affected by this variable
:adaptation_strategy, # How the variable adapts (:static, :performance, :economic, :ml)
:performance_history, # Historical performance data
:coordination_history, # History of coordination events
:economic_config, # Economic coordination configuration
:cluster_sync_config, # Cluster synchronization configuration
:constraints, # Inter-variable constraints
:last_updated, # Timestamp of last update
:metadata # Additional variable metadata
]
def mount(agent, opts) do
initial_state = %__MODULE__{
name: opts[:name] || agent.id,
type: opts[:type] || :float,
current_value: opts[:default] || 0.0,
valid_range: opts[:range] || {0.0, 1.0},
coordination_scope: opts[:coordination_scope] || :local,
affected_agents: opts[:affected_agents] || [],
adaptation_strategy: opts[:adaptation_strategy] || :static,
performance_history: [],
coordination_history: [],
economic_config: initialize_economic_config(opts[:economic_coordination]),
cluster_sync_config: initialize_cluster_sync(opts[:cluster_sync]),
constraints: opts[:constraints] || [],
last_updated: DateTime.utc_now(),
metadata: opts[:metadata] || %{}
}
# Register with Variable coordination system
register_with_coordination_system(initial_state)
# Setup adaptation monitoring if enabled
setup_adaptation_monitoring(initial_state)
# Subscribe to relevant signals
subscribe_to_coordination_signals(initial_state)
{:ok, %{agent | state: initial_state}}
end
# Core signal handling for Variable coordination
def handle_signal({:performance_feedback, performance_data}, agent) do
case should_adapt_based_on_performance?(performance_data, agent.state) do
true ->
new_value = calculate_optimal_value(performance_data, agent.state)
coordinate_value_change(new_value, agent.state)
false ->
{:ok, agent}
end
end
def handle_signal({:agent_suggestion, agent_id, suggested_value, rationale}, agent) do
case evaluate_agent_suggestion(agent_id, suggested_value, rationale, agent.state) do
{:accept, new_value} ->
coordinate_value_change(new_value, agent.state)
{:negotiate, counter_proposal} ->
negotiate_with_agent(agent_id, counter_proposal, agent.state)
{:reject, reason} ->
notify_suggestion_rejected(agent_id, reason, agent.state)
{:ok, agent}
end
end
def handle_signal({:cluster_sync_request, requesting_node, proposed_value}, agent) do
case agent.state.cluster_sync_config.strategy do
:consensus ->
participate_in_consensus(requesting_node, proposed_value, agent.state)
:eventual_consistency ->
apply_eventual_update(proposed_value, agent.state)
:strong_consistency ->
coordinate_strong_consistency_update(requesting_node, proposed_value, agent.state)
end
end
def handle_signal({:economic_bid, auction_id, bid_amount, bidder_agent}, agent) do
case should_accept_economic_bid?(auction_id, bid_amount, bidder_agent, agent.state) do
true ->
accept_economic_change(auction_id, bid_amount, bidder_agent, agent.state)
false ->
reject_economic_bid(auction_id, bidder_agent, agent.state)
end
end
def handle_signal({:conflict_detected, conflicting_variable, conflict_data}, agent) do
resolution_strategy = determine_conflict_resolution_strategy(conflict_data, agent.state)
resolve_variable_conflict(conflicting_variable, resolution_strategy, agent.state)
end
# Private implementation functions
defp register_with_coordination_system(state) do
coordination_spec = %{
variable_id: state.name,
coordination_scope: state.coordination_scope,
affected_agents: state.affected_agents,
adaptation_strategy: state.adaptation_strategy
}
Jido.Signal.Bus.broadcast(:variable_coordinator, {
:register_variable,
coordination_spec
})
end
defp coordinate_value_change(new_value, state) do
if new_value != state.current_value do
coordination_signal = %{
type: :variable_change_coordination,
variable_name: state.name,
old_value: state.current_value,
new_value: new_value,
coordination_scope: state.coordination_scope,
affected_agents: state.affected_agents,
coordination_id: generate_coordination_id()
}
case state.coordination_scope do
:local ->
coordinate_local_change(coordination_signal, state)
:cluster ->
coordinate_cluster_change(coordination_signal, state)
:global ->
coordinate_global_change(coordination_signal, state)
end
else
{:ok, state}
end
end
defp coordinate_local_change(coordination_signal, state) do
# Notify all affected agents locally
Enum.each(state.affected_agents, fn agent_id ->
Jido.Signal.Bus.broadcast(agent_id, {
:variable_changed,
coordination_signal
})
end)
# Wait for confirmations
collect_coordination_confirmations(coordination_signal, state)
end
defp coordinate_cluster_change(coordination_signal, state) do
# Get cluster nodes
cluster_nodes = DSPEx.Clustering.get_cluster_nodes()
# Coordinate across cluster based on sync strategy
case state.cluster_sync_config.strategy do
:consensus ->
coordinate_cluster_consensus(coordination_signal, cluster_nodes, state)
:eventual_consistency ->
broadcast_eventual_change(coordination_signal, cluster_nodes, state)
:strong_consistency ->
coordinate_strong_consistency(coordination_signal, cluster_nodes, state)
end
end
defp should_adapt_based_on_performance?(performance_data, state) do
case state.adaptation_strategy do
:static ->
false
:performance_feedback ->
analyze_performance_degradation(performance_data, state.performance_history)
:economic ->
analyze_cost_performance_tradeoff(performance_data, state.economic_config)
:ml ->
analyze_ml_optimization_opportunity(performance_data, state.metadata)
{:custom, module, function} ->
apply(module, function, [performance_data, state])
end
end
defp calculate_optimal_value(performance_data, state) do
case state.adaptation_strategy do
:performance_feedback ->
optimize_for_performance(performance_data, state)
:economic ->
optimize_for_cost_performance(performance_data, state)
:ml ->
optimize_for_ml_metrics(performance_data, state)
{:custom, module, function} ->
apply(module, function, [performance_data, state])
end
end
end
Specialized Cognitive Variable Types
1. CognitiveFloat - Continuous Parameter Intelligence
defmodule DSPEx.Variables.CognitiveFloat do
@moduledoc """
Intelligent continuous parameter coordination with real-time adaptation
"""
use DSPEx.Variables.CognitiveVariable
@type_specific_actions [
DSPEx.Variables.Actions.Float.GradientDescent,
DSPEx.Variables.Actions.Float.BayesianOptimization,
DSPEx.Variables.Actions.Float.SimulatedAnnealing,
DSPEx.Variables.Actions.Float.AdaptiveLearningRate
]
@type_specific_sensors [
DSPEx.Variables.Sensors.Float.GradientSensor,
DSPEx.Variables.Sensors.Float.ConvergenceSensor,
DSPEx.Variables.Sensors.Float.NoiseDetectionSensor
]
# Specialized float coordination
def handle_signal({:gradient_feedback, gradient_data}, agent) do
case agent.state.adaptation_strategy do
:ml ->
new_value = apply_gradient_update(gradient_data, agent.state)
coordinate_value_change(new_value, agent.state)
_ ->
{:ok, agent}
end
end
def handle_signal({:bayesian_optimization_result, optimization_data}, agent) do
candidate_value = optimization_data.suggested_value
expected_improvement = optimization_data.expected_improvement
if expected_improvement > agent.state.metadata[:improvement_threshold] do
coordinate_value_change(candidate_value, agent.state)
else
{:ok, agent}
end
end
defp apply_gradient_update(gradient_data, state) do
learning_rate = state.metadata[:learning_rate] || 0.01
momentum = state.metadata[:momentum] || 0.9
gradient = gradient_data.gradient
previous_update = state.metadata[:previous_update] || 0.0
# Momentum-based gradient descent
update = momentum * previous_update + learning_rate * gradient
new_value = state.current_value - update
# Clip to valid range
clip_to_range(new_value, state.valid_range)
end
end
2. CognitiveChoice - Intelligent Categorical Selection
defmodule DSPEx.Variables.CognitiveChoice do
@moduledoc """
Intelligent categorical parameter coordination with economic mechanisms
"""
use DSPEx.Variables.CognitiveVariable
@type_specific_actions [
DSPEx.Variables.Actions.Choice.MultiArmedBandit,
DSPEx.Variables.Actions.Choice.ThompsonSampling,
DSPEx.Variables.Actions.Choice.UpperConfidenceBound,
DSPEx.Variables.Actions.Choice.EconomicAuction
]
@type_specific_sensors [
DSPEx.Variables.Sensors.Choice.RewardSensor,
DSPEx.Variables.Sensors.Choice.ExplorationSensor,
DSPEx.Variables.Sensors.Choice.CostBenefitSensor
]
defstruct [
# Base CognitiveVariable fields
# Plus choice-specific fields
:choices, # Available choices
:choice_rewards, # Reward history for each choice
:choice_costs, # Cost data for each choice
:exploration_rate, # Exploration vs exploitation balance
:auction_config, # Economic choice coordination config
:voting_strategy, # How agents vote on choices
:consensus_threshold # Threshold for choice changes
]
# Economic choice coordination
def handle_signal({:choice_auction_request, auction_spec}, agent) do
case agent.state.economic_config.enabled do
true ->
participate_in_choice_auction(auction_spec, agent.state)
false ->
{:ok, agent}
end
end
def handle_signal({:agent_vote, agent_id, preferred_choice, weight}, agent) do
case update_choice_voting(agent_id, preferred_choice, weight, agent.state) do
{:consensus_reached, winning_choice} ->
coordinate_value_change(winning_choice, agent.state)
{:voting_continues, updated_state} ->
{:ok, %{agent | state: updated_state}}
end
end
defp participate_in_choice_auction(auction_spec, state) do
# Evaluate each choice option
choice_evaluations = Enum.map(state.choices, fn choice ->
{choice, evaluate_choice_value(choice, state)}
end)
# Submit bids for preferred choices
submit_choice_bids(choice_evaluations, auction_spec, state)
end
defp evaluate_choice_value(choice, state) do
reward_history = Map.get(state.choice_rewards, choice, [])
cost_history = Map.get(state.choice_costs, choice, [])
expected_reward = calculate_expected_reward(reward_history)
expected_cost = calculate_expected_cost(cost_history)
# Value = Expected Reward - Expected Cost
expected_reward - expected_cost
end
end
3. CognitiveAgentTeam - Revolutionary Team Selection Intelligence
defmodule DSPEx.Variables.CognitiveAgentTeam do
@moduledoc """
Revolutionary Variables that intelligently select and coordinate agent teams
"""
use DSPEx.Variables.CognitiveVariable
@type_specific_actions [
DSPEx.Variables.Actions.AgentTeam.SelectTeamMembers,
DSPEx.Variables.Actions.AgentTeam.EvaluateTeamPerformance,
DSPEx.Variables.Actions.AgentTeam.RebalanceTeam,
DSPEx.Variables.Actions.AgentTeam.NegotiateTeamChanges,
DSPEx.Variables.Actions.AgentTeam.OptimizeTeamComposition
]
@type_specific_sensors [
DSPEx.Variables.Sensors.AgentTeam.TeamPerformanceSensor,
DSPEx.Variables.Sensors.AgentTeam.TeamCohesionSensor,
DSPEx.Variables.Sensors.AgentTeam.WorkloadBalanceSensor,
DSPEx.Variables.Sensors.AgentTeam.CostEfficiencySensor
]
defstruct [
# Base CognitiveVariable fields
# Plus team-specific fields
:agent_pool, # Available agents for team selection
:current_team, # Currently selected team members
:team_size_range, # {min_size, max_size}
:role_requirements, # Required roles in team
:team_performance_history, # Historical team performance data
:agent_performance_data, # Individual agent performance tracking
:team_coordination_config, # How team coordinates
:selection_strategy, # Team selection algorithm
:rebalancing_frequency # How often to evaluate team changes
]
# Revolutionary team coordination
def handle_signal({:team_performance_feedback, performance_data}, agent) do
case analyze_team_performance(performance_data, agent.state) do
{:needs_rebalancing, rebalancing_plan} ->
coordinate_team_rebalancing(rebalancing_plan, agent.state)
{:add_agent, agent_requirements} ->
coordinate_agent_addition(agent_requirements, agent.state)
{:remove_agent, agent_to_remove} ->
coordinate_agent_removal(agent_to_remove, agent.state)
{:optimal, _} ->
{:ok, agent}
end
end
def handle_signal({:agent_availability_changed, agent_id, availability_status}, agent) do
case availability_status do
:unavailable ->
if agent_id in agent.state.current_team do
find_replacement_agent(agent_id, agent.state)
else
{:ok, agent}
end
:available ->
evaluate_agent_for_team_addition(agent_id, agent.state)
end
end
def handle_signal({:new_agent_registered, agent_spec}, agent) do
case evaluate_agent_capabilities(agent_spec, agent.state) do
{:better_than_current, replacement_target} ->
propose_agent_replacement(agent_spec, replacement_target, agent.state)
{:valuable_addition, _} ->
propose_team_expansion(agent_spec, agent.state)
{:not_suitable, _} ->
{:ok, agent}
end
end
defp coordinate_team_rebalancing(rebalancing_plan, state) do
# Create coordination plan for team changes
coordination_spec = %{
type: :team_rebalancing,
current_team: state.current_team,
planned_changes: rebalancing_plan,
coordination_strategy: state.team_coordination_config.strategy
}
case state.team_coordination_config.strategy do
:consensus ->
coordinate_team_consensus(coordination_spec, state)
:democratic ->
coordinate_team_voting(coordination_spec, state)
:performance_based ->
coordinate_performance_based_changes(coordination_spec, state)
:economic ->
coordinate_economic_team_changes(coordination_spec, state)
end
end
defp analyze_team_performance(performance_data, state) do
current_performance = performance_data.overall_performance
performance_trend = calculate_performance_trend(state.team_performance_history)
team_efficiency = calculate_team_efficiency(performance_data, state.current_team)
cond do
current_performance < state.metadata[:performance_threshold] ->
generate_rebalancing_plan(performance_data, state)
team_efficiency < state.metadata[:efficiency_threshold] ->
{:needs_rebalancing, %{type: :efficiency_optimization}}
length(state.current_team) < elem(state.team_size_range, 0) ->
{:add_agent, determine_needed_capabilities(performance_data, state)}
performance_trend < -0.1 ->
identify_underperforming_agent(performance_data, state)
true ->
{:optimal, performance_data}
end
end
end
Variable Coordination System Architecture
Central Variable Coordinator Agent
defmodule DSPEx.Variables.VariableCoordinator do
@moduledoc """
Central coordinator for all Variables with global optimization capabilities
"""
use Jido.Agent
@actions [
DSPEx.Variables.Actions.Coordinator.RegisterVariable,
DSPEx.Variables.Actions.Coordinator.CoordinateGlobalOptimization,
DSPEx.Variables.Actions.Coordinator.ResolveVariableConflicts,
DSPEx.Variables.Actions.Coordinator.ManageVariableDependencies,
DSPEx.Variables.Actions.Coordinator.OptimizeVariableSpace
]
@sensors [
DSPEx.Variables.Sensors.Coordinator.GlobalPerformanceSensor,
DSPEx.Variables.Sensors.Coordinator.ConflictDetectionSensor,
DSPEx.Variables.Sensors.Coordinator.DependencyMonitorSensor
]
defstruct [
:registered_variables, # Map of all registered Variables
:variable_dependencies, # Inter-variable dependency graph
:global_constraints, # System-wide constraints
:optimization_history, # Global optimization history
:conflict_resolution_strategy, # How to resolve Variable conflicts
:coordination_patterns, # Learned coordination patterns
:performance_targets, # Global performance targets
:economic_budget, # Budget for economic coordination
:cluster_topology # Current cluster state for distributed coordination
]
def mount(agent, opts) do
initial_state = %__MODULE__{
registered_variables: %{},
variable_dependencies: :digraph.new(),
global_constraints: opts[:global_constraints] || [],
optimization_history: [],
conflict_resolution_strategy: opts[:conflict_resolution] || :performance_based,
coordination_patterns: %{},
performance_targets: opts[:performance_targets] || %{},
economic_budget: opts[:economic_budget] || %{total: 100.0, allocated: 0.0},
cluster_topology: %{nodes: [node()], replication_factor: 1}
}
# Subscribe to Variable coordination signals
Jido.Signal.Bus.subscribe(self(), :variable_coordination)
# Start global optimization cycle
:timer.send_interval(30_000, :global_optimization_cycle)
{:ok, %{agent | state: initial_state}}
end
def handle_signal({:register_variable, variable_spec}, agent) do
updated_state = register_variable(variable_spec, agent.state)
{:ok, %{agent | state: updated_state}}
end
def handle_signal({:variable_change_coordination, coordination_spec}, agent) do
case validate_variable_change(coordination_spec, agent.state) do
{:ok, :approved} ->
coordinate_variable_change(coordination_spec, agent.state)
{:conflict, conflicting_variables} ->
initiate_conflict_resolution(coordination_spec, conflicting_variables, agent.state)
{:constraint_violation, violated_constraints} ->
handle_constraint_violation(coordination_spec, violated_constraints, agent.state)
end
end
def handle_signal({:global_performance_feedback, performance_data}, agent) do
case analyze_global_performance(performance_data, agent.state) do
{:optimization_opportunity, optimization_plan} ->
execute_global_optimization(optimization_plan, agent.state)
{:satisfactory, _} ->
{:ok, agent}
{:degradation, problem_variables} ->
investigate_performance_degradation(problem_variables, agent.state)
end
end
def handle_info(:global_optimization_cycle, agent) do
case should_run_global_optimization?(agent.state) do
true ->
optimization_plan = generate_global_optimization_plan(agent.state)
execute_global_optimization(optimization_plan, agent.state)
false ->
{:ok, agent}
end
end
defp register_variable(variable_spec, state) do
variable_id = variable_spec.variable_id
# Add to registered variables
updated_variables = Map.put(state.registered_variables, variable_id, variable_spec)
# Update dependency graph if dependencies exist
updated_dependencies = case variable_spec[:dependencies] do
nil -> state.variable_dependencies
deps -> add_variable_dependencies(variable_id, deps, state.variable_dependencies)
end
# Update global constraints if variable adds constraints
updated_constraints = case variable_spec[:global_constraints] do
nil -> state.global_constraints
constraints -> state.global_constraints ++ constraints
end
%{state |
registered_variables: updated_variables,
variable_dependencies: updated_dependencies,
global_constraints: updated_constraints
}
end
defp generate_global_optimization_plan(state) do
# Analyze current variable values and performance
current_configuration = extract_current_configuration(state.registered_variables)
performance_data = get_global_performance_data()
# Generate optimization candidates
optimization_candidates = generate_optimization_candidates(
current_configuration,
performance_data,
state
)
# Rank candidates by expected improvement
ranked_candidates = rank_optimization_candidates(optimization_candidates, state)
# Create execution plan
%{
type: :global_optimization,
candidates: ranked_candidates,
execution_strategy: determine_execution_strategy(ranked_candidates, state),
constraints: state.global_constraints,
budget: calculate_optimization_budget(state.economic_budget)
}
end
end
Real-Time Performance Adaptation
Performance Feedback Loop Architecture
defmodule DSPEx.Variables.PerformanceAdapter do
@moduledoc """
Real-time performance adaptation engine for Variables
"""
use Jido.Agent
@actions [
DSPEx.Variables.Actions.Performance.CollectMetrics,
DSPEx.Variables.Actions.Performance.AnalyzeTrends,
DSPEx.Variables.Actions.Performance.GenerateAdaptations,
DSPEx.Variables.Actions.Performance.ValidateAdaptations
]
@sensors [
DSPEx.Variables.Sensors.Performance.LatencySensor,
DSPEx.Variables.Sensors.Performance.ThroughputSensor,
DSPEx.Variables.Sensors.Performance.AccuracySensor,
DSPEx.Variables.Sensors.Performance.CostSensor,
DSPEx.Variables.Sensors.Performance.ResourceUtilizationSensor
]
defstruct [
:performance_metrics, # Current performance metrics
:metric_history, # Historical performance data
:adaptation_thresholds, # Thresholds for triggering adaptations
:adaptation_strategies, # Available adaptation strategies
:learning_models, # ML models for performance prediction
:adaptation_frequency, # How often to check for adaptations
:validation_period # How long to validate adaptations
]
def mount(agent, opts) do
initial_state = %__MODULE__{
performance_metrics: %{},
metric_history: [],
adaptation_thresholds: opts[:thresholds] || default_thresholds(),
adaptation_strategies: opts[:strategies] || default_strategies(),
learning_models: initialize_learning_models(),
adaptation_frequency: opts[:frequency] || 5_000,
validation_period: opts[:validation_period] || 30_000
}
# Start performance monitoring cycle
:timer.send_interval(initial_state.adaptation_frequency, :collect_performance_metrics)
{:ok, %{agent | state: initial_state}}
end
def handle_info(:collect_performance_metrics, agent) do
# Collect current performance metrics
current_metrics = collect_system_performance_metrics()
# Update metric history
updated_history = [current_metrics | Enum.take(agent.state.metric_history, 99)]
# Analyze for adaptation opportunities
case analyze_adaptation_opportunities(current_metrics, updated_history, agent.state) do
{:adaptations_needed, adaptations} ->
execute_adaptations(adaptations, agent.state)
{:no_adaptations_needed, _} ->
{:ok, %{agent | state: %{agent.state |
performance_metrics: current_metrics,
metric_history: updated_history
}}}
end
end
defp collect_system_performance_metrics do
%{
# System performance metrics
latency: measure_system_latency(),
throughput: measure_system_throughput(),
accuracy: measure_system_accuracy(),
cost_per_operation: measure_cost_per_operation(),
resource_utilization: measure_resource_utilization(),
# Agent performance metrics
agent_response_times: measure_agent_response_times(),
agent_success_rates: measure_agent_success_rates(),
agent_coordination_efficiency: measure_coordination_efficiency(),
# Variable-specific metrics
variable_adaptation_frequency: measure_variable_adaptations(),
variable_coordination_latency: measure_variable_coordination(),
variable_conflict_rate: measure_variable_conflicts(),
timestamp: DateTime.utc_now()
}
end
defp analyze_adaptation_opportunities(current_metrics, history, state) do
# Detect performance trends
trends = analyze_performance_trends(history)
# Identify problematic areas
problems = identify_performance_problems(current_metrics, state.adaptation_thresholds)
# Generate adaptation recommendations
adaptations = generate_adaptations(trends, problems, state)
case adaptations do
[] -> {:no_adaptations_needed, current_metrics}
adaptations -> {:adaptations_needed, adaptations}
end
end
defp generate_adaptations(trends, problems, state) do
# Combine trend analysis with problem identification
Enum.flat_map(problems, fn problem ->
generate_adaptations_for_problem(problem, trends, state)
end)
|> Enum.uniq()
|> rank_adaptations_by_impact()
end
defp generate_adaptations_for_problem(problem, trends, state) do
case problem.type do
:high_latency ->
[
%{type: :reduce_coordination_scope, target_variables: problem.related_variables},
%{type: :increase_cache_size, target_variables: problem.related_variables},
%{type: :optimize_algorithm_parameters, target_variables: problem.related_variables}
]
:low_accuracy ->
[
%{type: :increase_model_complexity, target_variables: problem.related_variables},
%{type: :adjust_hyperparameters, target_variables: problem.related_variables},
%{type: :expand_agent_team, target_variables: problem.related_variables}
]
:high_cost ->
[
%{type: :switch_to_cheaper_model, target_variables: problem.related_variables},
%{type: :reduce_request_frequency, target_variables: problem.related_variables},
%{type: :optimize_resource_allocation, target_variables: problem.related_variables}
]
:resource_bottleneck ->
[
%{type: :scale_horizontally, target_variables: problem.related_variables},
%{type: :optimize_resource_usage, target_variables: problem.related_variables},
%{type: :rebalance_workload, target_variables: problem.related_variables}
]
end
end
end
Economic Coordination Mechanisms
Variable-Aware Economic Coordination
defmodule DSPEx.Variables.EconomicCoordinator do
@moduledoc """
Economic coordination mechanisms for intelligent Variable resource allocation
"""
use Jido.Agent
@actions [
DSPEx.Variables.Actions.Economic.CreateVariableAuction,
DSPEx.Variables.Actions.Economic.EvaluateBids,
DSPEx.Variables.Actions.Economic.AllocateResources,
DSPEx.Variables.Actions.Economic.TrackCosts,
DSPEx.Variables.Actions.Economic.OptimizeBudgets
]
@sensors [
DSPEx.Variables.Sensors.Economic.CostMonitorSensor,
DSPEx.Variables.Sensors.Economic.BidActivitySensor,
DSPEx.Variables.Sensors.Economic.MarketConditionsSensor,
DSPEx.Variables.Sensors.Economic.ResourcePricingSensor
]
defstruct [
:active_auctions, # Currently running auctions
:budget_allocations, # Budget allocated to each Variable
:cost_history, # Historical cost data
:market_prices, # Current market prices for resources
:economic_policies, # Economic coordination policies
:auction_strategies, # Available auction mechanisms
:reputation_scores, # Agent reputation for economic coordination
:budget_constraints # System-wide budget constraints
]
def handle_signal({:variable_resource_request, variable_id, resource_spec, urgency}, agent) do
case determine_allocation_strategy(resource_spec, urgency, agent.state) do
:direct_allocation ->
allocate_resources_directly(variable_id, resource_spec, agent.state)
:auction_required ->
create_resource_auction(variable_id, resource_spec, urgency, agent.state)
:budget_exceeded ->
handle_budget_constraint(variable_id, resource_spec, agent.state)
end
end
def handle_signal({:auction_bid, auction_id, bidder_variable, bid_spec}, agent) do
case validate_economic_bid(auction_id, bidder_variable, bid_spec, agent.state) do
{:valid, validated_bid} ->
process_auction_bid(auction_id, bidder_variable, validated_bid, agent.state)
{:invalid, reason} ->
reject_auction_bid(auction_id, bidder_variable, reason, agent.state)
end
end
defp create_resource_auction(variable_id, resource_spec, urgency, state) do
auction_spec = %{
id: generate_auction_id(),
resource: resource_spec,
initiator: variable_id,
urgency_level: urgency,
auction_type: determine_auction_type(resource_spec, urgency),
starting_price: calculate_starting_price(resource_spec, state.market_prices),
duration: calculate_auction_duration(urgency),
participants: identify_potential_participants(resource_spec, state)
}
# Start auction
start_auction(auction_spec, state)
# Notify potential participants
notify_auction_participants(auction_spec, state)
end
defp determine_auction_type(resource_spec, urgency) do
case urgency do
:critical -> :english # Fast ascending price auction
:high -> :sealed_bid # Private bidding for strategic resources
:medium -> :dutch # Descending price for efficiency
:low -> :combinatorial # Complex bundling for optimization
end
end
end
Cluster-Wide Variable Synchronization
Distributed Variable Coordination
defmodule DSPEx.Variables.ClusterSync do
@moduledoc """
Cluster-wide Variable synchronization with conflict resolution
"""
use Jido.Agent
@actions [
DSPEx.Variables.Actions.Cluster.SyncVariableAcrossNodes,
DSPEx.Variables.Actions.Cluster.ResolveConflicts,
DSPEx.Variables.Actions.Cluster.ManageNodeFailures,
DSPEx.Variables.Actions.Cluster.OptimizeReplication
]
@sensors [
DSPEx.Variables.Sensors.Cluster.NodeHealthSensor,
DSPEx.Variables.Sensors.Cluster.NetworkLatencySensor,
DSPEx.Variables.Sensors.Cluster.SyncStatusSensor,
DSPEx.Variables.Sensors.Cluster.ConflictDetectionSensor
]
defstruct [
:cluster_topology, # Current cluster state
:sync_strategies, # Available synchronization strategies
:conflict_resolution, # Conflict resolution configuration
:replication_config, # Variable replication settings
:network_partitions, # Detected network partitions
:sync_history, # Synchronization history
:node_preferences # Node-specific Variable preferences
]
def handle_signal({:variable_sync_request, variable_id, new_value, source_node}, agent) do
case agent.state.sync_strategies[variable_id] || :consensus do
:consensus ->
coordinate_consensus_sync(variable_id, new_value, source_node, agent.state)
:eventual_consistency ->
apply_eventual_consistency_sync(variable_id, new_value, source_node, agent.state)
:strong_consistency ->
coordinate_strong_consistency_sync(variable_id, new_value, source_node, agent.state)
:conflict_free_replicated_data_type ->
apply_crdt_sync(variable_id, new_value, source_node, agent.state)
end
end
def handle_signal({:sync_conflict_detected, variable_id, conflicting_values}, agent) do
resolution_strategy = agent.state.conflict_resolution[variable_id] || :timestamp_based
case resolution_strategy do
:timestamp_based ->
resolve_by_timestamp(variable_id, conflicting_values, agent.state)
:performance_based ->
resolve_by_performance(variable_id, conflicting_values, agent.state)
:consensus ->
initiate_conflict_consensus(variable_id, conflicting_values, agent.state)
:custom_resolver ->
apply_custom_conflict_resolution(variable_id, conflicting_values, agent.state)
end
end
defp coordinate_consensus_sync(variable_id, new_value, source_node, state) do
cluster_nodes = get_active_cluster_nodes(state.cluster_topology)
# Create consensus proposal
consensus_proposal = %{
type: :variable_sync,
variable_id: variable_id,
proposed_value: new_value,
proposer: source_node,
timestamp: DateTime.utc_now(),
consensus_id: generate_consensus_id()
}
# Send consensus request to all nodes
consensus_responses = Enum.map(cluster_nodes, fn node ->
send_consensus_request(node, consensus_proposal)
end)
# Collect responses
case collect_consensus_responses(consensus_proposal.consensus_id, cluster_nodes) do
{:consensus_achieved, :accept} ->
apply_variable_sync(variable_id, new_value, state)
{:consensus_achieved, :reject} ->
reject_variable_sync(variable_id, new_value, source_node, state)
{:consensus_timeout, partial_responses} ->
handle_consensus_timeout(consensus_proposal, partial_responses, state)
end
end
defp apply_crdt_sync(variable_id, new_value, source_node, state) do
# Use Conflict-free Replicated Data Types for automatic conflict resolution
current_crdt = get_variable_crdt(variable_id, state)
incoming_crdt = %{value: new_value, timestamp: DateTime.utc_now(), node: source_node}
# Merge CRDTs
merged_crdt = merge_variable_crdts(current_crdt, incoming_crdt)
# Apply merged value
merged_value = extract_value_from_crdt(merged_crdt)
apply_variable_sync(variable_id, merged_value, state)
end
end
Production Integration and Monitoring
Comprehensive Variable Telemetry
defmodule DSPEx.Variables.Telemetry do
@moduledoc """
Comprehensive telemetry and monitoring for Cognitive Variables
"""
def setup_variable_telemetry do
:telemetry.attach_many(
"dspex-variables-telemetry",
[
[:dspex, :variables, :value_changed],
[:dspex, :variables, :coordination_completed],
[:dspex, :variables, :adaptation_triggered],
[:dspex, :variables, :conflict_resolved],
[:dspex, :variables, :economic_transaction],
[:dspex, :variables, :cluster_sync],
[:dspex, :variables, :performance_impact]
],
&handle_variable_telemetry_event/4,
nil
)
end
def handle_variable_telemetry_event(event, measurements, metadata, _config) do
case event do
[:dspex, :variables, :value_changed] ->
record_variable_change(measurements, metadata)
[:dspex, :variables, :coordination_completed] ->
record_coordination_performance(measurements, metadata)
[:dspex, :variables, :adaptation_triggered] ->
record_adaptation_event(measurements, metadata)
[:dspex, :variables, :economic_transaction] ->
record_economic_activity(measurements, metadata)
[:dspex, :variables, :cluster_sync] ->
record_cluster_synchronization(measurements, metadata)
end
end
defp record_variable_change(measurements, metadata) do
# Prometheus metrics
:prometheus_counter.inc(
:dspex_variable_changes_total,
[variable: metadata.variable_name, type: metadata.variable_type]
)
:prometheus_histogram.observe(
:dspex_variable_coordination_duration,
[scope: metadata.coordination_scope],
measurements.coordination_duration_ms
)
# Custom metrics for Variable intelligence
:prometheus_gauge.set(
:dspex_variable_adaptation_score,
[variable: metadata.variable_name],
measurements.adaptation_score
)
end
defp record_coordination_performance(measurements, metadata) do
:prometheus_histogram.observe(
:dspex_variable_coordination_latency,
[type: metadata.coordination_type, scope: metadata.coordination_scope],
measurements.coordination_latency_ms
)
:prometheus_counter.inc(
:dspex_variable_coordination_total,
[type: metadata.coordination_type, result: metadata.result]
)
end
end
Conclusion
This Cognitive Variables architecture represents a revolutionary transformation of ML parameters from passive optimization targets into intelligent coordination primitives that actively orchestrate distributed agent teams. Key innovations include:
Revolutionary Capabilities
- Variables as Intelligent Agents: Each Variable is a full Jido agent with actions, sensors, and decision-making capabilities
- Active Coordination: Variables directly coordinate affected agents through Jido signals
- Real-Time Adaptation: Variables adapt based on multi-dimensional performance feedback
- Economic Intelligence: Variables use market mechanisms for resource optimization
- Cluster-Wide Coordination: Variables synchronize across distributed environments
- Conflict-Free Operation: Advanced conflict resolution for multi-agent environments
Technical Advantages
- Jido-Native Design: Built on stable, debugged Jido foundation
- Signal-Driven Communication: Leverages Jido’s efficient signal bus
- Agent-Centric Architecture: Everything is an agent - unified mental model
- Production-Ready Monitoring: Comprehensive telemetry and observability
- Economic Optimization: Built-in cost-performance optimization
Business Impact
- Revolutionary ML Workflows: Variables coordinate entire ML pipelines intelligently
- Automatic Optimization: Self-optimizing systems that adapt in real-time
- Cost Efficiency: Economic mechanisms optimize resource allocation
- Developer Experience: Simple Jido patterns for complex ML coordination
- Market Differentiation: Unique capabilities impossible to replicate
The Cognitive Variables system enables the DSPEx platform to deliver unprecedented capabilities in distributed ML orchestration, representing a paradigm shift from traditional parameter optimization to intelligent agent coordination.
Architecture Specification Completed: July 12, 2025
Foundation: Jido-First Agent Architecture
Innovation: Variables as Intelligent Coordination Primitives
Scope: Complete cognitive Variable system for revolutionary DSPEx platform