Byzantine Consensus & Advanced Coordination - Technical Implementation Specification
Executive Summary
This document provides the comprehensive technical specification for implementing the event handlers in Foundation MABEAM’s advanced coordination algorithms. The current implementation has complete API structures but placeholder event handlers that need full Byzantine PBFT, weighted voting, and iterative refinement logic.
Current Implementation Status
✅ What’s Complete
- API Layer: All function signatures (
start_byzantine_consensus/3
,start_weighted_consensus/3
,start_iterative_consensus/3
) - Session Management: Initialization, configuration validation, session lifecycle
- Type System: Proper type specifications and integration with Foundation services
- Infrastructure: Process supervision, telemetry emission, error handling
❌ What’s Missing - Event Handler Logic
# Current placeholders in /lib/foundation/mabeam/coordination.ex
defp handle_byzantine_event(session, _event_type, _event_data, state) do
# TODO: Implement Byzantine consensus event handling
{:ok, session, state}
end
defp handle_weighted_event(session, _event_type, _event_data, state) do
# TODO: Implement weighted consensus event handling
{:ok, session, state}
end
defp handle_iterative_event(session, _event_type, _event_data, state) do
# TODO: Implement iterative consensus event handling
{:ok, session, state}
end
Part 1: Byzantine Fault Tolerant (PBFT) Consensus Implementation
1.1 Technical Requirements
Core PBFT Algorithm Components:
- Three-Phase Protocol: Pre-prepare, Prepare, Commit
- View Changes: Leader failure detection and new leader election
- Message Authentication: Ensure message integrity and authenticity
- Fault Tolerance: Handle up to
f = (n-1)/3
Byzantine failures - Safety: Never commit conflicting values
- Liveness: Eventually make progress under favorable conditions
Performance Requirements:
- Support 4-100 agents (minimum 4 for
f=1
fault tolerance) - Sub-second consensus for simple proposals
- Memory-efficient message storage with cleanup
- Graceful handling of network partitions
1.2 State Structure Design
# Enhanced byzantine_state for session.state
%{
# PBFT Core State
view_number: non_neg_integer(), # Current view number
sequence_number: non_neg_integer(), # Current sequence number
primary: agent_id(), # Current primary agent
phase: :pre_prepare | :prepare | :commit | :decided | :view_change,
# Current Proposal Processing
current_proposal: term(), # Proposal being processed
proposal_digest: binary(), # Hash of current proposal
# Message Storage
pre_prepare_messages: %{sequence_number() => message()},
prepare_messages: %{agent_id() => %{sequence_number() => message()}},
commit_messages: %{agent_id() => %{sequence_number() => message()}},
view_change_messages: %{agent_id() => message()},
new_view_messages: %{agent_id() => message()},
# Fault Tolerance Configuration
n: pos_integer(), # Total number of agents
f: non_neg_integer(), # Maximum Byzantine failures
commit_threshold: pos_integer(), # 2f + 1 threshold
# Timing and Timeouts
view_change_timeout: pos_integer(), # Timeout for view changes
last_activity: DateTime.t(), # Track liveness
# Decision State
decided_value: term() | nil, # Final decided value
decision_proof: [message()] | nil, # Proof of decision
# Agent Management
participants: [agent_id()], # All participating agents
suspected_faulty: MapSet.t(agent_id()), # Agents suspected of Byzantine behavior
# Message Authentication
message_log: [message()], # Complete message history
authenticated_agents: MapSet.t(agent_id()) # Agents with valid authentication
}
1.3 Message Format Specification
@type pbft_message :: %{
type: :pre_prepare | :prepare | :commit | :view_change | :new_view,
view: non_neg_integer(),
sequence: non_neg_integer(),
agent_id: agent_id(),
proposal: term(),
proposal_digest: binary(),
timestamp: DateTime.t(),
signature: binary() | nil, # For authentication
# Type-specific fields
committed_proposals: [proposal()] | nil, # For view-change messages
view_change_set: [message()] | nil # For new-view messages
}
1.4 Event Handler Implementation Plan
Phase 1: Core PBFT Message Processing
File: /lib/foundation/mabeam/coordination.ex
defp handle_byzantine_event(session, event_type, event_data, state) do
case event_type do
:pre_prepare -> handle_pbft_pre_prepare(session, event_data, state)
:prepare -> handle_pbft_prepare(session, event_data, state)
:commit -> handle_pbft_commit(session, event_data, state)
:view_change -> handle_pbft_view_change(session, event_data, state)
:new_view -> handle_pbft_new_view(session, event_data, state)
:timeout -> handle_pbft_timeout(session, event_data, state)
:proposal_submission -> handle_pbft_proposal_submission(session, event_data, state)
_ -> {:error, {:unknown_byzantine_event, event_type}}
end
end
Phase 2: Individual Event Handlers
Pre-Prepare Phase Implementation:
defp handle_pbft_pre_prepare(session, event_data, state) do
byzantine_state = session.state
message = event_data[:message]
# Validate pre-prepare message
case validate_pre_prepare_message(message, byzantine_state) do
{:ok, validated_message} ->
# Store pre-prepare message
updated_pre_prepares = Map.put(
byzantine_state.pre_prepare_messages,
validated_message.sequence,
validated_message
)
# Broadcast prepare message to all agents
prepare_message = create_prepare_message(validated_message, session)
broadcast_message(prepare_message, byzantine_state.participants)
# Update session state
updated_byzantine_state = %{
byzantine_state
| phase: :prepare,
current_proposal: validated_message.proposal,
proposal_digest: validated_message.proposal_digest,
pre_prepare_messages: updated_pre_prepares,
sequence_number: validated_message.sequence,
last_activity: DateTime.utc_now()
}
updated_session = %{session | state: updated_byzantine_state}
{:ok, updated_session, state}
{:error, reason} ->
Logger.warning("Invalid pre-prepare message: #{inspect(reason)}")
# Possibly trigger view change if primary is sending invalid messages
handle_byzantine_fault_detection(session, state, :invalid_pre_prepare)
end
end
Prepare Phase Implementation:
defp handle_pbft_prepare(session, event_data, state) do
byzantine_state = session.state
message = event_data[:message]
# Validate prepare message
case validate_prepare_message(message, byzantine_state) do
{:ok, validated_message} ->
# Store prepare message
agent_prepares = Map.get(byzantine_state.prepare_messages, message.agent_id, %{})
updated_agent_prepares = Map.put(agent_prepares, message.sequence, validated_message)
updated_prepare_messages = Map.put(
byzantine_state.prepare_messages,
message.agent_id,
updated_agent_prepares
)
# Check if we have enough prepare messages (2f + 1)
prepare_count = count_matching_prepares(
updated_prepare_messages,
message.sequence,
message.proposal_digest
)
if prepare_count >= byzantine_state.commit_threshold do
# Move to commit phase
commit_message = create_commit_message(validated_message, session)
broadcast_message(commit_message, byzantine_state.participants)
updated_byzantine_state = %{
byzantine_state
| phase: :commit,
prepare_messages: updated_prepare_messages,
last_activity: DateTime.utc_now()
}
else
# Still collecting prepare messages
updated_byzantine_state = %{
byzantine_state
| prepare_messages: updated_prepare_messages,
last_activity: DateTime.utc_now()
}
end
updated_session = %{session | state: updated_byzantine_state}
{:ok, updated_session, state}
{:error, reason} ->
Logger.warning("Invalid prepare message: #{inspect(reason)}")
{:ok, session, state}
end
end
1.5 Test-Driven Development Plan
Layer 1: Unit Tests for Message Validation
File: /test/foundation/mabeam/pbft_message_validation_test.exs
defmodule Foundation.MABEAM.PBFTMessageValidationTest do
use ExUnit.Case
describe "validate_pre_prepare_message/2" do
test "accepts valid pre-prepare from primary" do
# Test valid pre-prepare message structure
end
test "rejects pre-prepare from non-primary" do
# Test rejection of pre-prepare from backup agents
end
test "rejects pre-prepare with invalid sequence number" do
# Test sequence number validation
end
test "rejects pre-prepare with malformed proposal" do
# Test proposal format validation
end
end
describe "validate_prepare_message/2" do
# Similar comprehensive validation tests for prepare messages
end
describe "validate_commit_message/2" do
# Commit message validation tests
end
end
Layer 2: Integration Tests for PBFT Phases
File: /test/foundation/mabeam/pbft_consensus_test.exs
defmodule Foundation.MABEAM.PBFTConsensusTest do
use ExUnit.Case, async: false
describe "Byzantine consensus happy path" do
test "4 agents reach consensus with honest primary" do
# Test complete PBFT execution with 4 agents, f=1
end
test "7 agents reach consensus with honest primary" do
# Test scaling with 7 agents, f=2
end
end
describe "Byzantine fault scenarios" do
test "consensus despite silent primary failure" do
# Test view change when primary stops responding
end
test "consensus despite Byzantine primary" do
# Test view change when primary sends conflicting messages
end
test "handles up to f Byzantine agents" do
# Test maximum fault tolerance
end
end
describe "Performance and edge cases" do
test "handles concurrent proposals" do
# Test sequence number management
end
test "cleans up old messages" do
# Test memory management
end
end
end
Layer 3: Property-Based Testing
File: /test/foundation/mabeam/pbft_properties_test.exs
defmodule Foundation.MABEAM.PBFTPropertiesTest do
use ExUnit.Case
use StreamData
property "PBFT safety: never commits conflicting values" do
# Property test ensuring safety under all conditions
end
property "PBFT liveness: eventually makes progress" do
# Property test for liveness guarantees
end
property "Byzantine threshold: tolerates up to f failures" do
# Property test for fault tolerance limits
end
end
Part 2: Weighted Voting with Expertise Scoring
2.1 Technical Requirements
Weighted Voting Components:
- Dynamic Weight Calculation: Real-time expertise assessment
- Multi-Criteria Scoring: Accuracy, consistency, domain knowledge, past performance
- Adaptive Learning: Weight adjustment based on recent performance
- Early Consensus Detection: Stop voting when threshold reached
- Reputation System: Long-term agent performance tracking
Performance Requirements:
- Support 1-50 agents with different expertise levels
- Sub-100ms weight recalculation
- Persistent expertise scores across sessions
- Fair weight distribution (no single agent >50% unless warranted)
2.2 State Structure Design
# Enhanced weighted_state for session.state
%{
# Voting Configuration
proposal: term(), # The proposal being voted on
consensus_threshold: float(), # e.g., 0.6 for 60% weighted agreement
voting_deadline: DateTime.t(), # When voting closes
# Agent Weights and Expertise
agent_weights: %{agent_id() => float()}, # Current weight for each agent
baseline_weights: %{agent_id() => float()}, # Starting weights
expertise_history: %{agent_id() => [expertise_metric()]},
weight_adjustments: %{agent_id() => [weight_adjustment()]},
# Vote Collection
votes: %{agent_id() => vote_data()}, # Collected votes with metadata
weighted_total: float(), # Running weighted vote total
max_possible_weight: float(), # Sum of all agent weights
# Consensus State
consensus_reached: boolean(), # Whether threshold met
final_decision: term() | nil, # Final weighted decision
confidence_score: float(), # Confidence in the decision
# Dynamic Assessment
real_time_metrics: %{agent_id() => current_performance()},
assessment_strategy: :static | :dynamic | :adaptive,
last_weight_update: DateTime.t(),
# Fairness and Validation
weight_distribution_stats: %{ # Track weight concentration
gini_coefficient: float(), # Measure of inequality
max_individual_weight: float(), # Highest single agent weight
weight_entropy: float() # Diversity of weights
}
}
@type vote_data :: %{
vote: term(), # The actual vote value
weight: float(), # Agent's weight at vote time
confidence: float(), # Agent's confidence in their vote
reasoning: String.t() | nil, # Optional reasoning
timestamp: DateTime.t(), # When vote was cast
weighted_value: float() # weight * confidence * vote_numeric_value
}
@type expertise_metric :: %{
accuracy: float(), # Historical accuracy rate
consistency: float(), # Consistency of responses
domain_knowledge: float(), # Domain-specific expertise
past_performance: float(), # Overall past performance
recency_weight: float(), # How recent this data is
measured_at: DateTime.t()
}
2.3 Event Handler Implementation Plan
defp handle_weighted_event(session, event_type, event_data, state) do
case event_type do
:vote_submission -> handle_weighted_vote_submission(session, event_data, state)
:weight_update_request -> handle_weight_update_request(session, event_data, state)
:expertise_assessment -> handle_expertise_assessment(session, event_data, state)
:consensus_check -> handle_weighted_consensus_check(session, event_data, state)
:voting_deadline -> handle_weighted_voting_deadline(session, event_data, state)
:performance_feedback -> handle_performance_feedback(session, event_data, state)
_ -> {:error, {:unknown_weighted_event, event_type}}
end
end
defp handle_weighted_vote_submission(session, event_data, state) do
weighted_state = session.state
agent_id = event_data[:agent_id]
vote = event_data[:vote]
confidence = event_data[:confidence] || 1.0
reasoning = event_data[:reasoning]
# Get current agent weight
agent_weight = Map.get(weighted_state.agent_weights, agent_id, 1.0)
# Calculate numeric vote value
vote_numeric = convert_vote_to_numeric(vote, session.proposal)
# Calculate weighted contribution
weighted_contribution = agent_weight * confidence * vote_numeric
# Store vote data
vote_data = %{
vote: vote,
weight: agent_weight,
confidence: confidence,
reasoning: reasoning,
timestamp: DateTime.utc_now(),
weighted_value: weighted_contribution
}
# Update state
updated_votes = Map.put(weighted_state.votes, agent_id, vote_data)
new_weighted_total = weighted_state.weighted_total + weighted_contribution
# Check for early consensus
consensus_reached = check_early_consensus(
new_weighted_total,
weighted_state.max_possible_weight,
weighted_state.consensus_threshold
)
updated_weighted_state = %{
weighted_state
| votes: updated_votes,
weighted_total: new_weighted_total,
consensus_reached: consensus_reached
}
# If consensus reached, finalize
if consensus_reached do
finalize_weighted_consensus(updated_weighted_state, session, state)
else
updated_session = %{session | state: updated_weighted_state}
{:ok, updated_session, state}
end
end
2.4 Expertise Scoring Algorithm
defp calculate_expertise_weight(agent_id, expertise_metrics, context) do
base_metrics = %{
accuracy: get_accuracy_score(agent_id, context),
consistency: get_consistency_score(agent_id, context),
domain_knowledge: get_domain_knowledge_score(agent_id, context),
past_performance: get_past_performance_score(agent_id)
}
# Weight the different factors based on context
factor_weights = get_factor_weights(context)
# Calculate weighted score
raw_score =
base_metrics.accuracy * factor_weights.accuracy +
base_metrics.consistency * factor_weights.consistency +
base_metrics.domain_knowledge * factor_weights.domain_knowledge +
base_metrics.past_performance * factor_weights.past_performance
# Apply non-linear scaling to emphasize expertise differences
scaled_score = apply_expertise_scaling(raw_score)
# Ensure reasonable bounds (0.1 to 3.0)
bounded_score = max(0.1, min(3.0, scaled_score))
# Apply fairness constraints (no single agent >50% of total weight)
apply_fairness_constraints(bounded_score, agent_id, context)
end
defp apply_expertise_scaling(raw_score) do
# Use exponential scaling to emphasize high performers
# while preventing extreme values
cond do
raw_score >= 0.8 -> :math.pow(raw_score, 0.7) * 2.0
raw_score >= 0.6 -> raw_score * 1.5
raw_score >= 0.4 -> raw_score * 1.2
true -> raw_score
end
end
Part 3: Iterative Refinement Protocol
3.1 Technical Requirements
Iterative Refinement Components:
- Multi-Round Proposal Evolution: Proposals improve through feedback
- Convergence Detection: Automatic termination when proposals stabilize
- Quality Assessment: Scoring mechanism for proposal quality
- Feedback Integration: Structured feedback collection and application
- Similarity Analysis: Semantic comparison of proposals
Performance Requirements:
- Support 3-20 agents in refinement process
- 2-10 refinement rounds typical
- Sub-second proposal similarity calculation
- Memory-efficient proposal history storage
3.2 State Structure Design
# Enhanced iterative_state for session.state
%{
# Round Management
current_round: pos_integer(), # Current refinement round
max_rounds: pos_integer(), # Maximum allowed rounds
round_timeout: pos_integer(), # Timeout per round in ms
# Proposal Evolution
initial_proposal: term(), # Starting proposal
current_proposal: term(), # Current best proposal
proposals_history: [proposal_round()], # Complete proposal evolution
round_proposals: %{agent_id() => proposal_submission()},
# Feedback System
feedback_collection: %{agent_id() => %{target_agent() => feedback_data()}},
feedback_weights: %{agent_id() => float()}, # Weight for each agent's feedback
feedback_deadline: DateTime.t(), # When feedback collection ends
# Convergence Analysis
convergence_threshold: float(), # e.g., 0.9 similarity required
convergence_score: float(), # Current convergence level
similarity_history: [float()], # Track convergence progress
convergence_method: :jaccard | :semantic | :custom,
# Quality Assessment
quality_scores: %{proposal_id() => quality_assessment()},
quality_improvement: float(), # Improvement per round
quality_threshold: float(), # Minimum acceptable quality
# Termination Conditions
termination_reason: :max_rounds | :convergence | :quality | :consensus | nil,
early_termination_enabled: boolean(),
# Phase Management
current_phase: :proposal_collection | :feedback_collection | :analysis | :transition,
phase_deadline: DateTime.t(),
# Final Results
final_proposal: term() | nil,
consensus_level: float(), # Agreement on final proposal
refinement_summary: refinement_summary() | nil
}
@type proposal_round :: %{
round: pos_integer(),
proposals: %{agent_id() => proposal_submission()},
selected_proposal: term(),
quality_score: float(),
convergence_score: float(),
feedback_summary: feedback_summary(),
timestamp: DateTime.t()
}
@type proposal_submission :: %{
proposal: term(),
agent_id: agent_id(),
confidence: float(),
reasoning: String.t() | nil,
based_on: [agent_id()], # Which previous proposals influenced this
timestamp: DateTime.t(),
estimated_quality: float() | nil
}
@type feedback_data :: %{
target_proposal: term(),
quality_score: float(), # 0.0 to 1.0
specific_feedback: [feedback_item()],
improvement_suggestions: [String.t()],
overall_assessment: String.t() | nil,
confidence: float(),
timestamp: DateTime.t()
}
@type feedback_item :: %{
aspect: :clarity | :accuracy | :completeness | :feasibility | :innovation,
score: float(),
comment: String.t() | nil
}
3.3 Event Handler Implementation Plan
defp handle_iterative_event(session, event_type, event_data, state) do
case event_type do
:proposal_submission -> handle_iterative_proposal_submission(session, event_data, state)
:feedback_submission -> handle_iterative_feedback_submission(session, event_data, state)
:round_completion -> handle_iterative_round_completion(session, event_data, state)
:convergence_check -> handle_iterative_convergence_check(session, event_data, state)
:quality_assessment -> handle_iterative_quality_assessment(session, event_data, state)
:phase_transition -> handle_iterative_phase_transition(session, event_data, state)
:early_termination -> handle_iterative_early_termination(session, event_data, state)
_ -> {:error, {:unknown_iterative_event, event_type}}
end
end
defp handle_iterative_proposal_submission(session, event_data, state) do
iterative_state = session.state
agent_id = event_data[:agent_id]
proposal = event_data[:proposal]
confidence = event_data[:confidence] || 0.5
reasoning = event_data[:reasoning]
based_on = event_data[:based_on] || []
# Validate submission timing and agent eligibility
case validate_proposal_submission(agent_id, iterative_state) do
:ok ->
# Create proposal submission record
submission = %{
proposal: proposal,
agent_id: agent_id,
confidence: confidence,
reasoning: reasoning,
based_on: based_on,
timestamp: DateTime.utc_now(),
estimated_quality: nil # Will be calculated later
}
# Store proposal
updated_round_proposals = Map.put(
iterative_state.round_proposals,
agent_id,
submission
)
# Check if all agents have submitted
all_submitted = length(Map.keys(updated_round_proposals)) >=
length(iterative_state.participants)
updated_iterative_state = %{
iterative_state
| round_proposals: updated_round_proposals
}
if all_submitted do
# Move to feedback collection phase
transition_to_feedback_phase(updated_iterative_state, session, state)
else
updated_session = %{session | state: updated_iterative_state}
{:ok, updated_session, state}
end
{:error, reason} ->
Logger.warning("Invalid proposal submission: #{inspect(reason)}")
{:ok, session, state}
end
end
defp handle_iterative_feedback_submission(session, event_data, state) do
iterative_state = session.state
from_agent = event_data[:from_agent]
target_agent = event_data[:target_agent]
feedback = event_data[:feedback]
# Validate feedback
case validate_feedback_submission(from_agent, target_agent, feedback, iterative_state) do
:ok ->
# Store feedback
from_agent_feedback = Map.get(iterative_state.feedback_collection, from_agent, %{})
updated_from_agent_feedback = Map.put(from_agent_feedback, target_agent, feedback)
updated_feedback_collection = Map.put(
iterative_state.feedback_collection,
from_agent,
updated_from_agent_feedback
)
# Check if feedback collection is complete
feedback_complete = check_feedback_completion(
updated_feedback_collection,
iterative_state.participants
)
updated_iterative_state = %{
iterative_state
| feedback_collection: updated_feedback_collection
}
if feedback_complete do
# Move to analysis phase
transition_to_analysis_phase(updated_iterative_state, session, state)
else
updated_session = %{session | state: updated_iterative_state}
{:ok, updated_session, state}
end
{:error, reason} ->
Logger.warning("Invalid feedback submission: #{inspect(reason)}")
{:ok, session, state}
end
end
3.4 Convergence Detection Algorithm
defp calculate_convergence_score(current_proposals, previous_proposals, method) do
case method do
:jaccard ->
calculate_jaccard_similarity(current_proposals, previous_proposals)
:semantic ->
calculate_semantic_similarity(current_proposals, previous_proposals)
:custom ->
calculate_custom_similarity(current_proposals, previous_proposals)
end
end
defp calculate_jaccard_similarity(current_proposals, previous_proposals) do
# Convert proposals to word sets for Jaccard index calculation
current_words = extract_word_sets(current_proposals)
previous_words = extract_word_sets(previous_proposals)
# Calculate pairwise Jaccard similarities
similarities = for {agent_id, current_set} <- current_words,
{^agent_id, previous_set} <- previous_words do
intersection_size = MapSet.size(MapSet.intersection(current_set, previous_set))
union_size = MapSet.size(MapSet.union(current_set, previous_set))
if union_size > 0 do
intersection_size / union_size
else
1.0 # Empty sets are considered identical
end
end
# Return average similarity
if length(similarities) > 0 do
Enum.sum(similarities) / length(similarities)
else
0.0
end
end
defp select_best_proposal(round_proposals, feedback_collection, quality_scores) do
# Calculate composite scores for each proposal
proposal_scores = for {agent_id, submission} <- round_proposals do
# Base quality score
base_quality = Map.get(quality_scores, agent_id, 0.5)
# Feedback score (average of feedback from other agents)
feedback_score = calculate_average_feedback_score(agent_id, feedback_collection)
# Confidence score from submitter
confidence_score = submission.confidence
# Composite score with weights
composite_score =
base_quality * 0.4 +
feedback_score * 0.4 +
confidence_score * 0.2
{agent_id, submission.proposal, composite_score}
end
# Select highest scoring proposal
case Enum.max_by(proposal_scores, fn {_, _, score} -> score end, fn -> nil end) do
{best_agent, best_proposal, best_score} ->
{:ok, best_proposal, best_agent, best_score}
nil ->
{:error, :no_proposals}
end
end
Part 4: Test-Driven Implementation Process
4.1 Implementation Phases
Phase 1: Core Event Handler Structure (Week 1)
- Replace TODO placeholders with proper event type dispatching
- Implement basic message validation functions
- Add comprehensive error handling and logging
- Create unit tests for event dispatching
Phase 2: Byzantine PBFT Implementation (Week 2-3)
- Implement pre-prepare, prepare, commit message handlers
- Add view change and new view protocols
- Implement fault detection and primary selection
- Create integration tests for full PBFT scenarios
Phase 3: Weighted Voting Implementation (Week 3-4)
- Implement dynamic weight calculation algorithms
- Add vote collection and aggregation logic
- Implement expertise scoring and weight updates
- Create property-based tests for fairness guarantees
Phase 4: Iterative Refinement Implementation (Week 4-5)
- Implement proposal submission and feedback collection
- Add convergence detection algorithms
- Implement proposal selection and quality assessment
- Create comprehensive scenario tests
Phase 5: Integration and Performance Testing (Week 5-6)
- End-to-end integration tests across all algorithms
- Performance benchmarking and optimization
- Stress testing with large agent counts
- Documentation and examples
4.2 Test Strategy
Unit Tests (Target: 200+ tests)
- Message validation functions
- State transition logic
- Mathematical calculations (weights, similarities, thresholds)
- Error handling edge cases
Integration Tests (Target: 50+ tests)
- Complete algorithm execution scenarios
- Multi-agent coordination workflows
- Fault injection and recovery testing
- Performance under load
Property-Based Tests (Target: 20+ properties)
- Byzantine fault tolerance guarantees
- Weighted voting fairness properties
- Iterative refinement convergence properties
- System invariants under all conditions
Performance Tests (Target: 10+ benchmarks)
- Consensus time vs. agent count
- Memory usage during long sessions
- Message throughput capacity
- CPU utilization profiling
4.3 Success Criteria
Functional Requirements:
- Byzantine consensus handles up to f=(n-1)/3 Byzantine failures
- Weighted voting produces fair outcomes with expertise consideration
- Iterative refinement converges to high-quality proposals
- All algorithms integrate seamlessly with existing MABEAM infrastructure
Performance Requirements:
- Byzantine consensus completes in <5 seconds for 10 agents
- Weighted voting handles 50 agents with <1 second response time
- Iterative refinement converges in <10 rounds for typical scenarios
- Memory usage remains stable during extended operation
Quality Requirements:
- Zero compilation warnings or errors
- Zero Dialyzer type warnings
- >95% test coverage on new code
- All property-based tests pass consistently
Part 5: Integration with Foundation Services
5.1 ProcessRegistry Integration
The event handlers must integrate with Foundation’s ProcessRegistry for agent discovery and communication:
defp broadcast_message(message, participants) do
for agent_id <- participants do
case Foundation.ProcessRegistry.get_agent_status(agent_id) do
{:ok, %{pid: pid}} when is_pid(pid) ->
send(pid, {:coordination_message, message})
{:ok, %{node: node, pid: pid}} when node != node() ->
# Cross-node message sending
send({pid, node}, {:coordination_message, message})
{:error, :not_found} ->
Logger.warning("Agent #{agent_id} not found in ProcessRegistry")
error ->
Logger.error("Failed to send message to #{agent_id}: #{inspect(error)}")
end
end
end
5.2 Telemetry Integration
Comprehensive telemetry emission for monitoring and debugging:
defp emit_byzantine_telemetry(event_name, session_id, measurements, metadata \\ %{}) do
:telemetry.execute(
[:foundation, :mabeam, :coordination, :byzantine, event_name],
Map.merge(%{count: 1}, measurements),
Map.merge(%{session_id: session_id}, metadata)
)
end
# Example telemetry events:
# [:foundation, :mabeam, :coordination, :byzantine, :pre_prepare_sent]
# [:foundation, :mabeam, :coordination, :byzantine, :consensus_reached]
# [:foundation, :mabeam, :coordination, :byzantine, :view_change_initiated]
# [:foundation, :mabeam, :coordination, :weighted, :vote_processed]
# [:foundation, :mabeam, :coordination, :iterative, :round_completed]
5.3 Error Handling and Recovery
Robust error handling patterns for production deployment:
defp handle_coordination_error(error, session, state, context) do
Logger.error("Coordination error in #{context}: #{inspect(error)}")
# Emit error telemetry
emit_coordination_telemetry(:coordination_error, session.id, %{}, %{
error: error,
context: context,
algorithm: session.type
})
# Determine recovery strategy
case error do
{:timeout, _} ->
# Handle timeouts gracefully
handle_coordination_timeout(session, state)
{:agent_failure, agent_id} ->
# Remove failed agent and continue if possible
handle_agent_failure(session, state, agent_id)
{:invalid_message, _} ->
# Log and continue (Byzantine fault tolerance)
{:ok, session, state}
{:insufficient_agents, _} ->
# Cannot continue, fail the session
fail_coordination_session(session, state, error)
_ ->
# Unknown error, fail safely
fail_coordination_session(session, state, error)
end
end
This comprehensive specification provides the foundation for implementing production-ready Byzantine consensus, weighted voting, and iterative refinement algorithms in the Foundation MABEAM system. The layered TDD approach ensures robust, well-tested implementations that integrate seamlessly with the existing infrastructure.