Performance Benchmarks Framework: Comprehensive Testing and Validation
Date: July 12, 2025
Status: Complete Performance Testing Framework
Scope: Comprehensive benchmarks for hybrid Jido-MABEAM architecture validation
Context: Performance validation framework for revolutionary agent-native platform
Executive Summary
This document establishes the comprehensive performance benchmarks framework for validating the hybrid Jido-MABEAM architecture against current Foundation infrastructure. The framework provides detailed benchmarks, measurement methodologies, and validation criteria to ensure the revolutionary agent-native platform delivers superior performance while maintaining reliability.
Performance Testing Philosophy
Core Testing Principles
- 📊 Baseline Establishment: Comprehensive baseline measurements of current Foundation infrastructure
- 🎯 Target-Driven Testing: Clear performance targets for each migration phase
- ⚡ Real-World Scenarios: Testing based on actual production workloads
- 🔄 Continuous Validation: Ongoing performance monitoring throughout migration
- 📈 Regression Prevention: Automated detection of performance regressions
- 🎛️ Multi-Dimensional Analysis: Performance, scalability, reliability, and resource efficiency
Testing Architecture Overview
# Performance Testing Framework Architecture
DSPEx.Performance.Framework
├── DSPEx.Performance.Baseline # Foundation infrastructure baselines
├── DSPEx.Performance.Benchmarks # Comprehensive benchmark suite
├── DSPEx.Performance.Scenarios # Real-world testing scenarios
├── DSPEx.Performance.Monitoring # Continuous performance monitoring
├── DSPEx.Performance.Analysis # Performance data analysis
├── DSPEx.Performance.Validation # Automated validation and reporting
└── DSPEx.Performance.Optimization # Performance optimization recommendations
Comprehensive Benchmark Categories
1. Core Infrastructure Benchmarks
1.1 Agent Registration and Discovery
defmodule DSPEx.Performance.Benchmarks.AgentRegistration do
@moduledoc """
Benchmarks for agent registration and discovery performance
"""
use DSPEx.Performance.BenchmarkSuite
@benchmark_scenarios [
{:single_agent_registration, %{agents: 1, iterations: 1000}},
{:bulk_agent_registration, %{agents: 100, iterations: 10}},
{:concurrent_registration, %{agents: 50, concurrency: 10}},
{:discovery_queries, %{registered_agents: 1000, queries: 500}},
{:capability_matching, %{agents: 500, capabilities: 20}},
{:cluster_discovery, %{nodes: 10, agents_per_node: 100}}
]
def benchmark_single_agent_registration(config) do
agent_configs = generate_agent_configs(config.agents)
measure_operation("single_agent_registration", config.iterations) do
Enum.each(agent_configs, fn agent_config ->
{:ok, agent_pid} = DSPEx.Agents.TestAgent.start_link(agent_config)
# Measure registration time
start_time = System.monotonic_time(:microsecond)
{:ok, registration_info} = DSPEx.Foundation.Bridge.register_agent(agent_pid)
end_time = System.monotonic_time(:microsecond)
registration_time = end_time - start_time
# Cleanup
GenServer.stop(agent_pid)
registration_time
end)
end
end
def benchmark_discovery_queries(config) do
# Pre-register agents
agents = setup_registered_agents(config.registered_agents)
discovery_queries = [
{:capability_query, :model_management},
{:resource_query, %{min_memory: 0.5, min_cpu: 0.3}},
{:health_query, :healthy},
{:geographic_query, :us_east},
{:composite_query, %{capability: :optimization, health: :healthy, resources: %{memory: 0.7}}}
]
measure_operation("discovery_queries", config.queries) do
query = Enum.random(discovery_queries)
start_time = System.monotonic_time(:microsecond)
{:ok, discovered_agents} = execute_discovery_query(query)
end_time = System.monotonic_time(:microsecond)
discovery_time = end_time - start_time
%{
query_time: discovery_time,
results_count: length(discovered_agents),
query_type: elem(query, 0)
}
end
end
def benchmark_cluster_discovery(config) do
# Setup multi-node test environment
nodes = setup_test_cluster(config.nodes, config.agents_per_node)
measure_operation("cluster_discovery", 100) do
start_time = System.monotonic_time(:microsecond)
{:ok, cluster_topology} = DSPEx.Clustering.Agents.NodeDiscovery.discover_cluster()
end_time = System.monotonic_time(:microsecond)
discovery_time = end_time - start_time
%{
discovery_time: discovery_time,
nodes_discovered: length(cluster_topology.nodes),
agents_discovered: count_discovered_agents(cluster_topology),
topology_accuracy: validate_topology_accuracy(cluster_topology, nodes)
}
end
end
end
Performance Targets:
Operation | Foundation Baseline | Phase 1 Target | Phase 2 Target | Phase 3 Target |
---|---|---|---|---|
Single Agent Registration | 5-10ms | 3-8ms | 2-6ms | 1-4ms |
Bulk Registration (100 agents) | 500ms-1s | 400-800ms | 300-600ms | 200-400ms |
Discovery Query | 10-30ms | 8-25ms | 5-20ms | 2-15ms |
Cluster Discovery | 1-5s | 800ms-4s | 500ms-3s | 200ms-2s |
1.2 Cognitive Variables Performance
defmodule DSPEx.Performance.Benchmarks.CognitiveVariables do
@moduledoc """
Comprehensive benchmarks for Cognitive Variables performance
"""
use DSPEx.Performance.BenchmarkSuite
@variable_types [
{:cognitive_float, DSPEx.Variables.CognitiveFloat},
{:cognitive_choice, DSPEx.Variables.CognitiveChoice},
{:cognitive_agent_team, DSPEx.Variables.CognitiveAgentTeam}
]
def benchmark_variable_creation(config) do
variable_configs = generate_variable_configs(config.variable_count)
measure_operation("variable_creation", config.iterations) do
Enum.map(variable_configs, fn {type, config} ->
start_time = System.monotonic_time(:microsecond)
{:ok, variable_pid} = create_variable(type, config)
end_time = System.monotonic_time(:microsecond)
creation_time = end_time - start_time
# Cleanup
GenServer.stop(variable_pid)
%{type: type, creation_time: creation_time}
end)
end
end
def benchmark_value_updates(config) do
# Pre-create variables
variables = setup_test_variables(config.variable_count)
measure_operation("value_updates", config.updates_per_variable) do
variable = Enum.random(variables)
new_value = generate_random_value(variable.type)
start_time = System.monotonic_time(:microsecond)
:ok = Jido.Signal.send(variable.pid, {:change_value, new_value, %{requester: :benchmark}})
# Wait for confirmation
receive do
{:variable_updated, ^variable, _old_value, ^new_value} ->
end_time = System.monotonic_time(:microsecond)
end_time - start_time
after 5000 ->
{:error, :timeout}
end
end
end
def benchmark_coordination_performance(config) do
# Setup coordinated variables with affected agents
coordination_setup = setup_coordination_scenario(config)
measure_operation("coordination_performance", config.coordination_events) do
scenario = Enum.random(coordination_setup.scenarios)
start_time = System.monotonic_time(:microsecond)
coordination_result = execute_coordination_scenario(scenario)
end_time = System.monotonic_time(:microsecond)
coordination_time = end_time - start_time
%{
coordination_time: coordination_time,
scenario_type: scenario.type,
affected_agents: length(scenario.affected_agents),
coordination_success: coordination_result.success,
consensus_time: coordination_result.consensus_time,
notification_time: coordination_result.notification_time
}
end
end
def benchmark_adaptation_performance(config) do
# Setup variables with performance feedback
adaptive_variables = setup_adaptive_variables(config.variable_count)
measure_operation("adaptation_performance", config.adaptation_cycles) do
variable = Enum.random(adaptive_variables)
feedback_data = generate_performance_feedback(variable)
start_time = System.monotonic_time(:microsecond)
:ok = Jido.Signal.send(variable.pid, {:performance_feedback, feedback_data})
# Wait for adaptation completion
receive do
{:adaptation_completed, ^variable, adaptation_result} ->
end_time = System.monotonic_time(:microsecond)
%{
adaptation_time: end_time - start_time,
value_changed: adaptation_result.value_changed,
adaptation_magnitude: adaptation_result.magnitude,
coordination_triggered: adaptation_result.coordination_triggered
}
after 10000 ->
{:error, :adaptation_timeout}
end
end
end
end
Performance Targets:
Operation | Traditional Parameters | Phase 1 Target | Phase 2 Target | Phase 3 Target |
---|---|---|---|---|
Variable Creation | N/A (static) | 5-15ms | 3-10ms | 1-7ms |
Value Update (Local) | <1ms | 100μs-2ms | 50μs-1.5ms | 25μs-1ms |
Value Update (Cluster) | N/A | 10-50ms | 5-30ms | 2-20ms |
Adaptation Cycle | N/A | 50-200ms | 30-150ms | 10-100ms |
Coordination Event | N/A | 20-100ms | 10-75ms | 5-50ms |
1.3 Agent-Native Clustering Performance
defmodule DSPEx.Performance.Benchmarks.AgentClustering do
@moduledoc """
Benchmarks for agent-native clustering performance vs traditional clustering
"""
use DSPEx.Performance.BenchmarkSuite
def benchmark_node_discovery_performance(config) do
# Setup test cluster with varying node counts
cluster_sizes = [5, 10, 25, 50, 100]
Enum.map(cluster_sizes, fn node_count ->
test_cluster = setup_test_cluster(node_count)
# Benchmark agent-native discovery
agent_discovery_time = measure_operation("agent_node_discovery") do
{:ok, agent_pid} = DSPEx.Clustering.Agents.NodeDiscovery.start_link([])
start_time = System.monotonic_time(:microsecond)
{:ok, topology} = DSPEx.Clustering.Agents.NodeDiscovery.discover_cluster_topology(agent_pid)
end_time = System.monotonic_time(:microsecond)
GenServer.stop(agent_pid)
%{
discovery_time: end_time - start_time,
nodes_discovered: length(topology.nodes),
accuracy: validate_discovery_accuracy(topology, test_cluster)
}
end
# Benchmark traditional service-based discovery (if available)
traditional_discovery_time = measure_operation("traditional_node_discovery") do
start_time = System.monotonic_time(:microsecond)
{:ok, nodes} = traditional_cluster_discovery(test_cluster)
end_time = System.monotonic_time(:microsecond)
%{
discovery_time: end_time - start_time,
nodes_discovered: length(nodes)
}
end
%{
cluster_size: node_count,
agent_native: agent_discovery_time,
traditional: traditional_discovery_time,
performance_ratio: calculate_performance_ratio(agent_discovery_time, traditional_discovery_time)
}
end)
end
def benchmark_load_balancing_performance(config) do
# Setup load balancing scenarios
load_scenarios = [
{:low_load, %{requests_per_second: 100, nodes: 5}},
{:medium_load, %{requests_per_second: 1000, nodes: 10}},
{:high_load, %{requests_per_second: 10000, nodes: 20}},
{:spike_load, %{requests_per_second: 50000, nodes: 50}}
]
Enum.map(load_scenarios, fn {scenario_name, scenario_config} ->
# Setup load balancing environment
load_balancer_setup = setup_load_balancer_environment(scenario_config)
# Benchmark agent-native load balancing
agent_lb_results = benchmark_agent_load_balancing(load_balancer_setup, scenario_config)
# Benchmark traditional load balancing
traditional_lb_results = benchmark_traditional_load_balancing(load_balancer_setup, scenario_config)
%{
scenario: scenario_name,
agent_native: agent_lb_results,
traditional: traditional_lb_results,
performance_comparison: compare_load_balancing_performance(agent_lb_results, traditional_lb_results)
}
end)
end
def benchmark_health_monitoring_performance(config) do
# Setup health monitoring scenarios
monitoring_scenarios = [
{:basic_health_checks, %{nodes: 10, check_interval: 30_000}},
{:comprehensive_monitoring, %{nodes: 25, check_interval: 10_000}},
{:predictive_monitoring, %{nodes: 50, check_interval: 5_000}},
{:large_scale_monitoring, %{nodes: 100, check_interval: 15_000}}
]
Enum.map(monitoring_scenarios, fn {scenario_name, scenario_config} ->
# Setup monitoring environment
monitoring_setup = setup_health_monitoring_environment(scenario_config)
# Benchmark agent-native health monitoring
agent_monitoring_results = measure_operation("agent_health_monitoring", 100) do
{:ok, health_agent} = DSPEx.Clustering.Agents.HealthMonitor.start_link(scenario_config)
start_time = System.monotonic_time(:microsecond)
{:ok, health_results} = DSPEx.Clustering.Agents.HealthMonitor.perform_cluster_health_check(health_agent)
end_time = System.monotonic_time(:microsecond)
GenServer.stop(health_agent)
%{
monitoring_time: end_time - start_time,
nodes_checked: length(health_results),
health_accuracy: validate_health_accuracy(health_results, monitoring_setup),
anomalies_detected: count_anomalies(health_results),
predictive_insights: count_predictive_insights(health_results)
}
end
# Benchmark traditional health monitoring
traditional_monitoring_results = measure_operation("traditional_health_monitoring", 100) do
start_time = System.monotonic_time(:microsecond)
{:ok, health_status} = traditional_health_monitoring(monitoring_setup)
end_time = System.monotonic_time(:microsecond)
%{
monitoring_time: end_time - start_time,
nodes_checked: length(health_status)
}
end
%{
scenario: scenario_name,
agent_native: agent_monitoring_results,
traditional: traditional_monitoring_results,
performance_improvement: calculate_monitoring_improvement(agent_monitoring_results, traditional_monitoring_results)
}
end)
end
end
Performance Targets:
Clustering Operation | Traditional Service | Agent-Native Target | Improvement Target |
---|---|---|---|
Node Discovery (10 nodes) | 500ms-2s | 100ms-500ms | 3-5x faster |
Load Balancing Decision | 5-20ms | 1-5ms | 4-5x faster |
Health Check (per node) | 100ms-1s | 50ms-300ms | 2-3x faster |
Failure Detection | 30s-2min | 10s-30s | 3-4x faster |
Cluster Coordination | 1s-10s | 200ms-2s | 5x faster |
2. End-to-End ML Workflow Benchmarks
2.1 DSPEx Program Performance
defmodule DSPEx.Performance.Benchmarks.MLWorkflows do
@moduledoc """
End-to-end benchmarks for ML workflows using Cognitive Variables
"""
use DSPEx.Performance.BenchmarkSuite
def benchmark_program_creation_and_optimization(config) do
# Test various program complexities
program_complexities = [
{:simple, %{variables: 3, agents: 2, constraints: 1}},
{:moderate, %{variables: 8, agents: 5, constraints: 3}},
{:complex, %{variables: 15, agents: 10, constraints: 7}},
{:enterprise, %{variables: 30, agents: 20, constraints: 15}}
]
Enum.map(program_complexities, fn {complexity, config} ->
# Benchmark program creation
creation_time = measure_operation("program_creation") do
signature = generate_ml_signature(config)
start_time = System.monotonic_time(:microsecond)
{:ok, program} = DSPEx.Program.new(signature, [
cognitive_variables_enabled: true,
agent_coordination: true,
foundation_integration: true
])
end_time = System.monotonic_time(:microsecond)
creation_time = end_time - start_time
# Cleanup
DSPEx.Program.cleanup(program)
creation_time
end
# Benchmark program optimization
optimization_time = measure_operation("program_optimization") do
signature = generate_ml_signature(config)
{:ok, program} = DSPEx.Program.new(signature, [cognitive_variables_enabled: true])
training_data = generate_training_data(config.complexity)
start_time = System.monotonic_time(:microsecond)
{:ok, optimization_result} = DSPEx.Program.optimize(program, training_data, [
max_iterations: 10,
optimization_strategy: :cognitive_variables
])
end_time = System.monotonic_time(:microsecond)
optimization_time = end_time - start_time
# Cleanup
DSPEx.Program.cleanup(program)
%{
optimization_time: optimization_time,
iterations_completed: optimization_result.iterations,
final_performance: optimization_result.performance,
variables_adapted: optimization_result.variables_adapted
}
end
%{
complexity: complexity,
creation_time: creation_time,
optimization_results: optimization_time
}
end)
end
def benchmark_cognitive_vs_traditional_optimization(config) do
# Compare cognitive variables vs traditional parameter optimization
optimization_scenarios = [
{:hyperparameter_tuning, generate_hyperparameter_scenario()},
{:model_selection, generate_model_selection_scenario()},
{:architecture_optimization, generate_architecture_scenario()},
{:resource_optimization, generate_resource_scenario()}
]
Enum.map(optimization_scenarios, fn {scenario_name, scenario_config} ->
# Benchmark cognitive variables approach
cognitive_results = measure_operation("cognitive_optimization", 5) do
{:ok, program} = create_cognitive_program(scenario_config)
training_data = scenario_config.training_data
start_time = System.monotonic_time(:microsecond)
{:ok, result} = DSPEx.Program.optimize(program, training_data, [
strategy: :cognitive_variables,
max_iterations: 20
])
end_time = System.monotonic_time(:microsecond)
DSPEx.Program.cleanup(program)
%{
optimization_time: end_time - start_time,
final_performance: result.performance,
iterations: result.iterations,
convergence_speed: result.convergence_metrics
}
end
# Benchmark traditional optimization approach
traditional_results = measure_operation("traditional_optimization", 5) do
traditional_optimizer = create_traditional_optimizer(scenario_config)
training_data = scenario_config.training_data
start_time = System.monotonic_time(:microsecond)
{:ok, result} = TraditionalOptimizer.optimize(traditional_optimizer, training_data, [
strategy: :grid_search, # or :random_search, :bayesian
max_iterations: 20
])
end_time = System.monotonic_time(:microsecond)
%{
optimization_time: end_time - start_time,
final_performance: result.performance,
iterations: result.iterations
}
end
%{
scenario: scenario_name,
cognitive_variables: cognitive_results,
traditional: traditional_results,
performance_comparison: %{
speed_improvement: cognitive_results.optimization_time / traditional_results.optimization_time,
quality_improvement: cognitive_results.final_performance - traditional_results.final_performance,
convergence_improvement: analyze_convergence_improvement(cognitive_results, traditional_results)
}
}
end)
end
end
ML Workflow Performance Targets:
Workflow Operation | Traditional Approach | Cognitive Variables Target | Improvement Target |
---|---|---|---|
Program Creation | N/A (static) | 10-100ms | N/A |
Parameter Update | 1-5ms | 100μs-2ms | 2-10x faster |
Optimization Iteration | 1-10s | 500ms-5s | 2-3x faster |
Convergence Speed | 50-200 iterations | 20-80 iterations | 2-3x faster |
Adaptation Time | N/A (manual) | 10-500ms | Automatic |
3. Scalability and Stress Testing
3.1 Large-Scale System Benchmarks
defmodule DSPEx.Performance.Benchmarks.Scalability do
@moduledoc """
Large-scale system benchmarks for validating scalability
"""
use DSPEx.Performance.BenchmarkSuite
def benchmark_large_scale_agent_coordination(config) do
# Test coordination with varying numbers of agents
agent_scales = [100, 500, 1000, 5000, 10000]
Enum.map(agent_scales, fn agent_count ->
# Setup large-scale agent environment
agent_environment = setup_large_scale_environment(agent_count)
coordination_results = measure_operation("large_scale_coordination", 10) do
coordination_scenarios = [
{:consensus_coordination, %{participants: agent_count / 10}},
{:broadcast_coordination, %{targets: agent_count / 5}},
{:hierarchical_coordination, %{levels: 3, agents_per_level: agent_count / 3}}
]
Enum.map(coordination_scenarios, fn {scenario_type, scenario_config} ->
start_time = System.monotonic_time(:microsecond)
coordination_result = execute_large_scale_coordination(scenario_type, scenario_config, agent_environment)
end_time = System.monotonic_time(:microsecond)
%{
scenario: scenario_type,
coordination_time: end_time - start_time,
success_rate: coordination_result.success_rate,
agent_participation: coordination_result.participation_rate,
network_overhead: coordination_result.network_metrics
}
end)
end
%{
agent_count: agent_count,
coordination_results: coordination_results,
system_resource_usage: measure_system_resources(),
scalability_metrics: calculate_scalability_metrics(coordination_results, agent_count)
}
end)
end
def benchmark_distributed_cluster_performance(config) do
# Test performance across multiple nodes
cluster_configurations = [
{:small_cluster, %{nodes: 3, agents_per_node: 100}},
{:medium_cluster, %{nodes: 10, agents_per_node: 200}},
{:large_cluster, %{nodes: 25, agents_per_node: 300}},
{:enterprise_cluster, %{nodes: 50, agents_per_node: 500}}
]
Enum.map(cluster_configurations, fn {cluster_type, cluster_config} ->
# Setup distributed cluster
cluster = setup_distributed_cluster(cluster_config)
cluster_performance = measure_operation("distributed_performance", 20) do
# Test various distributed operations
distributed_operations = [
{:cross_node_discovery, %{}},
{:cluster_wide_consensus, %{proposal: generate_test_proposal()}},
{:distributed_load_balancing, %{requests: 1000}},
{:cross_cluster_coordination, %{coordination_type: :resource_allocation}}
]
Enum.map(distributed_operations, fn {operation_type, operation_config} ->
start_time = System.monotonic_time(:microsecond)
operation_result = execute_distributed_operation(operation_type, operation_config, cluster)
end_time = System.monotonic_time(:microsecond)
%{
operation: operation_type,
execution_time: end_time - start_time,
success_rate: operation_result.success_rate,
network_latency: operation_result.network_metrics.average_latency,
resource_efficiency: operation_result.resource_metrics
}
end)
end
%{
cluster_type: cluster_type,
cluster_config: cluster_config,
performance_results: cluster_performance,
resource_utilization: measure_cluster_resources(cluster),
scalability_analysis: analyze_cluster_scalability(cluster_performance, cluster_config)
}
end)
end
end
Scalability Targets:
System Scale | Agent Count | Coordination Time | Success Rate | Resource Efficiency |
---|---|---|---|---|
Small Scale | 100-500 | <100ms | >99% | >80% |
Medium Scale | 500-2000 | <500ms | >98% | >75% |
Large Scale | 2000-10000 | <2s | >95% | >70% |
Enterprise Scale | 10000+ | <5s | >90% | >65% |
4. Resource Efficiency Benchmarks
4.1 Memory and CPU Usage Analysis
defmodule DSPEx.Performance.Benchmarks.ResourceEfficiency do
@moduledoc """
Comprehensive resource efficiency benchmarks
"""
use DSPEx.Performance.BenchmarkSuite
def benchmark_memory_efficiency(config) do
# Test memory usage across different scenarios
memory_scenarios = [
{:baseline, %{agents: 0, variables: 0}},
{:small_system, %{agents: 10, variables: 20}},
{:medium_system, %{agents: 50, variables: 100}},
{:large_system, %{agents: 200, variables: 500}},
{:enterprise_system, %{agents: 1000, variables: 2000}}
]
Enum.map(memory_scenarios, fn {scenario_name, scenario_config} ->
# Measure baseline memory
baseline_memory = measure_system_memory()
# Setup scenario
system_components = setup_memory_test_scenario(scenario_config)
# Measure memory after setup
setup_memory = measure_system_memory()
# Run memory stress operations
stress_results = run_memory_stress_operations(system_components, 1000)
# Measure peak memory
peak_memory = measure_system_memory()
# Cleanup and measure final memory
cleanup_system_components(system_components)
final_memory = measure_system_memory()
%{
scenario: scenario_name,
baseline_memory: baseline_memory,
setup_memory: setup_memory,
peak_memory: peak_memory,
final_memory: final_memory,
memory_efficiency: %{
memory_per_agent: calculate_memory_per_agent(setup_memory, baseline_memory, scenario_config.agents),
memory_per_variable: calculate_memory_per_variable(setup_memory, baseline_memory, scenario_config.variables),
memory_leak_rate: calculate_memory_leak_rate(setup_memory, final_memory),
peak_memory_multiplier: peak_memory / setup_memory
},
stress_results: stress_results
}
end)
end
def benchmark_cpu_efficiency(config) do
# Test CPU usage patterns
cpu_scenarios = [
{:idle_system, %{load_level: 0.0}},
{:light_load, %{load_level: 0.2}},
{:moderate_load, %{load_level: 0.5}},
{:heavy_load, %{load_level: 0.8}},
{:maximum_load, %{load_level: 1.0}}
]
Enum.map(cpu_scenarios, fn {scenario_name, scenario_config} ->
# Setup CPU monitoring
cpu_monitor = start_cpu_monitoring()
# Setup system under test
system_setup = setup_cpu_test_scenario(scenario_config)
# Run CPU load scenario
load_results = run_cpu_load_scenario(system_setup, scenario_config.load_level, 60_000) # 60 seconds
# Stop monitoring and get results
cpu_metrics = stop_cpu_monitoring(cpu_monitor)
# Cleanup
cleanup_cpu_test_scenario(system_setup)
%{
scenario: scenario_name,
load_level: scenario_config.load_level,
cpu_metrics: %{
average_cpu_usage: cpu_metrics.average_usage,
peak_cpu_usage: cpu_metrics.peak_usage,
cpu_efficiency: cpu_metrics.efficiency_score,
context_switches: cpu_metrics.context_switches,
scheduler_utilization: cpu_metrics.scheduler_utilization
},
performance_under_load: load_results,
resource_optimization: analyze_cpu_optimization_opportunities(cpu_metrics, load_results)
}
end)
end
end
Resource Efficiency Targets:
Resource Metric | Current Baseline | Phase 1 Target | Phase 2 Target | Phase 3 Target |
---|---|---|---|---|
Memory per Agent | 2-5MB | 1.5-4MB | 1-3MB | 0.5-2MB |
Memory per Variable | N/A | 100-500KB | 50-300KB | 25-200KB |
CPU Usage (Idle) | 1-3% | 0.5-2% | 0.3-1.5% | 0.1-1% |
CPU Usage (Load) | 60-80% | 50-70% | 40-60% | 30-50% |
Memory Leak Rate | <1MB/hour | <500KB/hour | <200KB/hour | <100KB/hour |
Automated Performance Monitoring
Continuous Performance Monitoring Framework
defmodule DSPEx.Performance.Monitoring do
@moduledoc """
Continuous performance monitoring and alerting system
"""
use GenServer
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(opts) do
monitoring_config = %{
monitoring_interval: Keyword.get(opts, :monitoring_interval, 30_000),
performance_thresholds: initialize_performance_thresholds(opts),
baseline_metrics: load_baseline_metrics(),
alert_handlers: initialize_alert_handlers(opts),
metric_history: [],
regression_detection: initialize_regression_detection(opts)
}
# Start periodic monitoring
schedule_performance_monitoring(monitoring_config.monitoring_interval)
{:ok, monitoring_config}
end
def handle_info(:perform_monitoring, state) do
# Collect current performance metrics
current_metrics = collect_performance_metrics()
# Compare with baselines and thresholds
performance_analysis = analyze_performance_metrics(current_metrics, state)
# Check for regressions
regression_analysis = detect_performance_regressions(current_metrics, state.metric_history)
# Trigger alerts if necessary
alert_results = process_performance_alerts(performance_analysis, regression_analysis, state)
# Update metric history
updated_history = update_metric_history(current_metrics, state.metric_history)
# Generate performance reports
generate_performance_report(current_metrics, performance_analysis, regression_analysis)
# Schedule next monitoring cycle
schedule_performance_monitoring(state.monitoring_interval)
updated_state = %{state |
metric_history: updated_history,
last_monitoring: DateTime.utc_now()
}
{:noreply, updated_state}
end
defp collect_performance_metrics do
%{
timestamp: DateTime.utc_now(),
# System metrics
system: %{
memory_usage: get_system_memory_usage(),
cpu_usage: get_system_cpu_usage(),
disk_usage: get_system_disk_usage(),
network_usage: get_system_network_usage()
},
# Agent metrics
agents: %{
total_agents: count_active_agents(),
agent_performance: get_agent_performance_metrics(),
coordination_metrics: get_coordination_metrics(),
failure_rates: get_agent_failure_rates()
},
# Variable metrics
variables: %{
total_variables: count_active_variables(),
adaptation_rates: get_variable_adaptation_rates(),
coordination_success_rates: get_variable_coordination_success_rates(),
performance_improvements: get_variable_performance_improvements()
},
# Clustering metrics
clustering: %{
discovery_performance: get_discovery_performance_metrics(),
load_balancing_efficiency: get_load_balancing_metrics(),
health_monitoring_accuracy: get_health_monitoring_metrics(),
cluster_stability: get_cluster_stability_metrics()
},
# Bridge metrics
bridge: %{
translation_overhead: get_bridge_translation_overhead(),
foundation_integration_health: get_foundation_integration_health(),
coordination_bridge_performance: get_coordination_bridge_performance()
},
# End-to-end metrics
workflows: %{
ml_workflow_performance: get_ml_workflow_metrics(),
optimization_effectiveness: get_optimization_effectiveness_metrics(),
user_experience_metrics: get_user_experience_metrics()
}
}
end
defp analyze_performance_metrics(current_metrics, state) do
baseline = state.baseline_metrics
thresholds = state.performance_thresholds
%{
performance_comparison: compare_with_baseline(current_metrics, baseline),
threshold_violations: check_threshold_violations(current_metrics, thresholds),
trend_analysis: analyze_performance_trends(current_metrics, state.metric_history),
efficiency_analysis: analyze_resource_efficiency(current_metrics),
optimization_opportunities: identify_optimization_opportunities(current_metrics, baseline)
}
end
defp detect_performance_regressions(current_metrics, metric_history) do
if length(metric_history) >= 10 do
# Statistical regression detection
recent_history = Enum.take(metric_history, 10)
%{
statistical_regressions: detect_statistical_regressions(current_metrics, recent_history),
trend_regressions: detect_trend_regressions(current_metrics, recent_history),
threshold_regressions: detect_threshold_regressions(current_metrics, recent_history),
severity_assessment: assess_regression_severity(current_metrics, recent_history)
}
else
%{insufficient_history: true}
end
end
end
Performance Alerting and Reporting
defmodule DSPEx.Performance.Alerting do
@moduledoc """
Performance alerting and automated response system
"""
def process_performance_alerts(performance_analysis, regression_analysis, config) do
alerts = []
# Check for critical performance issues
critical_alerts = check_critical_performance_alerts(performance_analysis)
alerts = alerts ++ critical_alerts
# Check for performance regressions
regression_alerts = check_regression_alerts(regression_analysis)
alerts = alerts ++ regression_alerts
# Check for resource efficiency issues
efficiency_alerts = check_efficiency_alerts(performance_analysis)
alerts = alerts ++ efficiency_alerts
# Process alerts based on severity
Enum.each(alerts, fn alert ->
case alert.severity do
:critical ->
handle_critical_alert(alert, config)
:warning ->
handle_warning_alert(alert, config)
:info ->
handle_info_alert(alert, config)
end
end)
%{
total_alerts: length(alerts),
critical_alerts: count_alerts_by_severity(alerts, :critical),
warning_alerts: count_alerts_by_severity(alerts, :warning),
info_alerts: count_alerts_by_severity(alerts, :info),
alert_details: alerts
}
end
defp handle_critical_alert(alert, config) do
# Immediate notification
notify_alert_handlers(alert, config.alert_handlers)
# Automated response if configured
if alert.auto_response_enabled do
execute_automated_response(alert)
end
# Escalation if needed
if alert.escalation_required do
escalate_alert(alert, config)
end
Logger.error("CRITICAL PERFORMANCE ALERT: #{alert.title} - #{alert.description}")
end
def generate_performance_report(metrics, analysis, regression_analysis) do
report = %{
timestamp: DateTime.utc_now(),
summary: generate_performance_summary(metrics, analysis),
detailed_metrics: metrics,
performance_analysis: analysis,
regression_analysis: regression_analysis,
recommendations: generate_optimization_recommendations(analysis),
trend_projections: generate_trend_projections(metrics, analysis)
}
# Store report for historical analysis
store_performance_report(report)
# Generate visualizations if configured
if performance_visualization_enabled?() do
generate_performance_visualizations(report)
end
report
end
end
Performance Validation Framework
Automated Performance Testing Pipeline
defmodule DSPEx.Performance.ValidationPipeline do
@moduledoc """
Automated performance validation pipeline for CI/CD integration
"""
def run_performance_validation(validation_config) do
validation_start_time = DateTime.utc_now()
validation_results = %{
infrastructure_benchmarks: run_infrastructure_benchmarks(validation_config),
cognitive_variables_benchmarks: run_cognitive_variables_benchmarks(validation_config),
clustering_benchmarks: run_clustering_benchmarks(validation_config),
ml_workflow_benchmarks: run_ml_workflow_benchmarks(validation_config),
scalability_tests: run_scalability_tests(validation_config),
resource_efficiency_tests: run_resource_efficiency_tests(validation_config),
regression_tests: run_regression_tests(validation_config)
}
validation_end_time = DateTime.utc_now()
validation_duration = DateTime.diff(validation_end_time, validation_start_time, :millisecond)
# Analyze validation results
validation_analysis = analyze_validation_results(validation_results)
# Generate validation report
validation_report = generate_validation_report(validation_results, validation_analysis, validation_duration)
# Determine overall validation status
validation_status = determine_validation_status(validation_analysis)
%{
status: validation_status,
duration: validation_duration,
results: validation_results,
analysis: validation_analysis,
report: validation_report,
recommendations: generate_validation_recommendations(validation_analysis)
}
end
defp determine_validation_status(analysis) do
critical_failures = count_critical_failures(analysis)
warning_failures = count_warning_failures(analysis)
cond do
critical_failures > 0 ->
:failed
warning_failures > 5 ->
:warning
true ->
:passed
end
end
def generate_validation_recommendations(analysis) do
recommendations = []
# Performance improvement recommendations
if analysis.performance_regressions > 0 do
recommendations = recommendations ++ generate_performance_recommendations(analysis)
end
# Resource optimization recommendations
if analysis.resource_efficiency < 0.8 do
recommendations = recommendations ++ generate_resource_recommendations(analysis)
end
# Scalability recommendations
if analysis.scalability_issues > 0 do
recommendations = recommendations ++ generate_scalability_recommendations(analysis)
end
recommendations
end
end
Integration with CI/CD Pipeline
GitHub Actions Performance Testing
# .github/workflows/performance-testing.yml
name: Performance Testing and Validation
on:
pull_request:
branches: [ main, develop ]
push:
branches: [ main ]
schedule:
# Daily performance testing
- cron: '0 2 * * *'
jobs:
performance-testing:
runs-on: ubuntu-latest
services:
postgres:
image: postgres:13
env:
POSTGRES_PASSWORD: postgres
options: >-
--health-cmd pg_isready
--health-interval 10s
--health-timeout 5s
--health-retries 5
steps:
- uses: actions/checkout@v3
- name: Set up Elixir
uses: erlef/setup-beam@v1
with:
elixir-version: '1.15.x'
otp-version: '26.x'
- name: Cache dependencies
uses: actions/cache@v3
with:
path: |
deps
_build
key: ${{ runner.os }}-mix-${{ hashFiles('**/mix.lock') }}
restore-keys: |
${{ runner.os }}-mix-
- name: Install dependencies
run: mix deps.get
- name: Compile project
run: mix compile --warnings-as-errors
- name: Run unit tests
run: mix test
- name: Run performance benchmarks
run: |
mix run -e "DSPEx.Performance.ValidationPipeline.run_ci_validation()"
- name: Generate performance report
run: |
mix run -e "DSPEx.Performance.Reporting.generate_ci_report()"
- name: Upload performance artifacts
uses: actions/upload-artifact@v3
with:
name: performance-reports
path: |
performance_reports/
benchmarks/
- name: Performance regression check
run: |
mix run -e "DSPEx.Performance.RegressionCheck.validate_against_baseline()"
- name: Comment performance results
if: github.event_name == 'pull_request'
uses: actions/github-script@v6
with:
script: |
const fs = require('fs');
const performanceReport = fs.readFileSync('performance_summary.md', 'utf8');
github.rest.issues.createComment({
issue_number: context.issue.number,
owner: context.repo.owner,
repo: context.repo.repo,
body: performanceReport
});
Conclusion
This comprehensive performance benchmarks framework provides:
- 🎯 Complete Validation: Comprehensive benchmarks covering all aspects of the hybrid Jido-MABEAM architecture
- 📊 Detailed Metrics: Extensive performance, scalability, and resource efficiency measurements
- 🔄 Continuous Monitoring: Automated performance monitoring with regression detection
- ⚡ Performance Targets: Clear, measurable targets for each migration phase
- 🚨 Automated Alerting: Intelligent alerting system for performance issues
- 📈 Trend Analysis: Historical performance analysis and trend projection
- 🎛️ CI/CD Integration: Seamless integration with development workflows
The framework ensures that the revolutionary agent-native platform delivers superior performance while maintaining reliability and efficiency throughout the migration process.
Performance Framework Completed: July 12, 2025
Status: Ready for Implementation
Confidence: High - comprehensive testing and validation framework