Jido-Native Clustering Design: Agent-First Distributed ML Platform
Date: July 12, 2025
Status: Technical Design Specification
Scope: Complete clustering architecture built on Jido-first principles
Context: Distributed agent coordination for DSPEx platform
Executive Summary
This document specifies a revolutionary clustering architecture built on Jido-first principles where every clustering function is implemented as agents rather than traditional infrastructure services. This approach leverages Jido’s native signal-based communication and agent supervision to create a more resilient, scalable, and maintainable distributed system that perfectly supports the Cognitive Variables and DSPEx ML workflows.
Revolutionary Clustering Philosophy
Traditional Clustering Limitations
Traditional Approach: Infrastructure-heavy clustering with complex service layers
# Traditional clustering - complex service dependencies
Application.start() ->
Cluster.NodeManager.start() ->
Cluster.ServiceDiscovery.start() ->
Cluster.LoadBalancer.start() ->
Cluster.HealthMonitor.start() ->
App.start()
Problems:
- Complex service dependency chains
- Difficult failure isolation
- Hard to reason about distributed state
- Infrastructure-first rather than application-first design
Jido-Native Clustering Revolution
Agent-First Approach: Every clustering function is an intelligent agent
# Revolutionary approach - agents all the way down
DSPEx.Clustering.Supervisor
├── DSPEx.Clustering.Agents.NodeDiscovery # Node discovery as agent
├── DSPEx.Clustering.Agents.LoadBalancer # Load balancing as agent
├── DSPEx.Clustering.Agents.HealthMonitor # Health monitoring as agent
├── DSPEx.Clustering.Agents.FailureDetector # Failure detection as agent
├── DSPEx.Clustering.Agents.ConsistencyManager # Consistency as agent
└── DSPEx.Clustering.Agents.NetworkPartitionHandler # Partition handling as agent
Advantages:
- ✅ Unified Mental Model: Everything is an agent with actions, sensors, signals
- ✅ Natural Fault Isolation: Agent failures don’t cascade
- ✅ Signal-Based Communication: All coordination via Jido signals
- ✅ Self-Healing: Agents can detect and recover from failures autonomously
- ✅ Easy Testing: Mock agents for testing distributed scenarios
- ✅ Incremental Deployment: Add clustering agents gradually
Core Clustering Agent Architecture
1. Node Discovery Agent - Intelligent Network Awareness
defmodule DSPEx.Clustering.Agents.NodeDiscovery do
@moduledoc """
Intelligent node discovery and network topology management
"""
use Jido.Agent
@actions [
DSPEx.Clustering.Actions.DiscoverNodes,
DSPEx.Clustering.Actions.AnnouncePresence,
DSPEx.Clustering.Actions.ValidateNodes,
DSPEx.Clustering.Actions.UpdateTopology,
DSPEx.Clustering.Actions.HandleNodeFailure,
DSPEx.Clustering.Actions.OptimizeNetworkLayout
]
@sensors [
DSPEx.Clustering.Sensors.NetworkScanSensor,
DSPEx.Clustering.Sensors.NodeHealthSensor,
DSPEx.Clustering.Sensors.LatencyMeasurementSensor,
DSPEx.Clustering.Sensors.BandwidthMonitorSensor
]
@skills [
DSPEx.Clustering.Skills.TopologyOptimization,
DSPEx.Clustering.Skills.NetworkAnalysis,
DSPEx.Clustering.Skills.FailurePrediction
]
defstruct [
:cluster_topology, # Current cluster network topology
:discovered_nodes, # Map of discovered nodes and their capabilities
:network_metrics, # Network performance metrics between nodes
:discovery_strategies, # Available node discovery strategies
:topology_history, # Historical topology changes
:failure_predictions, # Predicted node failures based on metrics
:optimization_config, # Network topology optimization settings
:announcement_frequency # How often to announce presence
]
def mount(agent, opts) do
initial_state = %__MODULE__{
cluster_topology: %{nodes: [node()], connections: %{}},
discovered_nodes: %{},
network_metrics: %{},
discovery_strategies: opts[:discovery_strategies] || [:multicast, :dns, :consul],
topology_history: [],
failure_predictions: %{},
optimization_config: opts[:optimization] || %{enabled: true, frequency: 60_000},
announcement_frequency: opts[:announcement_frequency] || 30_000
}
# Start node discovery cycle
:timer.send_interval(initial_state.announcement_frequency, :announce_presence)
:timer.send_interval(10_000, :discover_nodes)
:timer.send_interval(60_000, :validate_topology)
# Subscribe to cluster signals
Jido.Signal.Bus.subscribe(self(), :cluster_events)
{:ok, %{agent | state: initial_state}}
end
def handle_signal({:node_announcement, node_info}, agent) do
case validate_node_announcement(node_info, agent.state) do
{:valid, validated_node} ->
add_discovered_node(validated_node, agent.state)
{:invalid, reason} ->
log_invalid_node_announcement(node_info, reason)
{:ok, agent}
end
end
def handle_signal({:node_failure_detected, failed_node}, agent) do
update_topology_for_node_failure(failed_node, agent.state)
end
def handle_signal({:network_partition_detected, partition_info}, agent) do
handle_network_partition(partition_info, agent.state)
end
def handle_info(:announce_presence, agent) do
announce_node_presence(agent.state)
{:ok, agent}
end
def handle_info(:discover_nodes, agent) do
case discover_new_nodes(agent.state) do
{:nodes_discovered, new_nodes} ->
updated_state = integrate_new_nodes(new_nodes, agent.state)
{:ok, %{agent | state: updated_state}}
{:no_new_nodes, _} ->
{:ok, agent}
end
end
def handle_info(:validate_topology, agent) do
case validate_current_topology(agent.state) do
{:topology_valid, _} ->
{:ok, agent}
{:topology_invalid, problems} ->
fix_topology_problems(problems, agent.state)
end
end
defp discover_new_nodes(state) do
# Execute all discovery strategies in parallel
discovery_results = Enum.map(state.discovery_strategies, fn strategy ->
Task.async(fn -> execute_discovery_strategy(strategy, state) end)
end)
|> Task.await_many(5_000)
|> List.flatten()
|> Enum.uniq()
new_nodes = Enum.reject(discovery_results, fn node ->
Map.has_key?(state.discovered_nodes, node.id)
end)
case new_nodes do
[] -> {:no_new_nodes, state}
nodes -> {:nodes_discovered, nodes}
end
end
defp execute_discovery_strategy(:multicast, state) do
# UDP multicast discovery
multicast_announce()
listen_for_multicast_responses()
end
defp execute_discovery_strategy(:dns, state) do
# DNS-based service discovery
resolve_cluster_dns_records()
end
defp execute_discovery_strategy(:consul, state) do
# Consul service discovery
query_consul_for_cluster_nodes()
end
defp announce_node_presence(state) do
announcement = %{
node_id: node(),
capabilities: get_node_capabilities(),
load: get_current_load(),
version: get_node_version(),
cluster_name: get_cluster_name(),
timestamp: DateTime.utc_now()
}
# Broadcast announcement via all available channels
broadcast_multicast_announcement(announcement)
register_with_service_discovery(announcement)
# Signal other cluster agents
Jido.Signal.Bus.broadcast(:cluster_events, {:node_announcement, announcement})
end
end
2. Load Balancer Agent - Intelligent Workload Distribution
defmodule DSPEx.Clustering.Agents.LoadBalancer do
@moduledoc """
Intelligent workload distribution across cluster nodes
"""
use Jido.Agent
@actions [
DSPEx.Clustering.Actions.DistributeWorkload,
DSPEx.Clustering.Actions.MonitorNodeLoad,
DSPEx.Clustering.Actions.RebalanceAgents,
DSPEx.Clustering.Actions.OptimizeRouting,
DSPEx.Clustering.Actions.HandleOverload,
DSPEx.Clustering.Actions.PredictLoadPatterns
]
@sensors [
DSPEx.Clustering.Sensors.NodeLoadSensor,
DSPEx.Clustering.Sensors.AgentDistributionSensor,
DSPEx.Clustering.Sensors.NetworkThroughputSensor,
DSPEx.Clustering.Sensors.RequestPatternSensor
]
@skills [
DSPEx.Clustering.Skills.LoadPrediction,
DSPEx.Clustering.Skills.OptimalPlacement,
DSPEx.Clustering.Skills.CapacityPlanning
]
defstruct [
:node_loads, # Current load on each node
:agent_distribution, # Where agents are currently placed
:load_history, # Historical load patterns
:balancing_strategies, # Available load balancing strategies
:routing_table, # Optimal routing decisions
:overload_thresholds, # When to trigger rebalancing
:prediction_models, # Models for load prediction
:rebalancing_cooldown # Minimum time between rebalancing operations
]
def mount(agent, opts) do
initial_state = %__MODULE__{
node_loads: %{},
agent_distribution: %{},
load_history: [],
balancing_strategies: opts[:strategies] || [:least_connections, :round_robin, :weighted],
routing_table: %{},
overload_thresholds: opts[:thresholds] || %{cpu: 0.8, memory: 0.85, agents: 100},
prediction_models: initialize_prediction_models(),
rebalancing_cooldown: opts[:rebalancing_cooldown] || 30_000
}
# Start load monitoring
:timer.send_interval(5_000, :monitor_loads)
:timer.send_interval(30_000, :evaluate_rebalancing)
:timer.send_interval(60_000, :update_predictions)
{:ok, %{agent | state: initial_state}}
end
def handle_signal({:agent_placement_request, agent_spec, constraints}, agent) do
optimal_placement = find_optimal_placement(agent_spec, constraints, agent.state)
execute_agent_placement(agent_spec, optimal_placement, agent.state)
end
def handle_signal({:load_report, node_id, load_data}, agent) do
updated_loads = Map.put(agent.state.node_loads, node_id, load_data)
updated_state = %{agent.state | node_loads: updated_loads}
# Check if rebalancing is needed
case evaluate_immediate_rebalancing(updated_state) do
{:rebalancing_needed, rebalancing_plan} ->
execute_load_rebalancing(rebalancing_plan, updated_state)
{:no_rebalancing_needed, _} ->
{:ok, %{agent | state: updated_state}}
end
end
def handle_signal({:overload_detected, overloaded_node, overload_type}, agent) do
emergency_plan = create_emergency_rebalancing_plan(overloaded_node, overload_type, agent.state)
execute_emergency_rebalancing(emergency_plan, agent.state)
end
def handle_info(:monitor_loads, agent) do
# Collect load data from all nodes
current_loads = collect_cluster_load_data()
# Update load history
updated_history = [current_loads | Enum.take(agent.state.load_history, 99)]
# Update state
updated_state = %{agent.state |
node_loads: current_loads,
load_history: updated_history
}
{:ok, %{agent | state: updated_state}}
end
def handle_info(:evaluate_rebalancing, agent) do
case should_rebalance_cluster?(agent.state) do
{:yes, rebalancing_plan} ->
execute_planned_rebalancing(rebalancing_plan, agent.state)
{:no, reason} ->
log_rebalancing_decision(reason)
{:ok, agent}
end
end
defp find_optimal_placement(agent_spec, constraints, state) do
available_nodes = filter_nodes_by_constraints(constraints, state.node_loads)
placement_scores = Enum.map(available_nodes, fn node ->
{node, calculate_placement_score(agent_spec, node, state)}
end)
|> Enum.sort_by(fn {_node, score} -> score end, :desc)
case placement_scores do
[{optimal_node, _score} | _] -> {:ok, optimal_node}
[] -> {:error, :no_suitable_nodes}
end
end
defp calculate_placement_score(agent_spec, node, state) do
node_load = Map.get(state.node_loads, node, %{})
# Calculate score based on multiple factors
cpu_score = 1.0 - (node_load[:cpu_usage] || 0.0)
memory_score = 1.0 - (node_load[:memory_usage] || 0.0)
agent_count_score = 1.0 - min(1.0, (node_load[:agent_count] || 0) / 100.0)
network_score = calculate_network_score(node, agent_spec, state)
capability_score = calculate_capability_match_score(agent_spec, node)
# Weighted combination
cpu_score * 0.3 +
memory_score * 0.3 +
agent_count_score * 0.2 +
network_score * 0.1 +
capability_score * 0.1
end
end
3. Health Monitor Agent - Distributed Health Intelligence
defmodule DSPEx.Clustering.Agents.HealthMonitor do
@moduledoc """
Intelligent cluster health monitoring with predictive failure detection
"""
use Jido.Agent
@actions [
DSPEx.Clustering.Actions.MonitorClusterHealth,
DSPEx.Clustering.Actions.DetectAnomalies,
DSPEx.Clustering.Actions.PredictFailures,
DSPEx.Clustering.Actions.TriggerRecovery,
DSPEx.Clustering.Actions.UpdateHealthMetrics,
DSPEx.Clustering.Actions.GenerateHealthAlerts
]
@sensors [
DSPEx.Clustering.Sensors.NodeVitalsSensor,
DSPEx.Clustering.Sensors.NetworkHealthSensor,
DSPEx.Clustering.Sensors.AgentHealthSensor,
DSPEx.Clustering.Sensors.PerformanceDegradationSensor
]
@skills [
DSPEx.Clustering.Skills.AnomalyDetection,
DSPEx.Clustering.Skills.FailurePrediction,
DSPEx.Clustering.Skills.HealthAnalysis
]
defstruct [
:cluster_health_state, # Overall cluster health status
:node_health_history, # Historical health data for each node
:health_thresholds, # Thresholds for different health metrics
:anomaly_detection_models, # ML models for anomaly detection
:failure_prediction_models, # Models for predicting node failures
:recovery_strategies, # Available recovery strategies
:alert_policies, # When and how to generate alerts
:monitoring_frequency # How often to collect health data
]
def mount(agent, opts) do
initial_state = %__MODULE__{
cluster_health_state: %{status: :healthy, last_updated: DateTime.utc_now()},
node_health_history: %{},
health_thresholds: opts[:thresholds] || default_health_thresholds(),
anomaly_detection_models: initialize_anomaly_models(),
failure_prediction_models: initialize_failure_prediction_models(),
recovery_strategies: opts[:recovery_strategies] || default_recovery_strategies(),
alert_policies: opts[:alert_policies] || default_alert_policies(),
monitoring_frequency: opts[:monitoring_frequency] || 5_000
}
# Start health monitoring cycles
:timer.send_interval(initial_state.monitoring_frequency, :collect_health_data)
:timer.send_interval(30_000, :analyze_health_trends)
:timer.send_interval(60_000, :predict_failures)
{:ok, %{agent | state: initial_state}}
end
def handle_signal({:health_data, node_id, health_metrics}, agent) do
# Update node health history
updated_history = update_node_health_history(node_id, health_metrics, agent.state)
# Detect anomalies in health data
anomalies = detect_health_anomalies(node_id, health_metrics, agent.state)
case anomalies do
[] ->
{:ok, %{agent | state: %{agent.state | node_health_history: updated_history}}}
detected_anomalies ->
handle_health_anomalies(node_id, detected_anomalies, agent.state)
end
end
def handle_signal({:node_failure_suspected, node_id, failure_indicators}, agent) do
case validate_failure_suspicion(node_id, failure_indicators, agent.state) do
{:confirmed_failure, failure_type} ->
trigger_failure_recovery(node_id, failure_type, agent.state)
{:false_alarm, _} ->
log_false_failure_alarm(node_id, failure_indicators)
{:ok, agent}
{:investigation_needed, _} ->
start_failure_investigation(node_id, failure_indicators, agent.state)
end
end
def handle_info(:collect_health_data, agent) do
# Collect health data from all cluster nodes
cluster_health_data = collect_cluster_health_data()
# Update overall cluster health
updated_cluster_health = calculate_cluster_health(cluster_health_data, agent.state)
# Process each node's health data
updated_state = process_health_data_collection(cluster_health_data, agent.state)
|> Map.put(:cluster_health_state, updated_cluster_health)
{:ok, %{agent | state: updated_state}}
end
def handle_info(:analyze_health_trends, agent) do
trend_analysis = analyze_cluster_health_trends(agent.state.node_health_history)
case identify_concerning_trends(trend_analysis) do
[] ->
{:ok, agent}
concerning_trends ->
generate_trend_alerts(concerning_trends, agent.state)
end
end
def handle_info(:predict_failures, agent) do
failure_predictions = predict_node_failures(agent.state)
case filter_high_risk_predictions(failure_predictions) do
[] ->
{:ok, agent}
high_risk_predictions ->
handle_failure_predictions(high_risk_predictions, agent.state)
end
end
defp detect_health_anomalies(node_id, health_metrics, state) do
historical_data = Map.get(state.node_health_history, node_id, [])
# Use ML models to detect anomalies
anomalies = Enum.flat_map(health_metrics, fn {metric_name, metric_value} ->
case detect_metric_anomaly(metric_name, metric_value, historical_data, state) do
{:anomaly, anomaly_data} -> [anomaly_data]
{:normal, _} -> []
end
end)
anomalies
end
defp predict_node_failures(state) do
Enum.map(state.node_health_history, fn {node_id, health_history} ->
failure_probability = calculate_failure_probability(health_history, state.failure_prediction_models)
time_to_failure = estimate_time_to_failure(health_history, state.failure_prediction_models)
%{
node_id: node_id,
failure_probability: failure_probability,
estimated_time_to_failure: time_to_failure,
confidence: calculate_prediction_confidence(health_history)
}
end)
end
end
4. Consistency Manager Agent - Distributed State Coordination
defmodule DSPEx.Clustering.Agents.ConsistencyManager do
@moduledoc """
Intelligent distributed consistency management for cluster state
"""
use Jido.Agent
@actions [
DSPEx.Clustering.Actions.CoordinateConsensus,
DSPEx.Clustering.Actions.ManageReplication,
DSPEx.Clustering.Actions.ResolveConflicts,
DSPEx.Clustering.Actions.HandlePartitions,
DSPEx.Clustering.Actions.SynchronizeState,
DSPEx.Clustering.Actions.ValidateConsistency
]
@sensors [
DSPEx.Clustering.Sensors.ConsistencyViolationSensor,
DSPEx.Clustering.Sensors.ReplicationLagSensor,
DSPEx.Clustering.Sensors.ConflictDetectionSensor,
DSPEx.Clustering.Sensors.PartitionDetectionSensor
]
defstruct [
:consistency_level, # Required consistency level (:strong, :eventual, :causal)
:replication_factor, # Number of replicas for each piece of data
:consensus_protocol, # Consensus algorithm (:raft, :pbft, :gossip)
:conflict_resolution, # Conflict resolution strategies
:partition_tolerance, # How to handle network partitions
:state_snapshots, # Periodic state snapshots for recovery
:pending_operations, # Operations waiting for consensus
:node_roles # Roles of different nodes (leader, follower, etc.)
]
def mount(agent, opts) do
initial_state = %__MODULE__{
consistency_level: opts[:consistency_level] || :eventual,
replication_factor: opts[:replication_factor] || 3,
consensus_protocol: opts[:consensus_protocol] || :raft,
conflict_resolution: opts[:conflict_resolution] || %{
strategy: :timestamp,
custom_resolvers: %{}
},
partition_tolerance: opts[:partition_tolerance] || :ap, # AP vs CP in CAP theorem
state_snapshots: %{},
pending_operations: %{},
node_roles: %{node() => :candidate}
}
# Start consistency management cycles
:timer.send_interval(1_000, :process_pending_operations)
:timer.send_interval(30_000, :validate_cluster_consistency)
:timer.send_interval(300_000, :create_state_snapshot)
# Initialize consensus protocol
initialize_consensus_protocol(initial_state.consensus_protocol, initial_state)
{:ok, %{agent | state: initial_state}}
end
def handle_signal({:state_update_request, update_spec}, agent) do
case agent.state.consistency_level do
:strong ->
coordinate_strong_consistency_update(update_spec, agent.state)
:eventual ->
apply_eventual_consistency_update(update_spec, agent.state)
:causal ->
coordinate_causal_consistency_update(update_spec, agent.state)
end
end
def handle_signal({:consensus_vote_request, proposal_id, proposal}, agent) do
case evaluate_consensus_proposal(proposal_id, proposal, agent.state) do
{:vote, :accept} ->
send_consensus_vote(proposal_id, :accept, agent.state)
{:vote, :reject} ->
send_consensus_vote(proposal_id, :reject, agent.state)
{:abstain, reason} ->
send_consensus_abstention(proposal_id, reason, agent.state)
end
end
def handle_signal({:partition_detected, partition_info}, agent) do
case agent.state.partition_tolerance do
:ap -> # Availability and Partition tolerance
handle_ap_partition(partition_info, agent.state)
:cp -> # Consistency and Partition tolerance
handle_cp_partition(partition_info, agent.state)
:custom ->
handle_custom_partition_strategy(partition_info, agent.state)
end
end
defp coordinate_strong_consistency_update(update_spec, state) do
case state.consensus_protocol do
:raft ->
coordinate_raft_update(update_spec, state)
:pbft ->
coordinate_pbft_update(update_spec, state)
:gossip ->
coordinate_gossip_update(update_spec, state)
end
end
defp coordinate_raft_update(update_spec, state) do
# Raft consensus for strong consistency
if is_leader?(state.node_roles) do
# Leader coordinates the update
proposal = create_raft_proposal(update_spec)
broadcast_raft_proposal(proposal, state)
wait_for_raft_consensus(proposal.id, state)
else
# Forward to leader
leader_node = find_leader_node(state.node_roles)
forward_update_to_leader(update_spec, leader_node, state)
end
end
end
Advanced Clustering Patterns
5. Network Partition Handler Agent - Intelligent Split-Brain Resolution
defmodule DSPEx.Clustering.Agents.NetworkPartitionHandler do
@moduledoc """
Intelligent network partition detection and resolution
"""
use Jido.Agent
@actions [
DSPEx.Clustering.Actions.DetectPartitions,
DSPEx.Clustering.Actions.AnalyzePartitionType,
DSPEx.Clustering.Actions.ChoosePartitionStrategy,
DSPEx.Clustering.Actions.CoordinateRecovery,
DSPEx.Clustering.Actions.PreventSplitBrain,
DSPEx.Clustering.Actions.MergePartitions
]
@sensors [
DSPEx.Clustering.Sensors.NetworkConnectivitySensor,
DSPEx.Clustering.Sensors.PartitionTopologySensor,
DSPEx.Clustering.Sensors.NodeIsolationSensor
]
defstruct [
:partition_detection_config, # Configuration for partition detection
:recovery_strategies, # Available partition recovery strategies
:split_brain_prevention, # Split-brain prevention mechanisms
:partition_history, # Historical partition events
:current_partitions, # Currently detected partitions
:recovery_timeout, # Maximum time to wait for recovery
:quorum_size # Minimum nodes needed for quorum
]
def mount(agent, opts) do
initial_state = %__MODULE__{
partition_detection_config: opts[:detection_config] || default_detection_config(),
recovery_strategies: opts[:recovery_strategies] || [:quorum_based, :manual, :automatic],
split_brain_prevention: opts[:split_brain_prevention] || %{enabled: true, quorum_required: true},
partition_history: [],
current_partitions: %{},
recovery_timeout: opts[:recovery_timeout] || 300_000, # 5 minutes
quorum_size: opts[:quorum_size] || 3
}
# Start partition detection
:timer.send_interval(10_000, :detect_partitions)
:timer.send_interval(60_000, :validate_partition_status)
{:ok, %{agent | state: initial_state}}
end
def handle_signal({:partition_suspected, partition_evidence}, agent) do
case analyze_partition_evidence(partition_evidence, agent.state) do
{:confirmed_partition, partition_details} ->
handle_confirmed_partition(partition_details, agent.state)
{:false_alarm, _} ->
log_partition_false_alarm(partition_evidence)
{:ok, agent}
{:needs_investigation, _} ->
start_partition_investigation(partition_evidence, agent.state)
end
end
def handle_signal({:partition_recovery_complete, partition_id}, agent) do
complete_partition_recovery(partition_id, agent.state)
end
defp handle_confirmed_partition(partition_details, state) do
# Determine partition strategy based on partition type and cluster state
strategy = choose_partition_strategy(partition_details, state)
case strategy do
:quorum_based ->
handle_quorum_based_partition(partition_details, state)
:manual_intervention ->
request_manual_partition_resolution(partition_details, state)
:automatic_recovery ->
start_automatic_partition_recovery(partition_details, state)
:graceful_degradation ->
enable_graceful_degradation_mode(partition_details, state)
end
end
defp choose_partition_strategy(partition_details, state) do
partition_size = length(partition_details.isolated_nodes)
remaining_cluster_size = length(partition_details.remaining_nodes)
cond do
remaining_cluster_size >= state.quorum_size ->
:quorum_based
partition_size == 1 and remaining_cluster_size > 1 ->
:automatic_recovery
partition_details.partition_type == :symmetric ->
:manual_intervention
true ->
:graceful_degradation
end
end
end
6. Agent Migration Manager - Intelligent Workload Mobility
defmodule DSPEx.Clustering.Agents.AgentMigrationManager do
@moduledoc """
Intelligent agent migration across cluster nodes with state preservation
"""
use Jido.Agent
@actions [
DSPEx.Clustering.Actions.PlanAgentMigration,
DSPEx.Clustering.Actions.ExecuteStatefulMigration,
DSPEx.Clustering.Actions.ValidateMigrationSuccess,
DSPEx.Clustering.Actions.RollbackFailedMigration,
DSPEx.Clustering.Actions.OptimizeMigrationRoutes,
DSPEx.Clustering.Actions.PreserveCognitiveVariableState
]
@sensors [
DSPEx.Clustering.Sensors.MigrationOpportunitySensor,
DSPEx.Clustering.Sensors.StateTransferProgressSensor,
DSPEx.Clustering.Sensors.MigrationPerformanceSensor
]
defstruct [
:migration_policies, # Policies governing when/how to migrate agents
:active_migrations, # Currently in-progress migrations
:migration_history, # Historical migration data for optimization
:state_preservation_config, # How to preserve agent state during migration
:rollback_strategies, # Strategies for handling failed migrations
:performance_thresholds, # When migrations are beneficial
:cognitive_variable_handling # Special handling for Cognitive Variables
]
def mount(agent, opts) do
initial_state = %__MODULE__{
migration_policies: opts[:policies] || default_migration_policies(),
active_migrations: %{},
migration_history: [],
state_preservation_config: opts[:state_preservation] || %{
method: :checkpoint_restore,
compression: true,
encryption: true
},
rollback_strategies: opts[:rollback] || [:state_rollback, :agent_restart],
performance_thresholds: opts[:thresholds] || %{
cpu_improvement: 0.2,
latency_improvement: 0.15,
cost_reduction: 0.1
},
cognitive_variable_handling: %{
pause_adaptation: true,
sync_before_migration: true,
preserve_coordination_state: true
}
}
# Start migration monitoring
:timer.send_interval(30_000, :evaluate_migration_opportunities)
:timer.send_interval(5_000, :monitor_active_migrations)
{:ok, %{agent | state: initial_state}}
end
def handle_signal({:migration_request, agent_id, target_node, reason}, agent) do
case plan_agent_migration(agent_id, target_node, reason, agent.state) do
{:ok, migration_plan} ->
execute_agent_migration(migration_plan, agent.state)
{:error, reason} ->
reject_migration_request(agent_id, target_node, reason, agent.state)
end
end
def handle_signal({:cognitive_variable_migration_request, variable_id, migration_spec}, agent) do
# Special handling for Cognitive Variables that coordinate other agents
plan_cognitive_variable_migration(variable_id, migration_spec, agent.state)
end
defp plan_cognitive_variable_migration(variable_id, migration_spec, state) do
# Cognitive Variables require special migration handling because they coordinate other agents
cognitive_variable_info = get_cognitive_variable_info(variable_id)
migration_plan = %{
type: :cognitive_variable_migration,
variable_id: variable_id,
source_node: cognitive_variable_info.current_node,
target_node: migration_spec.target_node,
affected_agents: cognitive_variable_info.affected_agents,
coordination_state: cognitive_variable_info.coordination_state,
# Special steps for Cognitive Variable migration
steps: [
:pause_variable_adaptation,
:notify_affected_agents,
:sync_coordination_state,
:create_state_checkpoint,
:transfer_variable_agent,
:restore_coordination_state,
:resume_adaptation,
:validate_agent_coordination
]
}
execute_cognitive_variable_migration(migration_plan, state)
end
defp execute_cognitive_variable_migration(migration_plan, state) do
migration_id = generate_migration_id()
# Step 1: Pause variable adaptation
Jido.Signal.Bus.broadcast(migration_plan.variable_id, {:pause_adaptation, migration_id})
# Step 2: Notify affected agents about impending migration
Enum.each(migration_plan.affected_agents, fn agent_id ->
Jido.Signal.Bus.broadcast(agent_id, {
:coordination_variable_migrating,
migration_plan.variable_id,
migration_id
})
end)
# Step 3: Synchronize coordination state across cluster
sync_coordination_state(migration_plan.variable_id, migration_plan.coordination_state)
# Step 4: Create comprehensive state checkpoint
checkpoint = create_cognitive_variable_checkpoint(migration_plan.variable_id)
# Step 5: Transfer the Variable agent to target node
transfer_result = transfer_variable_agent(
migration_plan.variable_id,
migration_plan.target_node,
checkpoint
)
case transfer_result do
{:ok, new_variable_pid} ->
# Step 6: Restore coordination state
restore_coordination_state(new_variable_pid, checkpoint.coordination_state)
# Step 7: Resume adaptation
Jido.Signal.Bus.broadcast(new_variable_pid, {:resume_adaptation, migration_id})
# Step 8: Validate agent coordination is working
validate_variable_coordination(new_variable_pid, migration_plan.affected_agents)
{:error, reason} ->
# Rollback migration
rollback_cognitive_variable_migration(migration_plan, checkpoint, reason)
end
end
end
Signal-Based Cluster Communication
Cluster Signal Patterns
defmodule DSPEx.Clustering.SignalPatterns do
@moduledoc """
Standard signal patterns for cluster communication
"""
# Node lifecycle signals
def node_announcement_signal(node_info) do
%Jido.Signal{
type: :node_announcement,
payload: node_info,
metadata: %{
cluster_event: true,
priority: :normal,
broadcast_scope: :cluster
}
}
end
def node_failure_signal(failed_node, failure_type) do
%Jido.Signal{
type: :node_failure,
payload: %{node: failed_node, failure_type: failure_type},
metadata: %{
cluster_event: true,
priority: :high,
broadcast_scope: :cluster
}
}
end
# Load balancing signals
def load_report_signal(node_id, load_data) do
%Jido.Signal{
type: :load_report,
payload: %{node: node_id, load: load_data},
metadata: %{
cluster_event: true,
priority: :low,
frequency: :regular
}
}
end
def rebalancing_request_signal(rebalancing_plan) do
%Jido.Signal{
type: :rebalancing_request,
payload: rebalancing_plan,
metadata: %{
cluster_event: true,
priority: :high,
coordination_required: true
}
}
end
# Health monitoring signals
def health_alert_signal(alert_type, alert_data) do
%Jido.Signal{
type: :health_alert,
payload: %{alert_type: alert_type, data: alert_data},
metadata: %{
cluster_event: true,
priority: :high,
alert: true
}
}
end
# Consensus and coordination signals
def consensus_proposal_signal(proposal_id, proposal) do
%Jido.Signal{
type: :consensus_proposal,
payload: %{id: proposal_id, proposal: proposal},
metadata: %{
cluster_event: true,
priority: :high,
consensus_required: true
}
}
end
def consensus_vote_signal(proposal_id, vote, voter_node) do
%Jido.Signal{
type: :consensus_vote,
payload: %{proposal_id: proposal_id, vote: vote, voter: voter_node},
metadata: %{
cluster_event: true,
priority: :high,
consensus_response: true
}
}
end
# Variable coordination signals (for Cognitive Variables)
def variable_sync_signal(variable_id, sync_data) do
%Jido.Signal{
type: :variable_sync,
payload: %{variable_id: variable_id, sync_data: sync_data},
metadata: %{
cluster_event: true,
priority: :medium,
variable_coordination: true
}
}
end
def variable_conflict_signal(variable_id, conflict_data) do
%Jido.Signal{
type: :variable_conflict,
payload: %{variable_id: variable_id, conflict: conflict_data},
metadata: %{
cluster_event: true,
priority: :high,
conflict_resolution_required: true
}
}
end
end
Performance Optimization and Monitoring
Cluster Performance Intelligence
defmodule DSPEx.Clustering.PerformanceIntelligence do
@moduledoc """
Advanced performance monitoring and optimization for Jido-native clustering
"""
use Jido.Agent
@actions [
DSPEx.Clustering.Actions.CollectPerformanceMetrics,
DSPEx.Clustering.Actions.AnalyzeClusterPerformance,
DSPEx.Clustering.Actions.OptimizeClusterConfiguration,
DSPEx.Clustering.Actions.PredictPerformanceBottlenecks,
DSPEx.Clustering.Actions.GenerateOptimizationRecommendations
]
@sensors [
DSPEx.Clustering.Sensors.ClusterThroughputSensor,
DSPEx.Clustering.Sensors.AgentCoordinationLatencySensor,
DSPEx.Clustering.Sensors.SignalProcessingEfficiencySensor,
DSPEx.Clustering.Sensors.ResourceUtilizationSensor
]
defstruct [
:performance_metrics, # Real-time cluster performance metrics
:optimization_models, # ML models for performance optimization
:benchmark_targets, # Performance targets for the cluster
:bottleneck_detection, # Bottleneck detection algorithms
:optimization_history, # Historical optimization results
:performance_predictions, # Predicted performance trends
:alert_thresholds # Performance alert thresholds
]
def mount(agent, opts) do
initial_state = %__MODULE__{
performance_metrics: %{},
optimization_models: initialize_optimization_models(),
benchmark_targets: opts[:targets] || default_performance_targets(),
bottleneck_detection: initialize_bottleneck_detection(),
optimization_history: [],
performance_predictions: %{},
alert_thresholds: opts[:alert_thresholds] || default_alert_thresholds()
}
# Start performance monitoring
:timer.send_interval(5_000, :collect_performance_data)
:timer.send_interval(60_000, :analyze_performance_trends)
:timer.send_interval(300_000, :generate_optimization_recommendations)
{:ok, %{agent | state: initial_state}}
end
def handle_info(:collect_performance_data, agent) do
# Collect comprehensive cluster performance data
performance_data = collect_cluster_performance_data()
# Update performance metrics
updated_metrics = update_performance_metrics(performance_data, agent.state)
# Detect performance issues
case detect_performance_issues(updated_metrics, agent.state) do
[] ->
{:ok, %{agent | state: %{agent.state | performance_metrics: updated_metrics}}}
issues ->
handle_performance_issues(issues, agent.state)
end
end
defp collect_cluster_performance_data do
%{
# Cluster-level metrics
total_throughput: measure_cluster_throughput(),
average_latency: measure_cluster_latency(),
agent_coordination_efficiency: measure_coordination_efficiency(),
signal_processing_speed: measure_signal_processing_speed(),
# Node-level metrics
node_performance: collect_node_performance_data(),
# Agent-level metrics
agent_performance: collect_agent_performance_data(),
# Cognitive Variable metrics
variable_coordination_performance: measure_variable_coordination_performance(),
# Network metrics
network_performance: measure_network_performance(),
timestamp: DateTime.utc_now()
}
end
defp measure_cluster_throughput do
# Measure requests/operations per second across the cluster
cluster_nodes = DSPEx.Clustering.get_cluster_nodes()
node_throughputs = Enum.map(cluster_nodes, fn node ->
measure_node_throughput(node)
end)
Enum.sum(node_throughputs)
end
defp measure_coordination_efficiency do
# Measure how efficiently agents coordinate across the cluster
coordination_metrics = %{
average_coordination_time: measure_average_coordination_time(),
coordination_success_rate: measure_coordination_success_rate(),
signal_routing_efficiency: measure_signal_routing_efficiency(),
consensus_convergence_time: measure_consensus_convergence_time()
}
# Calculate overall efficiency score
calculate_coordination_efficiency_score(coordination_metrics)
end
defp measure_variable_coordination_performance do
# Measure performance of Cognitive Variable coordination
%{
variable_update_latency: measure_variable_update_latency(),
cross_cluster_sync_time: measure_cross_cluster_sync_time(),
variable_conflict_resolution_time: measure_conflict_resolution_time(),
adaptation_response_time: measure_adaptation_response_time()
}
end
end
Production Deployment and Operations
Cluster Deployment Configuration
defmodule DSPEx.Clustering.ProductionConfig do
@moduledoc """
Production deployment configuration for Jido-native clustering
"""
def production_cluster_config do
%{
# Node discovery configuration
node_discovery: %{
strategies: [:consul, :dns, :kubernetes],
announcement_frequency: 30_000,
health_check_interval: 10_000
},
# Load balancing configuration
load_balancing: %{
strategies: [:least_connections, :weighted_round_robin],
rebalancing_frequency: 60_000,
overload_thresholds: %{
cpu: 0.8,
memory: 0.85,
agents: 1000
}
},
# Health monitoring configuration
health_monitoring: %{
monitoring_frequency: 5_000,
failure_detection_timeout: 30_000,
recovery_strategies: [:automatic, :manual_fallback]
},
# Consistency management configuration
consistency: %{
level: :eventual,
replication_factor: 3,
consensus_protocol: :raft,
partition_tolerance: :ap
},
# Performance optimization
performance: %{
monitoring_frequency: 5_000,
optimization_frequency: 300_000,
alert_thresholds: %{
latency_p95: 100,
throughput_min: 1000,
error_rate_max: 0.01
}
},
# Cognitive Variable coordination
cognitive_variables: %{
cluster_sync_frequency: 10_000,
conflict_resolution_timeout: 30_000,
adaptation_coordination: true
}
}
end
def development_cluster_config do
%{
# Simplified configuration for development
node_discovery: %{
strategies: [:multicast],
announcement_frequency: 10_000
},
load_balancing: %{
strategies: [:round_robin],
rebalancing_frequency: 120_000
},
health_monitoring: %{
monitoring_frequency: 10_000,
failure_detection_timeout: 60_000
},
consistency: %{
level: :eventual,
replication_factor: 1,
consensus_protocol: :gossip
}
}
end
end
Conclusion
This Jido-native clustering design represents a revolutionary approach to distributed systems that leverages agent-first principles to create a more resilient, scalable, and maintainable clustering platform. Key innovations include:
Revolutionary Advantages
- Agent-First Architecture: Every clustering function implemented as intelligent agents
- Signal-Based Communication: All coordination via Jido’s efficient signal bus
- Natural Fault Isolation: Agent failures don’t cascade due to OTP supervision
- Unified Mental Model: Everything is an agent - from load balancing to health monitoring
- Cognitive Variable Support: Native support for intelligent Variable coordination
- Self-Healing Capabilities: Agents can detect and recover from failures autonomously
Technical Benefits
- Simplified Architecture: Fewer abstractions than traditional clustering solutions
- Better Testability: Mock agents for testing complex distributed scenarios
- Incremental Deployment: Add clustering capabilities gradually
- Performance Optimization: Direct signal communication vs service layer overhead
- Easier Reasoning: Agent patterns are easier to understand than service dependencies
Production Readiness
- Comprehensive Monitoring: Built-in telemetry and performance monitoring
- Fault Tolerance: OTP supervision ensures reliable clustering operations
- Scalability: Agent-based architecture scales naturally with cluster size
- Observability: Rich signal patterns enable comprehensive system monitoring
- Operations: Simple agent management vs complex service coordination
The Jido-native clustering design provides the perfect foundation for the DSPEx platform’s distributed ML capabilities, enabling intelligent agent coordination across clusters while maintaining the simplicity and reliability that makes Jido an excellent choice for agent-based systems.
Design Specification Completed: July 12, 2025
Foundation: Jido-Native Agent Architecture
Innovation: Agent-First Distributed Systems
Scope: Complete clustering platform for revolutionary DSPEx ML workflows