Variable Coordination Evolution: From Parameters to Cognitive Control Planes
Date: July 12, 2025
Status: Technical Specification
Scope: Revolutionary Variable System transformation for distributed cognitive orchestration
Context: Based on unified vision insights and advanced MABEAM patterns
Executive Summary
This document specifies the evolutionary transformation of ElixirML Variables from simple parameter optimization tools into universal cognitive control planes that coordinate entire distributed agent systems. Based on analysis of the unified vision documents and advanced MABEAM patterns in lib_old, this represents a paradigm shift where Variables become the primary coordination mechanism for multi-agent ML workflows.
Revolutionary Concept: Variables as Universal Coordinators
The Paradigm Shift
Traditional Variables: Simple parameter containers for optimization
# Old paradigm - variables as passive parameters
temperature = ElixirML.Variable.float(:temperature, range: {0.0, 2.0}, default: 0.7)
Cognitive Control Planes: Active coordination primitives that orchestrate agent teams
# New paradigm - variables as active coordinators
temperature = ElixirML.Variable.cognitive_float(:temperature,
range: {0.0, 2.0},
default: 0.7,
coordination_scope: :cluster,
adaptation_strategy: :performance_feedback,
agent_impact: [:llm_agents, :optimizer_agents],
real_time_tuning: true
)
Core Innovation: Variables Coordinate Agents
Variables transform from passive optimization targets to active coordination primitives that:
- Orchestrate Agent Behavior: Variables directly influence how agents operate and collaborate
- Enable Real-Time Adaptation: Variables change dynamically based on system performance feedback
- Coordinate Across Cluster: Variables synchronize behavior across distributed agent teams
- Optimize Multi-Agent Workflows: Variables optimize entire workflows, not just individual parameters
Cognitive Variable Architecture
Enhanced Variable Types
defmodule ElixirML.Variable.CognitiveTypes do
@moduledoc """
Cognitive variables that coordinate agent behavior in real-time
"""
# Cognitive Float - coordinates continuous parameters across agents
def cognitive_float(name, opts) do
%ElixirML.Variable.CognitiveFloat{
name: name,
range: opts[:range],
default: opts[:default],
current_value: opts[:default],
# Coordination features
coordination_scope: opts[:coordination_scope] || :local, # :local | :cluster | :global
affected_agents: opts[:agent_impact] || [],
adaptation_strategy: opts[:adaptation_strategy] || :static,
# Real-time features
performance_feedback: initialize_feedback_system(),
adaptation_history: [],
coordination_events: [],
# Distributed features
cluster_sync: opts[:cluster_sync] || false,
conflict_resolution: opts[:conflict_resolution] || :consensus,
# Telemetry
telemetry_prefix: [:elixir_ml, :variable, :cognitive],
last_updated: DateTime.utc_now()
}
end
# Cognitive Choice - coordinates categorical decisions across agents
def cognitive_choice(name, choices, opts) do
%ElixirML.Variable.CognitiveChoice{
name: name,
choices: choices,
current_choice: opts[:default] || List.first(choices),
# Agent coordination
agent_preferences: %{}, # Track which agents prefer which choices
consensus_threshold: opts[:consensus_threshold] || 0.7,
voting_strategy: opts[:voting_strategy] || :weighted,
# Adaptation features
choice_performance: initialize_choice_tracking(choices),
switch_frequency: opts[:switch_frequency] || :adaptive,
cooldown_period: opts[:cooldown_period] || 30_000, # ms
# Economic features
choice_costs: opts[:choice_costs] || %{},
budget_constraints: opts[:budget_constraints],
# Coordination state
coordination_scope: opts[:coordination_scope] || :local,
last_coordination: nil,
pending_votes: %{}
}
end
# Cognitive Composite - coordinates complex multi-variable decisions
def cognitive_composite(name, dependencies, opts) do
%ElixirML.Variable.CognitiveComposite{
name: name,
dependencies: dependencies,
computation_function: opts[:computation_function],
# Multi-agent coordination
dependency_agents: extract_dependency_agents(dependencies),
coordination_strategy: opts[:coordination_strategy] || :hierarchical,
computation_distribution: opts[:computation_distribution] || :centralized,
# Performance optimization
computation_cache: %{},
cache_invalidation_strategy: opts[:cache_invalidation] || :dependency_change,
distributed_computation: opts[:distributed_computation] || false,
# Real-time features
recomputation_triggers: opts[:recomputation_triggers] || [:dependency_change],
async_updates: opts[:async_updates] || false,
# Economic coordination
computation_costs: track_computation_costs(),
optimization_budget: opts[:optimization_budget]
}
end
# Revolutionary: Agent Selection Variable
def cognitive_agent_selection(name, agent_pool, opts) do
%ElixirML.Variable.CognitiveAgentSelection{
name: name,
agent_pool: agent_pool,
current_selection: opts[:default_selection] || [],
# Dynamic agent management
selection_strategy: opts[:selection_strategy] || :performance_based,
team_size: opts[:team_size] || {1, 5},
role_requirements: opts[:role_requirements] || [],
# Performance tracking
agent_performance_history: %{},
team_performance_history: [],
selection_optimization: true,
# Economic agent selection
agent_costs: %{},
budget_allocation: opts[:budget_allocation] || :equal,
cost_optimization: opts[:cost_optimization] || true,
# Real-time team adaptation
performance_thresholds: opts[:performance_thresholds] || %{
replace_threshold: 0.3,
add_agent_threshold: 0.8,
remove_agent_threshold: 0.95
},
adaptation_frequency: opts[:adaptation_frequency] || 60_000, # ms
# Coordination features
team_coordination_protocol: opts[:coordination_protocol] || :consensus,
inter_agent_communication: true,
conflict_resolution: opts[:conflict_resolution] || :democratic
}
end
end
Cognitive Variable Space
defmodule ElixirML.Variable.CognitiveSpace do
@moduledoc """
Enhanced Variable Space that coordinates cognitive variables across distributed agents
"""
use GenServer
require Logger
defstruct [
:id,
:variables, # Map of cognitive variables
:agent_registry, # Reference to agent registry
:coordination_engine, # Reference to MABEAM coordination
:performance_monitor, # Real-time performance tracking
:adaptation_engine, # Automatic adaptation system
:economic_coordinator, # Economic optimization
:cluster_sync, # Distributed synchronization
:telemetry_reporter, # Comprehensive monitoring
:started_at
]
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: opts[:name] || __MODULE__)
end
def init(opts) do
space_id = opts[:id] || generate_space_id()
# Initialize cognitive variable space
state = %__MODULE__{
id: space_id,
variables: %{},
agent_registry: opts[:agent_registry] || Foundation.MABEAM.Registry,
coordination_engine: opts[:coordination_engine] || Foundation.MABEAM.Coordination,
performance_monitor: initialize_performance_monitor(opts),
adaptation_engine: initialize_adaptation_engine(opts),
economic_coordinator: initialize_economic_coordinator(opts),
cluster_sync: initialize_cluster_sync(opts),
telemetry_reporter: initialize_telemetry_reporter(space_id),
started_at: DateTime.utc_now()
}
# Start real-time adaptation loop
:timer.send_interval(1000, :adaptation_cycle)
:timer.send_interval(5000, :performance_analysis)
:timer.send_interval(10000, :cluster_synchronization)
Logger.info("Started cognitive variable space: #{space_id}")
{:ok, state}
end
# Primary interface for adding cognitive variables
def add_cognitive_variable(space_pid, variable) do
GenServer.call(space_pid, {:add_cognitive_variable, variable})
end
# Real-time variable coordination
def coordinate_variable_change(space_pid, variable_name, new_value, coordination_opts \\ []) do
GenServer.call(space_pid, {:coordinate_change, variable_name, new_value, coordination_opts})
end
# Agent-driven variable updates
def agent_suggest_change(space_pid, agent_id, variable_name, suggested_value, rationale) do
GenServer.cast(space_pid, {:agent_suggestion, agent_id, variable_name, suggested_value, rationale})
end
# Performance feedback for adaptive variables
def report_performance_feedback(space_pid, performance_data) do
GenServer.cast(space_pid, {:performance_feedback, performance_data})
end
# Get current variable configuration for agents
def get_agent_configuration(space_pid, agent_id) do
GenServer.call(space_pid, {:get_agent_config, agent_id})
end
# GenServer implementation
def handle_call({:add_cognitive_variable, variable}, _from, state) do
case validate_cognitive_variable(variable) do
:ok ->
# Register variable with coordination systems
register_variable_with_systems(variable, state)
# Update state
new_variables = Map.put(state.variables, variable.name, variable)
new_state = %{state | variables: new_variables}
# Emit telemetry
emit_variable_telemetry(:added, variable, state)
{:reply, :ok, new_state}
{:error, reason} ->
{:reply, {:error, reason}, state}
end
end
def handle_call({:coordinate_change, variable_name, new_value, opts}, from, state) do
case Map.get(state.variables, variable_name) do
nil ->
{:reply, {:error, :variable_not_found}, state}
variable ->
# Start coordination process based on variable scope
coordination_spec = build_coordination_spec(variable, new_value, opts)
case coordinate_variable_change_internal(coordination_spec, state) do
{:ok, coordination_id} ->
# Store pending coordination
pending = %{
coordination_id: coordination_id,
variable_name: variable_name,
new_value: new_value,
from: from,
started_at: DateTime.utc_now()
}
# Don't reply immediately - coordination will reply when complete
{:noreply, store_pending_coordination(state, pending)}
{:error, reason} ->
{:reply, {:error, reason}, state}
end
end
end
def handle_call({:get_agent_config, agent_id}, _from, state) do
config = build_agent_configuration(agent_id, state.variables, state)
{:reply, {:ok, config}, state}
end
def handle_cast({:agent_suggestion, agent_id, variable_name, suggested_value, rationale}, state) do
# Process agent suggestion through economic/voting mechanism
case process_agent_suggestion(agent_id, variable_name, suggested_value, rationale, state) do
{:ok, new_state} ->
{:noreply, new_state}
{:error, reason} ->
Logger.warning("Agent suggestion rejected: #{inspect(reason)}")
{:noreply, state}
end
end
def handle_cast({:performance_feedback, performance_data}, state) do
# Update performance monitor
updated_monitor = update_performance_monitor(state.performance_monitor, performance_data)
# Trigger adaptation if needed
adaptation_triggers = analyze_adaptation_triggers(performance_data, state)
new_state = %{state | performance_monitor: updated_monitor}
|> process_adaptation_triggers(adaptation_triggers)
{:noreply, new_state}
end
# Real-time adaptation cycle
def handle_info(:adaptation_cycle, state) do
# Analyze current performance and adapt variables
new_state = run_adaptation_cycle(state)
{:noreply, new_state}
end
def handle_info(:performance_analysis, state) do
# Deep performance analysis and optimization recommendations
analysis_results = run_performance_analysis(state)
new_state = apply_performance_optimizations(state, analysis_results)
{:noreply, new_state}
end
def handle_info(:cluster_synchronization, state) do
# Synchronize variables across cluster nodes
new_state = synchronize_cluster_variables(state)
{:noreply, new_state}
end
# Handle coordination completion from MABEAM
def handle_info({:coordination_complete, coordination_id, result}, state) do
case get_pending_coordination(state, coordination_id) do
nil ->
Logger.warning("Received unknown coordination completion: #{coordination_id}")
{:noreply, state}
pending ->
# Apply variable change if coordination succeeded
new_state = case result do
{:ok, coordination_result} ->
apply_coordinated_variable_change(pending, coordination_result, state)
{:error, reason} ->
Logger.warning("Variable coordination failed: #{inspect(reason)}")
state
end
# Reply to original caller
GenServer.reply(pending.from, result)
# Remove pending coordination
final_state = remove_pending_coordination(new_state, coordination_id)
{:noreply, final_state}
end
end
# Private implementation
defp validate_cognitive_variable(variable) do
required_fields = [:name, :coordination_scope]
case Enum.find(required_fields, fn field -> not Map.has_key?(variable, field) end) do
nil -> :ok
missing_field -> {:error, {:missing_field, missing_field}}
end
end
defp register_variable_with_systems(variable, state) do
# Register with agent registry for capability indexing
if variable.coordination_scope in [:cluster, :global] do
Foundation.MABEAM.Registry.register_variable_capability(variable.name, variable.affected_agents)
end
# Register with economic coordinator if variable has costs
if Map.has_key?(variable, :choice_costs) or Map.has_key?(variable, :computation_costs) do
Foundation.MABEAM.Economics.register_variable_costs(variable.name, variable)
end
# Register with telemetry
:telemetry.execute([:elixir_ml, :variable, :cognitive, :registered], %{}, %{
variable_name: variable.name,
coordination_scope: variable.coordination_scope,
space_id: state.id
})
end
defp build_coordination_spec(variable, new_value, opts) do
affected_agents = get_affected_agents(variable)
%{
type: determine_coordination_type(variable),
participants: affected_agents,
proposal: %{
variable_name: variable.name,
current_value: variable.current_value,
proposed_value: new_value,
change_rationale: opts[:rationale]
},
coordination_scope: variable.coordination_scope,
timeout: opts[:timeout] || 30_000,
consensus_threshold: opts[:consensus_threshold] || variable.consensus_threshold || 0.7
}
end
defp coordinate_variable_change_internal(coordination_spec, state) do
Foundation.MABEAM.Coordination.coordinate(coordination_spec)
end
defp build_agent_configuration(agent_id, variables, state) do
# Build configuration map for specific agent
variables
|> Enum.filter(fn {_name, variable} ->
agent_id in variable.affected_agents or variable.coordination_scope == :global
end)
|> Enum.map(fn {name, variable} ->
{name, get_variable_value_for_agent(variable, agent_id, state)}
end)
|> Map.new()
end
defp get_variable_value_for_agent(variable, agent_id, state) do
# Get current value, potentially agent-specific
base_value = variable.current_value
# Apply agent-specific modifications if any
case Map.get(variable, :agent_specific_values) do
nil -> base_value
agent_values -> Map.get(agent_values, agent_id, base_value)
end
end
defp process_agent_suggestion(agent_id, variable_name, suggested_value, rationale, state) do
case Map.get(state.variables, variable_name) do
nil ->
{:error, :variable_not_found}
variable ->
# Process through economic/voting mechanism
case variable.voting_strategy do
:weighted ->
process_weighted_suggestion(agent_id, variable, suggested_value, rationale, state)
:auction ->
process_auction_suggestion(agent_id, variable, suggested_value, rationale, state)
:reputation ->
process_reputation_suggestion(agent_id, variable, suggested_value, rationale, state)
_ ->
process_simple_suggestion(agent_id, variable, suggested_value, rationale, state)
end
end
end
defp run_adaptation_cycle(state) do
# Analyze performance for each adaptive variable
adaptive_variables = filter_adaptive_variables(state.variables)
Enum.reduce(adaptive_variables, state, fn {name, variable}, acc_state ->
case should_adapt_variable?(variable, acc_state.performance_monitor) do
false ->
acc_state
true ->
new_value = calculate_adaptive_value(variable, acc_state.performance_monitor)
# Apply adaptation
updated_variable = %{variable |
current_value: new_value,
adaptation_history: [
%{
timestamp: DateTime.utc_now(),
old_value: variable.current_value,
new_value: new_value,
trigger: :performance_feedback
} | Enum.take(variable.adaptation_history, 99)
]
}
updated_variables = Map.put(acc_state.variables, name, updated_variable)
# Notify affected agents of change
notify_agents_of_change(updated_variable, acc_state)
%{acc_state | variables: updated_variables}
end
end)
end
defp filter_adaptive_variables(variables) do
Enum.filter(variables, fn {_name, variable} ->
variable.adaptation_strategy != :static
end)
end
defp should_adapt_variable?(variable, performance_monitor) do
case variable.adaptation_strategy do
:performance_feedback ->
has_performance_degradation?(variable, performance_monitor)
:cost_optimization ->
has_cost_optimization_opportunity?(variable, performance_monitor)
:load_balancing ->
has_load_imbalance?(variable, performance_monitor)
_ ->
false
end
end
defp calculate_adaptive_value(variable, performance_monitor) do
case variable.adaptation_strategy do
:performance_feedback ->
calculate_performance_optimal_value(variable, performance_monitor)
:cost_optimization ->
calculate_cost_optimal_value(variable, performance_monitor)
:load_balancing ->
calculate_load_balanced_value(variable, performance_monitor)
end
end
defp notify_agents_of_change(variable, state) do
Enum.each(variable.affected_agents, fn agent_id ->
case Foundation.MABEAM.Registry.lookup_agent(agent_id) do
{:ok, agent_info} ->
send(agent_info.pid, {:variable_changed, variable.name, variable.current_value})
{:error, _} ->
Logger.warning("Could not notify agent #{agent_id} of variable change")
end
end)
end
defp initialize_performance_monitor(opts) do
%{
metrics_history: [],
current_performance: %{},
performance_targets: opts[:performance_targets] || %{},
alert_thresholds: opts[:alert_thresholds] || %{},
last_analysis: DateTime.utc_now()
}
end
defp initialize_adaptation_engine(opts) do
%{
adaptation_strategies: opts[:adaptation_strategies] || [:performance_feedback],
adaptation_frequency: opts[:adaptation_frequency] || 5000,
adaptation_history: [],
learning_rate: opts[:learning_rate] || 0.1,
exploration_rate: opts[:exploration_rate] || 0.05
}
end
defp initialize_economic_coordinator(opts) do
%{
budget_allocations: %{},
cost_history: [],
optimization_targets: opts[:optimization_targets] || %{cost: :minimize},
auction_frequency: opts[:auction_frequency] || 60_000
}
end
defp initialize_cluster_sync(opts) do
if opts[:cluster_sync] do
%{
enabled: true,
sync_frequency: opts[:sync_frequency] || 10_000,
conflict_resolution: opts[:conflict_resolution] || :consensus,
cluster_nodes: [node()],
last_sync: DateTime.utc_now()
}
else
%{enabled: false}
end
end
defp initialize_telemetry_reporter(space_id) do
%{
space_id: space_id,
metrics_buffer: [],
reporting_frequency: 5000,
last_report: DateTime.utc_now()
}
end
defp generate_space_id do
:crypto.strong_rand_bytes(12) |> Base.encode16(case: :lower)
end
end
Revolutionary Use Cases
1. Adaptive Temperature Coordination
# Traditional approach
temperature = 0.7
# Cognitive approach - temperature adapts based on agent performance
cognitive_temp = ElixirML.Variable.cognitive_float(:temperature,
range: {0.0, 2.0},
default: 0.7,
coordination_scope: :cluster,
adaptation_strategy: :performance_feedback,
agent_impact: [:llm_agents],
performance_targets: %{accuracy: 0.85, latency: 1000},
real_time_tuning: true
)
# Temperature automatically adjusts based on:
# - Agent performance feedback
# - Cost constraints
# - Load balancing across agents
# - Quality requirements
2. Dynamic Agent Team Selection
# Revolutionary: Variable that selects and coordinates agent teams
team_variable = ElixirML.Variable.cognitive_agent_selection(:optimization_team,
agent_pool: [:coder_agents, :reviewer_agents, :optimizer_agents],
team_size: {2, 5},
selection_strategy: :performance_based,
budget_allocation: :cost_optimal,
performance_thresholds: %{
replace_threshold: 0.3,
add_agent_threshold: 0.8
},
coordination_protocol: :consensus
)
# Automatically manages:
# - Team composition based on task requirements
# - Agent performance monitoring and replacement
# - Cost optimization across team selection
# - Real-time team adaptation
3. Economic Model Selection
# Variable that coordinates model selection through economic mechanisms
model_selector = ElixirML.Variable.cognitive_choice(:llm_model,
["gpt-4", "claude-3", "llama-2"],
voting_strategy: :auction,
choice_costs: %{
"gpt-4" => 0.03,
"claude-3" => 0.025,
"llama-2" => 0.002
},
performance_weights: %{
accuracy: 0.4,
cost: 0.3,
latency: 0.3
},
budget_constraints: %{max_cost_per_request: 0.05},
adaptation_frequency: 60_000
)
# Automatically optimizes:
# - Model selection based on cost/performance trade-offs
# - Budget allocation across different models
# - Real-time switching based on demand
Integration with MABEAM Coordination
Cognitive Variables as Coordination Primitives
defmodule ElixirML.Variable.MABEAMIntegration do
@moduledoc """
Integration between cognitive variables and MABEAM coordination
"""
# Variables trigger multi-agent coordination
def coordinate_variable_across_agents(variable, new_value, agents) do
coordination_spec = %{
type: :variable_coordination,
participants: agents,
proposal: %{
variable: variable.name,
current_value: variable.current_value,
proposed_value: new_value,
expected_impact: calculate_agent_impact(variable, new_value, agents)
},
consensus_type: determine_consensus_type(variable),
timeout: variable.coordination_timeout || 30_000
}
Foundation.MABEAM.Coordination.coordinate(coordination_spec)
end
# Variables participate in economic agent coordination
def coordinate_through_auction(variable, change_request) do
auction_spec = %{
type: :variable_change_auction,
resource: variable.name,
change_proposal: change_request,
starting_price: calculate_change_cost(variable, change_request),
duration: 30_000,
participants: variable.affected_agents
}
Foundation.MABEAM.Economics.create_auction(auction_spec)
end
# Variables enable hierarchical agent coordination
def coordinate_hierarchical_variable_change(variable, new_value) do
# Create hierarchical coordination based on agent expertise
agent_hierarchy = build_agent_hierarchy(variable.affected_agents)
coordination_spec = %{
type: :hierarchical_variable_coordination,
hierarchy: agent_hierarchy,
proposal: %{
variable: variable.name,
new_value: new_value,
delegation_strategy: :expertise_based
},
consensus_threshold: 0.7
}
Foundation.MABEAM.Coordination.coordinate(coordination_spec)
end
end
Performance Optimization for Cognitive Variables
Real-Time Performance Monitoring
defmodule ElixirML.Variable.PerformanceMonitor do
@moduledoc """
Real-time performance monitoring for cognitive variables
"""
use GenServer
# Performance tracking
def track_variable_performance(variable_name, performance_data) do
GenServer.cast(__MODULE__, {:track_performance, variable_name, performance_data})
end
# Real-time adaptation triggers
def analyze_adaptation_opportunities(variables, performance_history) do
variables
|> Enum.map(fn {name, variable} ->
{name, analyze_variable_performance(variable, performance_history)}
end)
|> Enum.filter(fn {_name, analysis} ->
analysis.adaptation_score > 0.7
end)
end
# Performance prediction
def predict_performance_impact(variable, proposed_change) do
historical_data = get_variable_history(variable.name)
case train_performance_model(historical_data) do
{:ok, model} ->
predict_with_model(model, proposed_change)
{:error, :insufficient_data} ->
{:unknown, :insufficient_historical_data}
end
end
# Cost-performance optimization
def optimize_cost_performance_trade_off(variables, constraints) do
# Multi-objective optimization across all cognitive variables
optimization_problem = %{
variables: variables,
objectives: [:minimize_cost, :maximize_performance],
constraints: constraints
}
solve_multi_objective_optimization(optimization_problem)
end
end
Distributed Cognitive Variable Synchronization
Cluster-Wide Variable Coordination
defmodule ElixirML.Variable.ClusterSync do
@moduledoc """
Distributed synchronization of cognitive variables across cluster
"""
use GenServer
# Cross-cluster variable synchronization
def sync_variable_across_cluster(variable_name, new_value, sync_strategy \\ :consensus) do
cluster_nodes = get_cluster_nodes()
sync_spec = %{
variable: variable_name,
new_value: new_value,
nodes: cluster_nodes,
strategy: sync_strategy,
timeout: 10_000
}
case sync_strategy do
:consensus ->
sync_with_consensus(sync_spec)
:eventual_consistency ->
sync_with_eventual_consistency(sync_spec)
:strong_consistency ->
sync_with_strong_consistency(sync_spec)
end
end
# Conflict resolution for distributed variables
def resolve_variable_conflicts(conflicts) do
Enum.map(conflicts, fn conflict ->
case conflict.resolution_strategy do
:last_write_wins ->
resolve_with_timestamp(conflict)
:performance_based ->
resolve_with_performance_data(conflict)
:consensus ->
resolve_with_cluster_consensus(conflict)
{:custom, module, function} ->
apply(module, function, [conflict])
end
end)
end
end
Production Deployment Patterns
Cognitive Variable Telemetry
defmodule ElixirML.Variable.Telemetry do
@moduledoc """
Comprehensive telemetry for cognitive variables
"""
def setup_cognitive_variable_telemetry do
:telemetry.attach_many(
"cognitive-variables-telemetry",
[
[:elixir_ml, :variable, :cognitive, :registered],
[:elixir_ml, :variable, :cognitive, :changed],
[:elixir_ml, :variable, :cognitive, :adapted],
[:elixir_ml, :variable, :cognitive, :coordinated],
[:elixir_ml, :variable, :cognitive, :performance]
],
&handle_cognitive_variable_event/4,
nil
)
end
def handle_cognitive_variable_event(event, measurements, metadata, _config) do
case event do
[:elixir_ml, :variable, :cognitive, :changed] ->
record_variable_change(measurements, metadata)
[:elixir_ml, :variable, :cognitive, :adapted] ->
record_adaptation_event(measurements, metadata)
[:elixir_ml, :variable, :cognitive, :coordinated] ->
record_coordination_event(measurements, metadata)
[:elixir_ml, :variable, :cognitive, :performance] ->
record_performance_metrics(measurements, metadata)
end
end
defp record_variable_change(measurements, metadata) do
:prometheus_counter.inc(
:cognitive_variable_changes_total,
[variable: metadata.variable_name, scope: metadata.coordination_scope]
)
if measurements[:coordination_duration] do
:prometheus_histogram.observe(
:cognitive_variable_coordination_duration,
measurements.coordination_duration
)
end
end
defp record_adaptation_event(measurements, metadata) do
:prometheus_counter.inc(
:cognitive_variable_adaptations_total,
[strategy: metadata.adaptation_strategy]
)
:prometheus_gauge.set(
:cognitive_variable_adaptation_score,
[variable: metadata.variable_name],
measurements.adaptation_score
)
end
end
Migration Strategy
From Traditional Variables to Cognitive Variables
defmodule ElixirML.Variable.Migration do
@moduledoc """
Migration utilities for upgrading to cognitive variables
"""
# Upgrade traditional variable to cognitive
def upgrade_to_cognitive(traditional_variable, cognitive_opts \\ []) do
case traditional_variable do
%ElixirML.Variable.Float{} = var ->
ElixirML.Variable.CognitiveTypes.cognitive_float(
var.name,
cognitive_opts ++ [
range: var.range,
default: var.default
]
)
%ElixirML.Variable.Choice{} = var ->
ElixirML.Variable.CognitiveTypes.cognitive_choice(
var.name,
var.choices,
cognitive_opts ++ [
default: var.default
]
)
%ElixirML.Variable.Composite{} = var ->
ElixirML.Variable.CognitiveTypes.cognitive_composite(
var.name,
var.dependencies,
cognitive_opts ++ [
computation_function: var.computation_function
]
)
end
end
# Gradual migration strategy
def migrate_variable_space(traditional_space, migration_opts \\ []) do
# Create new cognitive space
cognitive_space = ElixirML.Variable.CognitiveSpace.start_link(migration_opts)
# Migrate variables one by one
traditional_space
|> ElixirML.Variable.Space.list_variables()
|> Enum.map(fn var ->
cognitive_var = upgrade_to_cognitive(var, migration_opts[:cognitive_defaults] || [])
ElixirML.Variable.CognitiveSpace.add_cognitive_variable(cognitive_space, cognitive_var)
end)
cognitive_space
end
end
Conclusion
This Variable Coordination Evolution represents a revolutionary transformation from passive parameter optimization to active cognitive control planes that coordinate distributed agent teams. Key innovations include:
- Variables as Active Coordinators: Variables directly orchestrate agent behavior and collaboration
- Real-Time Adaptation: Variables change dynamically based on performance feedback
- Economic Coordination: Variables use auction and market mechanisms for optimization
- Distributed Synchronization: Variables coordinate across cluster nodes with conflict resolution
- Multi-Agent Integration: Deep integration with MABEAM for sophisticated coordination protocols
The cognitive variable system enables unprecedented capabilities in distributed ML workflows, transforming parameters from simple optimization targets into intelligent coordination primitives that enable revolutionary multi-agent ML applications.