← Back to Foundation

20250712 COGNITIVE VARIABLES IMPLEMENTATION

Documentation for 20250712_COGNITIVE_VARIABLES_IMPLEMENTATION from the Foundation repository.

Cognitive Variables Implementation: Revolutionary ML Parameter Intelligence

Date: July 12, 2025
Status: Detailed Implementation Specification
Scope: Complete technical implementation of Cognitive Variables using hybrid Jido-MABEAM architecture
Context: Core innovation for DSPEx platform enabling variables as intelligent coordination primitives

Executive Summary

This document provides the complete technical implementation specification for Cognitive Variables - the revolutionary transformation of ML parameters from passive values into intelligent Jido agents that actively coordinate distributed ML workflows using Foundation MABEAM coordination patterns. This represents the core innovation of the DSPEx platform.

Revolutionary Concept Implementation

Core Innovation: Variables as Intelligent Coordination Agents

Traditional ML Parameters (Passive):

# Traditional approach - parameters are just values
temperature = 0.7
max_tokens = 1000  
model = "gpt-4"

# External optimizer changes values
optimizer.update_parameter("temperature", 0.8)

Cognitive Variables (Active Coordination Primitives):

# Revolutionary approach - parameters are intelligent agents
{:ok, temperature_agent} = DSPEx.Variables.CognitiveFloat.start_link([
  name: :temperature,
  range: {0.0, 2.0},
  default: 0.7,
  coordination_scope: :cluster,
  affected_agents: [:llm_agent_1, :llm_agent_2, :optimizer_agent],
  adaptation_strategy: :performance_feedback,
  economic_coordination: true,
  mabeam_coordination: %{
    consensus_participation: true,
    reputation_tracking: true,
    economic_mechanisms: [:auction, :reputation]
  }
])

# Variable intelligently coordinates its own changes
Jido.Signal.send(temperature_agent, {:performance_feedback, %{accuracy: 0.95, cost: 0.12}})
# → Variable automatically adapts value and coordinates affected agents
# → Uses MABEAM consensus for cluster-wide coordination
# → Leverages economic mechanisms for cost optimization

Complete Cognitive Variable Architecture

Base Cognitive Variable Agent

defmodule DSPEx.Variables.CognitiveVariable do
  @moduledoc """
  Base implementation for all Cognitive Variables - parameters that are intelligent
  Jido agents capable of autonomous coordination using MABEAM patterns.
  
  Key Innovations:
  1. Variables ARE agents with full Jido capabilities
  2. Active coordination with affected agents via signals
  3. Real-time adaptation based on performance feedback
  4. Economic coordination using MABEAM mechanisms
  5. Cluster-wide consensus for distributed coordination
  """
  
  use Jido.Agent
  
  # Jido Agent Capabilities
  @actions [
    DSPEx.Variables.Actions.UpdateValue,
    DSPEx.Variables.Actions.CoordinateAffectedAgents,
    DSPEx.Variables.Actions.AdaptBasedOnFeedback,
    DSPEx.Variables.Actions.SyncAcrossCluster,
    DSPEx.Variables.Actions.NegotiateEconomicChange,
    DSPEx.Variables.Actions.ResolveConflicts,
    DSPEx.Variables.Actions.PredictOptimalValue,
    DSPEx.Variables.Actions.AnalyzePerformanceImpact,
    DSPEx.Variables.Actions.ParticipateInMABEAMConsensus,
    DSPEx.Variables.Actions.ManageReputationScore
  ]
  
  @sensors [
    DSPEx.Variables.Sensors.PerformanceFeedbackSensor,
    DSPEx.Variables.Sensors.AgentHealthMonitor,
    DSPEx.Variables.Sensors.ClusterStateSensor,
    DSPEx.Variables.Sensors.CostMonitorSensor,
    DSPEx.Variables.Sensors.ConflictDetectionSensor,
    DSPEx.Variables.Sensors.NetworkLatencySensor,
    DSPEx.Variables.Sensors.MABEAMRegistrySensor,
    DSPEx.Variables.Sensors.EconomicMarketSensor,
    DSPEx.Variables.Sensors.ReputationTrackingSensor
  ]
  
  @skills [
    DSPEx.Variables.Skills.PerformanceAnalysis,
    DSPEx.Variables.Skills.ConflictResolution,
    DSPEx.Variables.Skills.EconomicNegotiation,
    DSPEx.Variables.Skills.PredictiveOptimization,
    DSPEx.Variables.Skills.MABEAMCoordinationSkill,
    DSPEx.Variables.Skills.DistributedConsensusSkill,
    DSPEx.Variables.Skills.ReputationManagementSkill,
    DSPEx.Variables.Skills.AuctionParticipationSkill
  ]
  
  defstruct [
    # Core Variable Properties
    :name,                          # Variable identifier (atom)
    :type,                          # :float, :integer, :choice, :composite, :agent_team
    :current_value,                 # Current variable value
    :valid_range,                   # Valid range or choice list
    :default_value,                 # Default/fallback value
    
    # Coordination Properties
    :coordination_scope,            # :local, :cluster, :global
    :affected_agents,               # List of agent IDs affected by this variable
    :adaptation_strategy,           # :static, :performance, :economic, :ml_feedback
    :constraint_network,            # Inter-variable constraints and dependencies
    
    # Performance and History
    :performance_history,           # Historical performance data
    :value_history,                 # History of value changes
    :coordination_history,          # History of coordination events
    :adaptation_metrics,            # Metrics for adaptation effectiveness
    
    # MABEAM Integration
    :mabeam_config,                 # MABEAM coordination configuration
    :consensus_participation_history, # History of consensus participation
    :economic_reputation,           # Economic reputation score
    :auction_participation_history, # History of auction participation
    :coordination_performance_score, # Performance in coordination activities
    
    # Economic Coordination
    :economic_config,               # Economic coordination settings
    :cost_sensitivity,              # How sensitive variable is to cost changes
    :bid_strategy,                  # Strategy for auction participation
    :reputation_weights,            # Weights for reputation calculation
    
    # Cluster Synchronization
    :cluster_sync_config,           # Cluster synchronization settings
    :sync_strategy,                 # :consensus, :eventual_consistency, :strong_consistency
    :conflict_resolution_strategy,  # How to resolve value conflicts
    :network_partition_behavior,    # Behavior during network partitions
    
    # Metadata and State
    :last_updated,                  # Timestamp of last update
    :update_generation,             # Generation counter for updates
    :lock_state,                    # Current lock state for coordination
    :metadata                       # Additional variable metadata
  ]
  
  def mount(agent, opts) do
    # Initialize cognitive variable with comprehensive configuration
    initial_state = %__MODULE__{
      name: Keyword.get(opts, :name) || raise("Variable name is required"),
      type: Keyword.get(opts, :type, :float),
      current_value: Keyword.get(opts, :default) || Keyword.get(opts, :initial_value),
      valid_range: Keyword.get(opts, :range) || Keyword.get(opts, :choices),
      default_value: Keyword.get(opts, :default),
      
      coordination_scope: Keyword.get(opts, :coordination_scope, :local),
      affected_agents: Keyword.get(opts, :affected_agents, []),
      adaptation_strategy: Keyword.get(opts, :adaptation_strategy, :performance_feedback),
      constraint_network: Keyword.get(opts, :constraints, %{}),
      
      performance_history: [],
      value_history: [{DateTime.utc_now(), Keyword.get(opts, :default)}],
      coordination_history: [],
      adaptation_metrics: %{},
      
      mabeam_config: %{
        consensus_participation: Keyword.get(opts, :consensus_participation, true),
        economic_coordination: Keyword.get(opts, :economic_coordination, false),
        reputation_tracking: Keyword.get(opts, :reputation_tracking, true),
        coordination_timeout: Keyword.get(opts, :coordination_timeout, 30_000)
      },
      consensus_participation_history: [],
      economic_reputation: 1.0,
      auction_participation_history: [],
      coordination_performance_score: 1.0,
      
      economic_config: %{
        cost_sensitivity: Keyword.get(opts, :cost_sensitivity, 0.5),
        max_bid_ratio: Keyword.get(opts, :max_bid_ratio, 1.2),
        reputation_weight: Keyword.get(opts, :reputation_weight, 0.3)
      },
      cost_sensitivity: Keyword.get(opts, :cost_sensitivity, 0.5),
      bid_strategy: Keyword.get(opts, :bid_strategy, :conservative),
      reputation_weights: Keyword.get(opts, :reputation_weights, %{performance: 0.5, reliability: 0.3, cost: 0.2}),
      
      cluster_sync_config: %{
        sync_strategy: Keyword.get(opts, :sync_strategy, :consensus),
        conflict_resolution: Keyword.get(opts, :conflict_resolution, :latest_wins),
        partition_behavior: Keyword.get(opts, :partition_behavior, :maintain_last_known)
      },
      sync_strategy: Keyword.get(opts, :sync_strategy, :consensus),
      conflict_resolution_strategy: Keyword.get(opts, :conflict_resolution, :latest_wins),
      network_partition_behavior: Keyword.get(opts, :partition_behavior, :maintain_last_known),
      
      last_updated: DateTime.utc_now(),
      update_generation: 0,
      lock_state: :unlocked,
      metadata: Keyword.get(opts, :metadata, %{})
    }
    
    # Register with MABEAM system for coordination capabilities
    case DSPEx.Foundation.Bridge.register_cognitive_variable(agent.id, initial_state) do
      {:ok, registration_info} ->
        Logger.info("Cognitive variable #{initial_state.name} registered with MABEAM system")
        {:ok, %{initial_state | metadata: Map.put(initial_state.metadata, :mabeam_registration, registration_info)}}
        
      {:error, reason} ->
        Logger.warning("Failed to register cognitive variable with MABEAM: #{inspect(reason)}")
        {:ok, initial_state}  # Continue without MABEAM registration
    end
  end
  
  # === Core Signal Handlers ===
  
  @doc """
  Handle requests to change the variable's value.
  Coordinates with affected agents based on coordination scope.
  """
  def handle_signal({:change_value, new_value, opts}, state) do
    requester = Map.get(opts, :requester, :unknown)
    coordination_id = Map.get(opts, :coordination_id, generate_coordination_id())
    force = Map.get(opts, :force, false)
    
    # Validate new value
    case validate_value(new_value, state) do
      {:ok, validated_value} ->
        if force or state.lock_state == :unlocked do
          coordinate_value_change(validated_value, requester, coordination_id, state)
        else
          {:error, {:variable_locked, state.lock_state}}
        end
        
      {:error, reason} ->
        {:error, {:invalid_value, reason}}
    end
  end
  
  @doc """
  Handle performance feedback that may trigger value adaptation.
  """
  def handle_signal({:performance_feedback, feedback_data}, state) do
    # Record performance feedback
    updated_history = [
      {DateTime.utc_now(), feedback_data} | state.performance_history
    ] |> Enum.take(100)  # Keep last 100 entries
    
    new_state = %{state | performance_history: updated_history}
    
    # Determine if adaptation is needed based on strategy
    case should_adapt?(feedback_data, new_state) do
      {:yes, adaptation_params} ->
        adapt_value_based_on_feedback(feedback_data, adaptation_params, new_state)
        
      :no ->
        {:ok, new_state}
    end
  end
  
  @doc """
  Handle coordination requests from other cognitive variables.
  """
  def handle_signal({:coordination_request, coordination_data}, state) do
    case coordination_data do
      %{type: :value_dependency_check, variable: other_var, proposed_value: value} ->
        handle_dependency_coordination(other_var, value, state)
        
      %{type: :conflict_resolution, conflicting_values: values} ->
        handle_conflict_resolution(values, state)
        
      %{type: :consensus_participation, consensus_ref: ref, proposal: proposal} ->
        handle_consensus_participation(ref, proposal, state)
        
      %{type: :economic_negotiation, auction_ref: ref, auction_data: data} ->
        handle_economic_negotiation(ref, data, state)
        
      _ ->
        Logger.warning("Unknown coordination request: #{inspect(coordination_data)}")
        {:ok, state}
    end
  end
  
  @doc """
  Handle cluster synchronization events.
  """
  def handle_signal({:cluster_sync, sync_data}, state) do
    case sync_data do
      %{type: :value_update, source_node: node, new_value: value, generation: gen} ->
        handle_cluster_value_sync(node, value, gen, state)
        
      %{type: :consensus_result, consensus_ref: ref, result: result} ->
        handle_consensus_result(ref, result, state)
        
      %{type: :network_partition, partition_info: info} ->
        handle_network_partition(info, state)
        
      _ ->
        Logger.warning("Unknown cluster sync event: #{inspect(sync_data)}")
        {:ok, state}
    end
  end
  
  # === Coordination Implementation ===
  
  defp coordinate_value_change(new_value, requester, coordination_id, state) do
    case state.coordination_scope do
      :local ->
        # Simple local update with notification
        coordinate_local_value_change(new_value, requester, coordination_id, state)
        
      :cluster ->
        # Use MABEAM consensus for cluster-wide coordination
        coordinate_cluster_value_change(new_value, requester, coordination_id, state)
        
      :global ->
        # Use MABEAM economic mechanisms for global coordination
        coordinate_global_value_change(new_value, requester, coordination_id, state)
    end
  end
  
  defp coordinate_local_value_change(new_value, requester, coordination_id, state) do
    # Update value locally
    updated_state = update_variable_value(new_value, state)
    
    # Notify affected agents
    notify_affected_agents(new_value, state.current_value, requester, coordination_id, state)
    
    Logger.info("Variable #{state.name} updated locally: #{state.current_value} -> #{new_value}")
    {:ok, updated_state}
  end
  
  defp coordinate_cluster_value_change(new_value, requester, coordination_id, state) do
    # Create consensus proposal using MABEAM patterns
    proposal = %{
      type: :cognitive_variable_change,
      variable_id: state.name,
      current_value: state.current_value,
      proposed_value: new_value,
      requester: requester,
      coordination_id: coordination_id,
      affected_agents: state.affected_agents,
      constraints: extract_relevant_constraints(state),
      timestamp: DateTime.utc_now()
    }
    
    # Find affected agents using MABEAM discovery
    case DSPEx.Foundation.Bridge.find_affected_agents(state.affected_agents) do
      {:ok, agent_list} when length(agent_list) > 0 ->
        participant_ids = Enum.map(agent_list, fn {id, _pid, _metadata} -> id end)
        
        Logger.info("Starting consensus for variable #{state.name} with #{length(participant_ids)} participants")
        
        # Start MABEAM consensus coordination
        case DSPEx.Foundation.Bridge.start_consensus(participant_ids, proposal, state.mabeam_config.coordination_timeout) do
          {:ok, consensus_ref} ->
            # Update state to reflect ongoing consensus
            consensus_state = %{state | 
              lock_state: {:consensus_pending, consensus_ref},
              coordination_history: [
                {DateTime.utc_now(), :consensus_started, consensus_ref} | state.coordination_history
              ]
            }
            
            # Wait for consensus result asynchronously
            Task.start(fn -> 
              monitor_consensus_result(consensus_ref, new_value, self())
            end)
            
            {:ok, consensus_state}
            
          {:error, reason} ->
            Logger.warning("Consensus failed for variable #{state.name}: #{inspect(reason)}")
            
            # Fallback to local change with warning
            fallback_state = coordinate_local_value_change(new_value, requester, coordination_id, state)
            record_coordination_failure(reason, fallback_state)
        end
        
      {:ok, []} ->
        Logger.info("No affected agents found, proceeding with local update")
        coordinate_local_value_change(new_value, requester, coordination_id, state)
        
      {:error, reason} ->
        Logger.warning("Failed to find affected agents: #{inspect(reason)}")
        coordinate_local_value_change(new_value, requester, coordination_id, state)
    end
  end
  
  defp coordinate_global_value_change(new_value, requester, coordination_id, state) do
    # Use MABEAM economic mechanisms for cost-aware coordination
    if state.mabeam_config.economic_coordination do
      auction_proposal = %{
        type: :variable_change_auction,
        variable_id: state.name,
        current_value: state.current_value,
        proposed_value: new_value,
        requester: requester,
        coordination_id: coordination_id,
        current_reputation: state.economic_reputation,
        estimated_cost_impact: calculate_change_cost_impact(state.current_value, new_value, state),
        estimated_performance_impact: calculate_change_performance_impact(state.current_value, new_value, state),
        bid_strategy: state.bid_strategy,
        timestamp: DateTime.utc_now()
      }
      
      case DSPEx.Foundation.Bridge.create_auction(auction_proposal) do
        {:ok, auction_ref} ->
          auction_state = %{state | 
            lock_state: {:auction_pending, auction_ref},
            coordination_history: [
              {DateTime.utc_now(), :auction_started, auction_ref} | state.coordination_history
            ]
          }
          
          # Monitor auction result asynchronously
          Task.start(fn -> 
            monitor_auction_result(auction_ref, new_value, self())
          end)
          
          {:ok, auction_state}
          
        {:error, reason} ->
          Logger.warning("Economic coordination failed: #{inspect(reason)}")
          # Fallback to cluster coordination
          coordinate_cluster_value_change(new_value, requester, coordination_id, state)
      end
    else
      # Fall back to cluster coordination if economic coordination is disabled
      coordinate_cluster_value_change(new_value, requester, coordination_id, state)
    end
  end
  
  # === Value Management ===
  
  defp update_variable_value(new_value, state) do
    %{state |
      current_value: new_value,
      value_history: [
        {DateTime.utc_now(), new_value} | state.value_history
      ] |> Enum.take(100),  # Keep last 100 value changes
      last_updated: DateTime.utc_now(),
      update_generation: state.update_generation + 1,
      lock_state: :unlocked
    }
  end
  
  defp validate_value(value, state) do
    case state.type do
      :float when is_number(value) ->
        validate_float_range(value, state.valid_range)
        
      :integer when is_integer(value) ->
        validate_integer_range(value, state.valid_range)
        
      :choice ->
        validate_choice(value, state.valid_range)
        
      :composite ->
        validate_composite(value, state.valid_range)
        
      :agent_team when is_list(value) ->
        validate_agent_team(value, state.valid_range)
        
      _ ->
        {:error, {:invalid_type, state.type, value}}
    end
  end
  
  defp validate_float_range(value, {min, max}) when value >= min and value <= max do
    {:ok, value}
  end
  
  defp validate_float_range(value, {min, max}) do
    {:error, {:out_of_range, value, {min, max}}}
  end
  
  defp validate_float_range(value, nil) do
    {:ok, value}
  end
  
  defp validate_integer_range(value, {min, max}) when value >= min and value <= max do
    {:ok, value}
  end
  
  defp validate_integer_range(value, {min, max}) do
    {:error, {:out_of_range, value, {min, max}}}
  end
  
  defp validate_integer_range(value, nil) do
    {:ok, value}
  end
  
  defp validate_choice(value, choices) when is_list(choices) do
    if value in choices do
      {:ok, value}
    else
      {:error, {:invalid_choice, value, choices}}
    end
  end
  
  defp validate_choice(value, nil) do
    {:ok, value}
  end
  
  defp validate_composite(value, _constraints) do
    # TODO: Implement composite value validation
    {:ok, value}
  end
  
  defp validate_agent_team(agents, constraints) when is_list(agents) do
    # TODO: Implement agent team validation
    {:ok, agents}
  end
  
  # === Notification and Coordination ===
  
  defp notify_affected_agents(new_value, old_value, requester, coordination_id, state) do
    notification = %{
      type: :variable_changed,
      variable_name: state.name,
      old_value: old_value,
      new_value: new_value,
      requester: requester,
      coordination_id: coordination_id,
      timestamp: DateTime.utc_now()
    }
    
    # Send notifications via Jido signals
    Enum.each(state.affected_agents, fn agent_id ->
      case Jido.Signal.send(agent_id, {:variable_notification, notification}) do
        :ok ->
          :ok
        {:error, reason} ->
          Logger.warning("Failed to notify agent #{agent_id}: #{inspect(reason)}")
      end
    end)
  end
  
  # === Adaptation Logic ===
  
  defp should_adapt?(feedback_data, state) do
    case state.adaptation_strategy do
      :static ->
        :no
        
      :performance_feedback ->
        analyze_performance_adaptation(feedback_data, state)
        
      :economic ->
        analyze_economic_adaptation(feedback_data, state)
        
      :ml_feedback ->
        analyze_ml_adaptation(feedback_data, state)
        
      _ ->
        :no
    end
  end
  
  defp analyze_performance_adaptation(feedback_data, state) do
    # Analyze if performance suggests value adaptation
    current_performance = Map.get(feedback_data, :performance, 0.0)
    cost = Map.get(feedback_data, :cost, 0.0)
    
    # Get recent performance history
    recent_performance = state.performance_history
    |> Enum.take(10)
    |> Enum.map(fn {_time, data} -> Map.get(data, :performance, 0.0) end)
    
    if length(recent_performance) >= 3 do
      avg_recent = Enum.sum(recent_performance) / length(recent_performance)
      
      cond do
        current_performance < avg_recent * 0.8 ->
          # Performance degraded significantly
          {:yes, %{direction: :improve_performance, magnitude: 0.1}}
          
        current_performance > avg_recent * 1.2 and cost < state.cost_sensitivity ->
          # Performance improved significantly and cost is acceptable
          {:yes, %{direction: :optimize_further, magnitude: 0.05}}
          
        true ->
          :no
      end
    else
      :no
    end
  end
  
  defp adapt_value_based_on_feedback(feedback_data, adaptation_params, state) do
    current_value = state.current_value
    
    adapted_value = case state.type do
      :float ->
        adapt_float_value(current_value, adaptation_params, state)
        
      :integer ->
        adapt_integer_value(current_value, adaptation_params, state)
        
      :choice ->
        adapt_choice_value(current_value, adaptation_params, state)
        
      _ ->
        current_value
    end
    
    if adapted_value != current_value do
      Logger.info("Variable #{state.name} adapting value based on feedback: #{current_value} -> #{adapted_value}")
      
      # Trigger coordinated value change
      coordinate_value_change(adapted_value, :adaptation_system, generate_coordination_id(), state)
    else
      {:ok, state}
    end
  end
  
  defp adapt_float_value(current_value, %{direction: direction, magnitude: magnitude}, state) do
    {min_val, max_val} = state.valid_range || {0.0, 1.0}
    
    adjustment = case direction do
      :improve_performance -> magnitude
      :optimize_further -> magnitude * 0.5
      :reduce_cost -> -magnitude
      _ -> 0.0
    end
    
    new_value = current_value + adjustment
    
    # Clamp to valid range
    new_value
    |> max(min_val)
    |> min(max_val)
  end
  
  # === Utility Functions ===
  
  defp generate_coordination_id do
    :crypto.strong_rand_bytes(8) |> Base.encode16()
  end
  
  defp extract_relevant_constraints(state) do
    # Extract constraints relevant to this coordination
    state.constraint_network
  end
  
  defp calculate_change_cost_impact(old_value, new_value, state) do
    # Estimate cost impact of value change
    # This would integrate with actual cost models
    abs(new_value - old_value) * Map.get(state.metadata, :cost_per_unit_change, 1.0)
  end
  
  defp calculate_change_performance_impact(old_value, new_value, state) do
    # Estimate performance impact of value change
    # This would use historical data and ML models
    recent_changes = state.value_history
    |> Enum.take(10)
    |> Enum.map(fn {_time, value} -> value end)
    
    if length(recent_changes) >= 2 do
      # Simple trend analysis
      trend = calculate_trend(recent_changes)
      if (new_value > old_value and trend > 0) or (new_value < old_value and trend < 0) do
        0.1  # Positive impact estimate
      else
        -0.05  # Negative impact estimate
      end
    else
      0.0
    end
  end
  
  defp calculate_trend(values) when length(values) >= 2 do
    # Simple linear trend calculation
    indexed_values = Enum.with_index(values)
    
    n = length(values)
    sum_x = n * (n - 1) / 2
    sum_y = Enum.sum(values)
    sum_xy = Enum.reduce(indexed_values, 0, fn {y, x}, acc -> acc + x * y end)
    sum_x2 = Enum.reduce(0..(n-1), 0, fn x, acc -> acc + x * x end)
    
    # Linear regression slope
    (n * sum_xy - sum_x * sum_y) / (n * sum_x2 - sum_x * sum_x)
  end
  
  defp calculate_trend(_values), do: 0.0
  
  defp record_coordination_failure(reason, state) do
    coordination_event = {DateTime.utc_now(), :coordination_failed, reason}
    
    %{state | 
      coordination_history: [coordination_event | state.coordination_history] |> Enum.take(50)
    }
  end
  
  defp monitor_consensus_result(consensus_ref, proposed_value, variable_pid) do
    # This would be implemented to monitor consensus results asynchronously
    # and send results back to the variable agent
    :ok
  end
  
  defp monitor_auction_result(auction_ref, proposed_value, variable_pid) do
    # This would be implemented to monitor auction results asynchronously
    # and send results back to the variable agent
    :ok
  end
end

Specialized Cognitive Variable Types

CognitiveFloat - Continuous Parameter Intelligence

defmodule DSPEx.Variables.CognitiveFloat do
  @moduledoc """
  Cognitive variable for continuous floating-point parameters with advanced
  optimization capabilities including gradient-based adaptation.
  """
  
  use DSPEx.Variables.CognitiveVariable
  
  defstruct [
    # Inherit all base fields
    __base__: DSPEx.Variables.CognitiveVariable,
    
    # Float-specific properties
    :precision,                     # Decimal precision for value representation
    :gradient_tracking,             # Whether to track gradient information
    :momentum,                      # Momentum for gradient-based adaptation
    :learning_rate,                 # Learning rate for value adaptation
    :bounds_behavior,               # :clamp, :wrap, :reject for out-of-bounds values
    :optimization_history,          # History of optimization steps
    :gradient_estimate,             # Current gradient estimate
    :velocity,                      # Current velocity for momentum-based updates
    :adaptive_learning_rate,        # Whether to use adaptive learning rate
    :convergence_criteria           # Criteria for detecting convergence
  ]
  
  def mount(agent, opts) do
    # Initialize base cognitive variable
    {:ok, base_state} = super(agent, opts)
    
    # Add float-specific configuration
    float_config = %{
      precision: Keyword.get(opts, :precision, 4),
      gradient_tracking: Keyword.get(opts, :gradient_tracking, true),
      momentum: Keyword.get(opts, :momentum, 0.9),
      learning_rate: Keyword.get(opts, :learning_rate, 0.01),
      bounds_behavior: Keyword.get(opts, :bounds_behavior, :clamp),
      optimization_history: [],
      gradient_estimate: 0.0,
      velocity: 0.0,
      adaptive_learning_rate: Keyword.get(opts, :adaptive_learning_rate, true),
      convergence_criteria: Keyword.get(opts, :convergence_criteria, %{threshold: 0.001, patience: 5})
    }
    
    enhanced_state = Map.merge(base_state, float_config)
    
    {:ok, enhanced_state}
  end
  
  # Override adaptation for gradient-based optimization
  def handle_signal({:gradient_feedback, gradient_info}, state) do
    # Update gradient estimate
    new_gradient = gradient_info.gradient
    smoothed_gradient = state.momentum * state.gradient_estimate + (1 - state.momentum) * new_gradient
    
    # Update velocity for momentum-based optimization
    new_velocity = state.momentum * state.velocity - state.learning_rate * smoothed_gradient
    
    # Calculate new value using gradient descent
    proposed_value = state.current_value + new_velocity
    
    # Apply bounds behavior
    bounded_value = apply_bounds_behavior(proposed_value, state.valid_range, state.bounds_behavior)
    
    # Update optimization history
    optimization_step = %{
      timestamp: DateTime.utc_now(),
      gradient: new_gradient,
      smoothed_gradient: smoothed_gradient,
      velocity: new_velocity,
      old_value: state.current_value,
      new_value: bounded_value,
      learning_rate: state.learning_rate
    }
    
    updated_state = %{state |
      gradient_estimate: smoothed_gradient,
      velocity: new_velocity,
      optimization_history: [optimization_step | state.optimization_history] |> Enum.take(100)
    }
    
    # Coordinate value change if significant
    if abs(bounded_value - state.current_value) > (state.learning_rate * 0.1) do
      coordinate_value_change(bounded_value, :gradient_optimization, generate_coordination_id(), updated_state)
    else
      {:ok, updated_state}
    end
  end
  
  defp apply_bounds_behavior(value, {min_val, max_val}, behavior) do
    case behavior do
      :clamp ->
        value |> max(min_val) |> min(max_val)
        
      :wrap ->
        range = max_val - min_val
        if value < min_val do
          max_val - rem(min_val - value, range)
        else if value > max_val do
          min_val + rem(value - max_val, range)
        else
          value
        end
        
      :reject ->
        if value >= min_val and value <= max_val do
          value
        else
          raise "Value #{value} out of bounds [#{min_val}, #{max_val}]"
        end
    end
  end
end

CognitiveChoice - Intelligent Selection Variables

defmodule DSPEx.Variables.CognitiveChoice do
  @moduledoc """
  Cognitive variable for categorical choices with intelligent selection
  using economic mechanisms and multi-criteria optimization.
  """
  
  use DSPEx.Variables.CognitiveVariable
  
  defstruct [
    __base__: DSPEx.Variables.CognitiveVariable,
    
    # Choice-specific properties
    :choice_weights,                # Weights for each choice option
    :selection_history,             # History of selections and their outcomes
    :choice_performance_matrix,     # Performance matrix for each choice
    :multi_criteria_weights,        # Weights for multi-criteria optimization
    :exploration_rate,              # Rate of exploration vs exploitation
    :choice_costs,                  # Costs associated with each choice
    :choice_constraints,            # Constraints between choices
    :reputation_per_choice,         # Reputation score for each choice
    :bandits_state                  # Multi-armed bandits state for optimization
  ]
  
  def mount(agent, opts) do
    {:ok, base_state} = super(agent, opts)
    
    choices = base_state.valid_range || []
    
    choice_config = %{
      choice_weights: initialize_choice_weights(choices, opts),
      selection_history: [],
      choice_performance_matrix: initialize_performance_matrix(choices),
      multi_criteria_weights: Keyword.get(opts, :criteria_weights, %{performance: 0.5, cost: 0.3, reliability: 0.2}),
      exploration_rate: Keyword.get(opts, :exploration_rate, 0.1),
      choice_costs: Keyword.get(opts, :choice_costs, %{}),
      choice_constraints: Keyword.get(opts, :choice_constraints, %{}),
      reputation_per_choice: initialize_choice_reputation(choices),
      bandits_state: initialize_bandits_state(choices)
    }
    
    enhanced_state = Map.merge(base_state, choice_config)
    
    {:ok, enhanced_state}
  end
  
  # Handle choice optimization using multi-armed bandits
  def handle_signal({:choice_feedback, choice, outcome}, state) do
    # Update bandits state with outcome
    updated_bandits = update_bandits_state(state.bandits_state, choice, outcome)
    
    # Update performance matrix
    updated_matrix = update_performance_matrix(state.choice_performance_matrix, choice, outcome)
    
    # Update reputation for the choice
    updated_reputation = update_choice_reputation(state.reputation_per_choice, choice, outcome)
    
    # Record selection history
    selection_record = %{
      timestamp: DateTime.utc_now(),
      choice: choice,
      outcome: outcome,
      exploration: Map.get(outcome, :was_exploration, false)
    }
    
    updated_state = %{state |
      bandits_state: updated_bandits,
      choice_performance_matrix: updated_matrix,
      reputation_per_choice: updated_reputation,
      selection_history: [selection_record | state.selection_history] |> Enum.take(200)
    }
    
    # Determine if we should change the current choice
    optimal_choice = calculate_optimal_choice(updated_state)
    
    if optimal_choice != state.current_value and should_switch_choice?(optimal_choice, state.current_value, updated_state) do
      Logger.info("Cognitive choice #{state.name} switching: #{state.current_value} -> #{optimal_choice}")
      coordinate_value_change(optimal_choice, :optimization_system, generate_coordination_id(), updated_state)
    else
      {:ok, updated_state}
    end
  end
  
  # Economic coordination for choice selection
  def handle_signal({:economic_choice_auction, auction_data}, state) do
    if state.mabeam_config.economic_coordination do
      # Participate in auction for choice selection
      bid = calculate_choice_bid(auction_data, state)
      
      case DSPEx.Foundation.Bridge.submit_auction_bid(auction_data.auction_ref, bid) do
        {:ok, bid_ref} ->
          Logger.info("Submitted bid for choice auction: #{inspect(bid)}")
          {:ok, state}
          
        {:error, reason} ->
          Logger.warning("Failed to submit choice auction bid: #{inspect(reason)}")
          {:ok, state}
      end
    else
      {:ok, state}
    end
  end
  
  defp calculate_optimal_choice(state) do
    choices = state.valid_range
    
    # Calculate multi-criteria scores for each choice
    choice_scores = Enum.map(choices, fn choice ->
      performance_score = get_choice_performance_score(choice, state.choice_performance_matrix)
      cost_score = get_choice_cost_score(choice, state.choice_costs)
      reliability_score = get_choice_reliability_score(choice, state.reputation_per_choice)
      
      # Combine scores using weights
      combined_score = 
        performance_score * state.multi_criteria_weights.performance +
        cost_score * state.multi_criteria_weights.cost +
        reliability_score * state.multi_criteria_weights.reliability
        
      {choice, combined_score}
    end)
    
    # Apply exploration vs exploitation
    if :rand.uniform() < state.exploration_rate do
      # Exploration: choose randomly
      Enum.random(choices)
    else
      # Exploitation: choose best score
      choice_scores
      |> Enum.max_by(fn {_choice, score} -> score end)
      |> elem(0)
    end
  end
  
  defp calculate_choice_bid(auction_data, state) do
    choice = auction_data.choice
    performance_score = get_choice_performance_score(choice, state.choice_performance_matrix)
    reputation_score = get_choice_reliability_score(choice, state.reputation_per_choice)
    
    # Base bid on expected value
    base_value = performance_score * reputation_score
    
    # Adjust based on current reputation
    reputation_multiplier = state.economic_reputation
    
    # Apply bid strategy
    final_bid = case state.bid_strategy do
      :conservative -> base_value * reputation_multiplier * 0.8
      :aggressive -> base_value * reputation_multiplier * 1.2
      :balanced -> base_value * reputation_multiplier
    end
    
    %{
      amount: final_bid,
      choice: choice,
      confidence: performance_score,
      reputation: reputation_score
    }
  end
  
  # Utility functions for choice management
  defp initialize_choice_weights(choices, opts) do
    initial_weights = Keyword.get(opts, :initial_weights, %{})
    
    Enum.reduce(choices, %{}, fn choice, acc ->
      weight = Map.get(initial_weights, choice, 1.0)
      Map.put(acc, choice, weight)
    end)
  end
  
  defp initialize_performance_matrix(choices) do
    Enum.reduce(choices, %{}, fn choice, acc ->
      Map.put(acc, choice, %{
        total_selections: 0,
        successful_outcomes: 0,
        average_performance: 0.0,
        performance_variance: 0.0
      })
    end)
  end
  
  defp initialize_choice_reputation(choices) do
    Enum.reduce(choices, %{}, fn choice, acc ->
      Map.put(acc, choice, 1.0)  # Start with neutral reputation
    end)
  end
  
  defp initialize_bandits_state(choices) do
    # Initialize multi-armed bandits state for each choice
    Enum.reduce(choices, %{}, fn choice, acc ->
      Map.put(acc, choice, %{
        total_selections: 0,
        total_reward: 0.0,
        average_reward: 0.0,
        confidence_bound: Float.max()
      })
    end)
  end
end

CognitiveAgentTeam - Dynamic Team Coordination

defmodule DSPEx.Variables.CognitiveAgentTeam do
  @moduledoc """
  Revolutionary cognitive variable that manages dynamic agent teams,
  automatically optimizing team composition based on performance and
  using MABEAM coordination for distributed team management.
  """
  
  use DSPEx.Variables.CognitiveVariable
  
  defstruct [
    __base__: DSPEx.Variables.CognitiveVariable,
    
    # Team-specific properties
    :available_agents,              # Pool of available agents
    :current_team,                  # Current team composition
    :team_performance_history,      # Performance history for different team compositions
    :agent_compatibility_matrix,    # Compatibility scores between agents
    :team_constraints,              # Constraints on team composition
    :team_roles,                    # Required roles in the team
    :role_requirements,             # Requirements for each role
    :team_optimization_strategy,    # Strategy for team optimization
    :workload_distribution,         # Current workload distribution
    :collaboration_metrics,         # Metrics about team collaboration
    :dynamic_scaling_config         # Configuration for dynamic team scaling
  ]
  
  def mount(agent, opts) do
    {:ok, base_state} = super(agent, opts)
    
    team_config = %{
      available_agents: Keyword.get(opts, :available_agents, []),
      current_team: base_state.current_value || [],
      team_performance_history: [],
      agent_compatibility_matrix: initialize_compatibility_matrix(opts),
      team_constraints: Keyword.get(opts, :team_constraints, %{}),
      team_roles: Keyword.get(opts, :team_roles, []),
      role_requirements: Keyword.get(opts, :role_requirements, %{}),
      team_optimization_strategy: Keyword.get(opts, :optimization_strategy, :performance_based),
      workload_distribution: %{},
      collaboration_metrics: %{},
      dynamic_scaling_config: Keyword.get(opts, :dynamic_scaling, %{enabled: true, min_size: 1, max_size: 10})
    }
    
    enhanced_state = Map.merge(base_state, team_config)
    
    # Register team for coordination
    register_team_for_coordination(enhanced_state)
    
    {:ok, enhanced_state}
  end
  
  # Handle team performance feedback
  def handle_signal({:team_performance_feedback, performance_data}, state) do
    # Record team performance
    performance_record = %{
      timestamp: DateTime.utc_now(),
      team_composition: state.current_team,
      performance_metrics: performance_data,
      workload_distribution: state.workload_distribution,
      collaboration_quality: calculate_collaboration_quality(performance_data)
    }
    
    updated_history = [performance_record | state.team_performance_history] |> Enum.take(50)
    
    updated_state = %{state | team_performance_history: updated_history}
    
    # Analyze if team optimization is needed
    case analyze_team_optimization_need(performance_data, updated_state) do
      {:optimize, optimization_params} ->
        optimize_team_composition(optimization_params, updated_state)
        
      :no_change_needed ->
        {:ok, updated_state}
    end
  end
  
  # Handle dynamic scaling requests
  def handle_signal({:scaling_request, scaling_data}, state) do
    case scaling_data do
      %{type: :scale_up, reason: reason, target_size: target_size} ->
        handle_scale_up(reason, target_size, state)
        
      %{type: :scale_down, reason: reason, target_size: target_size} ->
        handle_scale_down(reason, target_size, state)
        
      %{type: :rebalance, workload_info: workload} ->
        handle_team_rebalance(workload, state)
        
      _ ->
        Logger.warning("Unknown scaling request: #{inspect(scaling_data)}")
        {:ok, state}
    end
  end
  
  # Handle agent availability changes
  def handle_signal({:agent_availability_change, availability_data}, state) do
    case availability_data do
      %{agent_id: agent_id, status: :available} ->
        add_available_agent(agent_id, state)
        
      %{agent_id: agent_id, status: :unavailable} ->
        remove_agent_from_team(agent_id, state)
        
      %{agent_id: agent_id, status: :degraded, performance_impact: impact} ->
        handle_agent_degradation(agent_id, impact, state)
        
      _ ->
        {:ok, state}
    end
  end
  
  defp optimize_team_composition(optimization_params, state) do
    current_team = state.current_team
    
    # Calculate optimal team using different strategies
    optimal_team = case state.team_optimization_strategy do
      :performance_based ->
        optimize_for_performance(optimization_params, state)
        
      :cost_based ->
        optimize_for_cost(optimization_params, state)
        
      :balanced ->
        optimize_balanced(optimization_params, state)
        
      :capability_based ->
        optimize_for_capabilities(optimization_params, state)
    end
    
    if optimal_team != current_team do
      Logger.info("Team #{state.name} optimizing composition: #{inspect(current_team)} -> #{inspect(optimal_team)}")
      
      # Use MABEAM coordination for team transitions
      coordinate_team_transition(current_team, optimal_team, state)
    else
      {:ok, state}
    end
  end
  
  defp coordinate_team_transition(old_team, new_team, state) do
    # Create transition plan
    transition_plan = %{
      type: :team_composition_change,
      variable_id: state.name,
      old_team: old_team,
      new_team: new_team,
      agents_to_add: new_team -- old_team,
      agents_to_remove: old_team -- new_team,
      transition_strategy: :gradual,  # or :immediate
      coordination_timeout: 45_000
    }
    
    # Use MABEAM consensus for team transition coordination
    all_affected_agents = Enum.uniq(old_team ++ new_team)
    
    case DSPEx.Foundation.Bridge.start_consensus(all_affected_agents, transition_plan, 45_000) do
      {:ok, consensus_ref} ->
        transition_state = %{state | 
          lock_state: {:team_transition_pending, consensus_ref},
          coordination_history: [
            {DateTime.utc_now(), :team_transition_started, consensus_ref} | state.coordination_history
          ]
        }
        
        # Monitor transition result
        Task.start(fn -> 
          monitor_team_transition_result(consensus_ref, new_team, self())
        end)
        
        {:ok, transition_state}
        
      {:error, reason} ->
        Logger.warning("Team transition consensus failed: #{inspect(reason)}")
        
        # Fallback to immediate transition
        execute_immediate_team_transition(old_team, new_team, state)
    end
  end
  
  defp optimize_for_performance(optimization_params, state) do
    # Use historical performance data to optimize team composition
    performance_history = state.team_performance_history
    
    if length(performance_history) >= 3 do
      # Analyze which agents contribute most to performance
      agent_performance_contributions = calculate_agent_performance_contributions(performance_history)
      
      # Select top performing agents
      sorted_agents = Enum.sort_by(agent_performance_contributions, fn {_agent, contribution} -> 
        -contribution 
      end)
      
      # Build optimal team within constraints
      build_optimal_team(sorted_agents, state.team_constraints, state.team_roles)
    else
      # Not enough data, keep current team
      state.current_team
    end
  end
  
  defp optimize_for_cost(optimization_params, state) do
    # Optimize team for cost efficiency while maintaining minimum performance
    available_agents = state.available_agents
    min_performance = Map.get(optimization_params, :min_performance, 0.8)
    
    # Calculate cost-performance ratio for each agent
    agent_efficiency = Enum.map(available_agents, fn agent_id ->
      cost = get_agent_cost(agent_id)
      performance = get_agent_performance(agent_id, state.team_performance_history)
      efficiency = if cost > 0, do: performance / cost, else: 0.0
      
      {agent_id, efficiency}
    end)
    
    # Select most efficient agents that meet performance requirements
    select_efficient_team(agent_efficiency, min_performance, state)
  end
  
  defp handle_scale_up(reason, target_size, state) do
    current_size = length(state.current_team)
    
    if target_size > current_size and state.dynamic_scaling_config.enabled do
      agents_needed = target_size - current_size
      max_size = state.dynamic_scaling_config.max_size
      
      actual_target = min(target_size, max_size)
      actual_agents_needed = actual_target - current_size
      
      if actual_agents_needed > 0 do
        # Find best available agents to add
        candidates = state.available_agents -- state.current_team
        
        selected_agents = select_agents_for_scaling(candidates, actual_agents_needed, state)
        
        new_team = state.current_team ++ selected_agents
        
        Logger.info("Scaling up team #{state.name}: #{current_size} -> #{length(new_team)} (reason: #{reason})")
        
        coordinate_team_transition(state.current_team, new_team, state)
      else
        Logger.info("Scale up requested but already at maximum size")
        {:ok, state}
      end
    else
      {:ok, state}
    end
  end
  
  defp handle_scale_down(reason, target_size, state) do
    current_size = length(state.current_team)
    
    if target_size < current_size and state.dynamic_scaling_config.enabled do
      min_size = state.dynamic_scaling_config.min_size
      actual_target = max(target_size, min_size)
      agents_to_remove = current_size - actual_target
      
      if agents_to_remove > 0 do
        # Select agents to remove (least performing or most expensive)
        agents_to_keep = select_agents_to_keep(state.current_team, actual_target, state)
        
        Logger.info("Scaling down team #{state.name}: #{current_size} -> #{length(agents_to_keep)} (reason: #{reason})")
        
        coordinate_team_transition(state.current_team, agents_to_keep, state)
      else
        Logger.info("Scale down requested but already at minimum size")
        {:ok, state}
      end
    else
      {:ok, state}
    end
  end
  
  # Utility functions for team management
  defp calculate_agent_performance_contributions(performance_history) do
    # Analyze historical data to determine each agent's contribution to team performance
    agent_contributions = %{}
    
    Enum.reduce(performance_history, agent_contributions, fn record, acc ->
      team = record.team_composition
      performance = Map.get(record.performance_metrics, :overall_performance, 0.0)
      
      # Distribute performance credit among team members
      credit_per_agent = performance / length(team)
      
      Enum.reduce(team, acc, fn agent_id, agent_acc ->
        current_contribution = Map.get(agent_acc, agent_id, 0.0)
        Map.put(agent_acc, agent_id, current_contribution + credit_per_agent)
      end)
    end)
  end
  
  defp build_optimal_team(sorted_agents, constraints, required_roles) do
    # Build team respecting constraints and role requirements
    # This is a simplified implementation - production would use more sophisticated optimization
    
    max_size = Map.get(constraints, :max_size, 10)
    min_size = Map.get(constraints, :min_size, 1)
    
    # Ensure role coverage first
    team_with_roles = ensure_role_coverage(sorted_agents, required_roles)
    
    # Add additional agents up to max size
    remaining_slots = max_size - length(team_with_roles)
    
    additional_agents = sorted_agents
    |> Enum.map(fn {agent_id, _contribution} -> agent_id end)
    |> Enum.reject(fn agent_id -> agent_id in team_with_roles end)
    |> Enum.take(remaining_slots)
    
    final_team = team_with_roles ++ additional_agents
    
    # Ensure minimum size
    if length(final_team) >= min_size do
      final_team
    else
      # Add more agents to reach minimum size
      all_available = sorted_agents |> Enum.map(fn {agent_id, _} -> agent_id end)
      needed = min_size - length(final_team)
      
      extra_agents = all_available
      |> Enum.reject(fn agent_id -> agent_id in final_team end)
      |> Enum.take(needed)
      
      final_team ++ extra_agents
    end
  end
  
  defp ensure_role_coverage(sorted_agents, required_roles) do
    # Ensure each required role is covered by at least one agent
    # This would integrate with agent capability discovery
    
    Enum.reduce(required_roles, [], fn role, team_acc ->
      case find_agent_for_role(sorted_agents, role, team_acc) do
        {:ok, agent_id} -> [agent_id | team_acc]
        :not_found -> team_acc  # Role cannot be filled
      end
    end)
    |> Enum.uniq()
  end
  
  defp find_agent_for_role(sorted_agents, role, existing_team) do
    # Find an agent capable of fulfilling the role that's not already on the team
    candidate = sorted_agents
    |> Enum.find(fn {agent_id, _contribution} ->
      agent_id not in existing_team and agent_has_capability(agent_id, role)
    end)
    
    case candidate do
      {agent_id, _contribution} -> {:ok, agent_id}
      nil -> :not_found
    end
  end
  
  defp agent_has_capability(agent_id, role) do
    # This would integrate with the MABEAM capability discovery system
    case DSPEx.Foundation.Bridge.get_agent_capabilities(agent_id) do
      {:ok, capabilities} -> role in capabilities
      {:error, _reason} -> false
    end
  end
end

Integration with DSPEx ML Workflows

Variables in DSPEx Programs

defmodule DSPEx.Program do
  @moduledoc """
  DSPEx program with revolutionary Cognitive Variables integration
  """
  
  use ElixirML.Resource
  
  defstruct [
    :signature,
    :cognitive_variables,           # Cognitive Variables coordination
    :variable_coordinator,          # Agent that coordinates all variables
    :optimization_agent,            # Agent for program optimization
    :performance_monitor,           # Agent for performance monitoring
    :config,
    :metadata
  ]
  
  def new(signature, opts \\ []) do
    # Create cognitive variables for program parameters
    cognitive_variables = create_program_variables(signature, opts)
    
    # Start variable coordinator agent
    {:ok, coordinator} = DSPEx.Agents.VariableCoordinator.start_link([
      variables: cognitive_variables,
      coordination_scope: :cluster
    ])
    
    # Start optimization agent
    {:ok, optimizer} = DSPEx.Agents.OptimizationAgent.start_link([
      variables: cognitive_variables,
      coordinator: coordinator
    ])
    
    # Start performance monitor
    {:ok, monitor} = DSPEx.Agents.PerformanceMonitor.start_link([
      coordinator: coordinator,
      optimizer: optimizer
    ])
    
    %__MODULE__{
      signature: signature,
      cognitive_variables: cognitive_variables,
      variable_coordinator: coordinator,
      optimization_agent: optimizer,
      performance_monitor: monitor,
      config: Keyword.get(opts, :config, %{}),
      metadata: %{created_at: DateTime.utc_now()}
    }
  end
  
  def optimize(program, training_data, opts \\ []) do
    # Revolutionary optimization using cognitive variables
    optimization_request = %{
      type: :program_optimization,
      training_data: training_data,
      optimization_strategy: Keyword.get(opts, :strategy, :cognitive_variables),
      target_metrics: Keyword.get(opts, :target_metrics, [:accuracy, :cost]),
      max_iterations: Keyword.get(opts, :max_iterations, 100)
    }
    
    # Send optimization request to optimization agent
    case Jido.Signal.send(program.optimization_agent, {:optimize_program, optimization_request}) do
      :ok ->
        # Monitor optimization progress
        monitor_optimization_progress(program, opts)
        
      {:error, reason} ->
        {:error, {:optimization_failed, reason}}
    end
  end
  
  defp create_program_variables(signature, opts) do
    base_variables = [
      # LLM parameters as cognitive variables
      {:temperature, DSPEx.Variables.CognitiveFloat, [
        range: {0.0, 2.0},
        default: 0.7,
        adaptation_strategy: :performance_feedback,
        coordination_scope: :cluster
      ]},
      
      {:max_tokens, DSPEx.Variables.CognitiveChoice, [
        choices: [100, 250, 500, 1000, 2000, 4000],
        default: 1000,
        adaptation_strategy: :economic,
        coordination_scope: :global
      ]},
      
      {:model_selection, DSPEx.Variables.CognitiveChoice, [
        choices: [:gpt_4, :claude_3, :gemini_pro],
        default: :gpt_4,
        adaptation_strategy: :performance_feedback,
        economic_coordination: true
      ]},
      
      {:reasoning_agents, DSPEx.Variables.CognitiveAgentTeam, [
        available_agents: discover_available_reasoning_agents(),
        team_roles: [:chain_of_thought, :critic, :synthesizer],
        optimization_strategy: :balanced,
        dynamic_scaling: %{enabled: true, min_size: 2, max_size: 6}
      ]}
    ]
    
    # Add signature-specific variables
    signature_variables = extract_variables_from_signature(signature, opts)
    
    # Start all cognitive variable agents
    Enum.map(base_variables ++ signature_variables, fn {name, module, config} ->
      {:ok, agent_pid} = module.start_link([name: name] ++ config)
      {name, agent_pid}
    end)
    |> Map.new()
  end
end

Conclusion

This implementation provides the complete technical specification for Cognitive Variables - the revolutionary transformation of ML parameters into intelligent Jido agents with MABEAM coordination capabilities. Key innovations include:

  1. 🚀 Variables as Agents: Complete Jido agent implementation with actions, sensors, and skills
  2. 🧠 Intelligent Coordination: MABEAM consensus and economic mechanisms for distributed coordination
  3. ⚡ Real-Time Adaptation: Performance-based adaptation with gradient tracking and multi-criteria optimization
  4. 💰 Economic Intelligence: Auction participation and reputation management for cost optimization
  5. 🤖 Dynamic Team Management: Agent teams as variables with automatic composition optimization
  6. 🌐 Cluster-Wide Intelligence: Distributed coordination across BEAM clusters with fault tolerance

The hybrid Jido-MABEAM architecture enables unprecedented capabilities in ML workflow optimization while maintaining the simplicity and performance advantages of agent-native design.


Implementation Completed: July 12, 2025
Status: Ready for Development
Confidence: High - comprehensive technical specification with production-ready patterns