Foundation MABEAM - Comprehensive Examples & Validation Framework
Executive Summary
This document provides detailed specifications for a comprehensive set of examples that will validate and demonstrate the Foundation MABEAM multi-agent coordination system. These examples go far beyond basic functionality to test edge cases, performance limits, and real-world scenarios that prove the system’s production readiness.
Current State Analysis
What We Have (Existing Examples)
- Basic protocol registration and coordination examples in tests
- Simple consensus scenarios with 2-5 agents
- Basic coordination session lifecycle management
- Elementary telemetry and error handling demonstrations
What We Need (This Specification)
- Complex Multi-Algorithm Scenarios: Combining Byzantine, weighted, and iterative algorithms
- Scale Testing: 100+ agent coordination scenarios
- Fault Tolerance Validation: Real Byzantine behavior simulation
- Performance Benchmarking: Latency, throughput, and resource usage
- Production Scenarios: Real ML/LLM coordination workflows
- Cross-Service Integration: Full Foundation service ecosystem testing
Part 1: Multi-Algorithm Coordination Examples
1.1 Hierarchical Consensus Pipeline
Scenario: Large-scale ML model selection using tiered coordination
- Level 1: Byzantine consensus among domain experts (7 agents, f=2)
- Level 2: Weighted voting among model evaluators (15 agents, expertise-based)
- Level 3: Iterative refinement of evaluation criteria (20 agents, 5 rounds)
File: /examples/hierarchical_ml_consensus.exs
defmodule Examples.HierarchicalMLConsensus do
@moduledoc """
Demonstrates complex hierarchical coordination for ML model selection.
This example validates:
- Multi-level coordination protocols
- Byzantine fault tolerance under load
- Weighted voting with dynamic expertise
- Iterative refinement convergence
- Cross-level result integration
"""
alias Foundation.MABEAM.{Coordination, AgentRegistry, Types}
def run_hierarchical_consensus() do
IO.puts("🚀 Starting Hierarchical ML Consensus Example")
# Phase 1: Setup agent hierarchy
{:ok, agent_hierarchy} = setup_agent_hierarchy()
# Phase 2: Level 1 - Byzantine consensus among domain experts
{:ok, domain_consensus} = run_domain_expert_consensus(agent_hierarchy.domain_experts)
# Phase 3: Level 2 - Weighted voting among model evaluators
{:ok, evaluation_consensus} = run_model_evaluator_voting(
agent_hierarchy.evaluators,
domain_consensus
)
# Phase 4: Level 3 - Iterative refinement of criteria
{:ok, final_criteria} = run_criteria_refinement(
agent_hierarchy.refinement_team,
evaluation_consensus
)
# Phase 5: Validate results and performance metrics
validate_hierarchical_results(domain_consensus, evaluation_consensus, final_criteria)
end
defp setup_agent_hierarchy() do
# Create 42 specialized agents across three tiers
domain_experts = create_domain_expert_agents(7)
evaluators = create_model_evaluator_agents(15)
refinement_team = create_refinement_agents(20)
{:ok, %{
domain_experts: domain_experts,
evaluators: evaluators,
refinement_team: refinement_team,
total_agents: 42
}}
end
defp run_domain_expert_consensus(experts) do
# Byzantine consensus with injected Byzantine agents
byzantine_agents = inject_byzantine_behavior(experts, 2) # f=2 Byzantine agents
proposal = %{
model_categories: ["transformer", "cnn", "rnn", "hybrid"],
evaluation_domains: ["accuracy", "latency", "memory", "robustness"],
selection_criteria: %{
min_accuracy: 0.85,
max_latency_ms: 100,
max_memory_mb: 512
}
}
# Start Byzantine consensus with fault injection
{:ok, session_id} = Coordination.start_byzantine_consensus(
proposal,
byzantine_agents,
[
fault_tolerance: 2,
timeout_ms: 30_000,
fault_injection: true # Enable Byzantine behavior simulation
]
)
# Monitor consensus progress with detailed metrics
{:ok, result} = monitor_consensus_progress(session_id, :byzantine)
validate_byzantine_properties(result, experts)
result
end
end
Validation Requirements:
- Byzantine consensus completes despite 2 Byzantine agents
- Weighted voting fairly incorporates expertise scores
- Iterative refinement converges within 5 rounds
- Total execution time < 2 minutes
- No memory leaks during extended operation
- All safety and liveness properties maintained
1.2 Real-Time Adaptive Coordination
Scenario: Dynamic coordination strategy selection based on changing conditions
- Adaptive Logic: Switch between algorithms based on agent failures, time pressure, quality requirements
- Real-Time Metrics: Sub-second coordination strategy decisions
- Fallback Chains: Graceful degradation from Byzantine → Weighted → Simple majority
File: /examples/adaptive_coordination.exs
defmodule Examples.AdaptiveCoordination do
@moduledoc """
Demonstrates adaptive coordination strategy selection.
This example validates:
- Dynamic algorithm switching under load
- Real-time performance monitoring
- Graceful degradation patterns
- Quality vs. speed trade-offs
- Automatic fault detection and response
"""
def run_adaptive_scenario() do
IO.puts("⚡ Starting Adaptive Coordination Example")
# Setup dynamic agent environment
{:ok, agent_pool} = setup_dynamic_environment(50)
# Scenario 1: High-stakes decision requiring Byzantine consensus
{:ok, critical_result} = coordinate_critical_decision(agent_pool)
# Scenario 2: Agents start failing, adapt to weighted voting
{:ok, adapted_result} = simulate_agent_failures_and_adapt(agent_pool)
# Scenario 3: Time pressure forces simple majority voting
{:ok, urgent_result} = coordinate_under_time_pressure(agent_pool)
# Validate adaptation behavior
validate_adaptive_behavior(critical_result, adapted_result, urgent_result)
end
defp coordinate_critical_decision(agent_pool) do
# High-stakes scenario: Financial transaction approval
proposal = %{
transaction_amount: 1_000_000,
risk_level: :high,
approval_threshold: 0.95,
required_consensus: :byzantine # Must use Byzantine for security
}
coordination_spec = %{
strategy: :adaptive,
initial_algorithm: :byzantine_consensus,
fallback_chain: [:weighted_consensus, :simple_majority],
quality_requirements: %{
min_consensus: 0.95,
max_time_ms: 10_000,
fault_tolerance: 3
},
adaptation_triggers: %{
agent_failure_threshold: 0.1, # 10% agent failure triggers adaptation
time_pressure_threshold: 8_000, # 8 seconds triggers faster algorithm
quality_drop_threshold: 0.9 # Quality below 90% triggers more robust algorithm
}
}
{:ok, session_id} = Coordination.start_adaptive_coordination(
proposal,
agent_pool,
coordination_spec
)
# Inject failures during execution to test adaptation
spawn(fn -> inject_gradual_failures(agent_pool, session_id) end)
{:ok, result} = Coordination.wait_for_adaptive_completion(session_id)
# Validate that system adapted appropriately
validate_adaptation_decisions(result, coordination_spec)
result
end
end
Part 2: Scale and Performance Testing Examples
2.1 Massive Agent Coordination
Scenario: Coordination with 500+ agents to test scalability limits
- Progressive Loading: Start with 10 agents, scale to 500+ gradually
- Memory Profiling: Track memory usage patterns during scaling
- Network Simulation: Realistic latency and partition scenarios
File: /examples/massive_scale_test.exs
defmodule Examples.MassiveScaleTest do
@moduledoc """
Tests Foundation MABEAM coordination at extreme scale.
This example validates:
- Coordination with 500+ agents
- Memory efficiency under load
- Network partition handling
- Performance degradation patterns
- Resource cleanup effectiveness
"""
def run_scale_test() do
IO.puts("🌊 Starting Massive Scale Test")
# Progressive scaling test
scale_targets = [10, 25, 50, 100, 200, 500]
results = for target <- scale_targets do
IO.puts("📈 Testing coordination with #{target} agents...")
start_time = System.monotonic_time(:millisecond)
{:ok, result} = run_coordination_at_scale(target)
end_time = System.monotonic_time(:millisecond)
%{
agent_count: target,
duration_ms: end_time - start_time,
memory_usage: get_memory_usage(),
consensus_quality: result.consensus_quality,
message_count: result.message_count,
success: result.status == :completed
}
end
analyze_scaling_patterns(results)
end
defp run_coordination_at_scale(agent_count) do
# Create heterogeneous agent pool
{:ok, agent_pool} = create_heterogeneous_agents(agent_count)
# Complex proposal requiring significant coordination
proposal = %{
task: :distributed_ml_training,
model_type: :large_transformer,
training_params: %{
batch_size: 64,
learning_rate: 0.001,
epochs: 100
},
resource_allocation: %{
total_gpus: agent_count * 2,
memory_per_agent: "8GB",
network_bandwidth: "10Gbps"
},
constraints: %{
max_training_time: 3600_000, # 1 hour
min_accuracy: 0.95,
cost_budget: agent_count * 10
}
}
# Use weighted consensus for scale efficiency
{:ok, session_id} = Coordination.start_weighted_consensus(
proposal,
agent_pool,
[
timeout_ms: 60_000,
consensus_threshold: 0.8,
enable_early_termination: true,
memory_optimization: true,
batch_processing: true # Process votes in batches for efficiency
]
)
# Monitor performance metrics during execution
{:ok, performance_monitor} = start_performance_monitoring(session_id)
{:ok, result} = Coordination.get_coordination_result(session_id)
# Collect detailed performance data
performance_data = collect_performance_data(performance_monitor)
{:ok, Map.merge(result, performance_data)}
end
defp create_heterogeneous_agents(count) do
# Create diverse agent types with realistic characteristics
agent_types = [
{:gpu_powerhouse, 0.2}, # 20% high-performance GPU agents
{:cpu_optimizer, 0.3}, # 30% CPU-optimized agents
{:memory_specialist, 0.2}, # 20% high-memory agents
{:network_hub, 0.1}, # 10% network-optimized agents
{:general_purpose, 0.2} # 20% balanced agents
]
agents = for i <- 1..count do
agent_type = select_weighted_random(agent_types)
create_specialized_agent(:"agent_#{i}", agent_type)
end
{:ok, agents}
end
end
2.2 Performance Benchmarking Suite
Scenario: Comprehensive performance characterization across all algorithms
- Latency Benchmarks: P50, P95, P99 latency measurements
- Throughput Testing: Coordination sessions per second
- Resource Utilization: CPU, memory, network usage patterns
File: /examples/performance_benchmarks.exs
defmodule Examples.PerformanceBenchmarks do
@moduledoc """
Comprehensive performance benchmarking for all coordination algorithms.
This example validates:
- Latency characteristics under load
- Throughput limits for each algorithm
- Resource utilization patterns
- Performance regression detection
- Optimization effectiveness
"""
@benchmark_scenarios [
%{name: "Byzantine Consensus", algorithm: :byzantine, agents: [4, 7, 10, 13], iterations: 100},
%{name: "Weighted Voting", algorithm: :weighted, agents: [5, 15, 25, 50], iterations: 200},
%{name: "Iterative Refinement", algorithm: :iterative, agents: [3, 8, 12, 20], iterations: 50}
]
def run_benchmark_suite() do
IO.puts("🏃 Starting Performance Benchmark Suite")
results = for scenario <- @benchmark_scenarios do
IO.puts("📊 Benchmarking #{scenario.name}...")
run_algorithm_benchmark(scenario)
end
generate_performance_report(results)
end
defp run_algorithm_benchmark(scenario) do
benchmark_results = for agent_count <- scenario.agents do
IO.puts(" Testing with #{agent_count} agents (#{scenario.iterations} iterations)...")
# Run multiple iterations for statistical significance
iteration_results = for _i <- 1..scenario.iterations do
run_single_benchmark_iteration(scenario.algorithm, agent_count)
end
%{
agent_count: agent_count,
latency_p50: calculate_percentile(iteration_results, :latency, 50),
latency_p95: calculate_percentile(iteration_results, :latency, 95),
latency_p99: calculate_percentile(iteration_results, :latency, 99),
memory_peak: Enum.max(Enum.map(iteration_results, & &1.memory_peak)),
memory_avg: Enum.sum(Enum.map(iteration_results, & &1.memory_avg)) / scenario.iterations,
cpu_avg: Enum.sum(Enum.map(iteration_results, & &1.cpu_usage)) / scenario.iterations,
message_count: Enum.sum(Enum.map(iteration_results, & &1.message_count)) / scenario.iterations,
success_rate: Enum.count(iteration_results, & &1.success) / scenario.iterations
}
end
%{
algorithm: scenario.algorithm,
name: scenario.name,
results: benchmark_results,
performance_characteristics: analyze_performance_characteristics(benchmark_results)
}
end
defp run_single_benchmark_iteration(algorithm, agent_count) do
# Setup monitoring
:observer_cli.start()
memory_before = :erlang.memory(:total)
start_time = System.monotonic_time(:microsecond)
# Run coordination
result = case algorithm do
:byzantine ->
run_byzantine_benchmark(agent_count)
:weighted ->
run_weighted_benchmark(agent_count)
:iterative ->
run_iterative_benchmark(agent_count)
end
end_time = System.monotonic_time(:microsecond)
memory_after = :erlang.memory(:total)
%{
latency: end_time - start_time, # microseconds
memory_peak: memory_after,
memory_avg: (memory_before + memory_after) / 2,
cpu_usage: get_cpu_usage(),
message_count: result.message_count,
success: result.status == :completed
}
end
end
Part 3: Fault Tolerance and Byzantine Behavior Examples
3.1 Byzantine Agent Simulation
Scenario: Realistic Byzantine behavior patterns to test fault tolerance
- Malicious Strategies: Silent failures, conflicting messages, timing attacks
- Sophisticated Attacks: Coordinated Byzantine coalitions, adaptive malicious behavior
- Recovery Testing: System recovery after Byzantine agent detection and isolation
File: /examples/byzantine_behavior_simulation.exs
defmodule Examples.ByzantineBehaviorSimulation do
@moduledoc """
Simulates realistic Byzantine agent behaviors to validate fault tolerance.
This example validates:
- Detection of various Byzantine attack patterns
- System resilience to coordinated malicious behavior
- Recovery mechanisms after Byzantine agent isolation
- Safety guarantees under maximum fault conditions
- Performance impact of Byzantine detection
"""
@byzantine_attack_patterns [
:silent_failure, # Agent stops responding
:conflicting_messages, # Sends different messages to different agents
:timing_attack, # Delays messages strategically
:invalid_signatures, # Sends messages with invalid authentication
:replay_attack, # Replays old messages
:coalition_attack, # Coordinated attack with other Byzantine agents
:adaptive_behavior # Changes attack strategy based on detection
]
def run_byzantine_simulation() do
IO.puts("🎭 Starting Byzantine Behavior Simulation")
# Test each attack pattern individually
individual_results = for pattern <- @byzantine_attack_patterns do
IO.puts("🔍 Testing #{pattern} attack pattern...")
test_byzantine_pattern(pattern)
end
# Test coordinated attacks
coordinated_results = test_coordinated_byzantine_attacks()
# Test maximum fault tolerance (f = (n-1)/3)
maximum_fault_results = test_maximum_fault_tolerance()
compile_security_report(individual_results, coordinated_results, maximum_fault_results)
end
defp test_byzantine_pattern(pattern) do
# Setup 10 agents with 3 Byzantine (maximum fault tolerance)
honest_agents = create_honest_agents(7)
byzantine_agents = create_byzantine_agents(3, pattern)
all_agents = honest_agents ++ byzantine_agents
proposal = %{
decision: :critical_system_update,
parameters: %{version: "2.1.0", rollback_plan: "automatic"},
security_level: :maximum
}
start_time = System.monotonic_time(:millisecond)
{:ok, session_id} = Coordination.start_byzantine_consensus(
proposal,
all_agents,
[
fault_tolerance: 3,
timeout_ms: 30_000,
byzantine_detection: true,
security_monitoring: true
]
)
# Monitor Byzantine behavior detection
{:ok, security_monitor} = start_security_monitoring(session_id)
# Let Byzantine agents execute their attack strategy
activate_byzantine_behavior(byzantine_agents, pattern, session_id)
{:ok, result} = Coordination.get_coordination_result(session_id)
end_time = System.monotonic_time(:millisecond)
# Analyze security response
security_report = analyze_security_response(security_monitor)
%{
attack_pattern: pattern,
consensus_reached: result.status == :completed,
detection_time: security_report.detection_time,
false_positives: security_report.false_positives,
false_negatives: security_report.false_negatives,
system_recovery_time: security_report.recovery_time,
total_duration: end_time - start_time,
safety_maintained: validate_safety_properties(result),
liveness_maintained: validate_liveness_properties(result, end_time - start_time)
}
end
defp create_byzantine_agents(count, attack_pattern) do
for i <- 1..count do
agent_id = :"byzantine_#{i}"
{:ok, _pid} = start_byzantine_agent(agent_id, attack_pattern)
agent_id
end
end
defp start_byzantine_agent(agent_id, attack_pattern) do
GenServer.start_link(
Examples.ByzantineAgent,
%{agent_id: agent_id, attack_pattern: attack_pattern},
name: agent_id
)
end
defp activate_byzantine_behavior(byzantine_agents, pattern, session_id) do
for agent_id <- byzantine_agents do
GenServer.cast(agent_id, {:activate_attack, pattern, session_id})
end
end
end
defmodule Examples.ByzantineAgent do
use GenServer
require Logger
def init(state) do
{:ok, state}
end
def handle_cast({:activate_attack, pattern, session_id}, state) do
spawn(fn -> execute_attack_pattern(pattern, session_id, state.agent_id) end)
{:noreply, state}
end
defp execute_attack_pattern(:silent_failure, session_id, agent_id) do
# Stop responding to coordination messages after initial participation
Process.sleep(2000) # Participate normally for 2 seconds
Logger.info("Byzantine agent #{agent_id} going silent")
# Agent becomes unresponsive
end
defp execute_attack_pattern(:conflicting_messages, session_id, agent_id) do
# Send different prepare messages to different agents
participants = get_session_participants(session_id)
for {i, target_agent} <- Enum.with_index(participants) do
conflicting_message = %{
type: :prepare,
proposal: "conflicting_proposal_#{i}", # Different proposal to each agent
from: agent_id,
session_id: session_id
}
send_to_agent(target_agent, conflicting_message)
end
end
defp execute_attack_pattern(:timing_attack, session_id, agent_id) do
# Strategically delay messages to disrupt consensus timing
participants = get_session_participants(session_id)
# Send early messages to some agents, delayed to others
{early_targets, late_targets} = Enum.split(participants, div(length(participants), 2))
message = create_prepare_message(session_id, agent_id)
# Send immediately to early targets
for target <- early_targets do
send_to_agent(target, message)
end
# Delay messages to late targets to create timing confusion
spawn(fn ->
Process.sleep(5000) # 5 second delay
for target <- late_targets do
send_to_agent(target, message)
end
end)
end
defp execute_attack_pattern(:coalition_attack, session_id, agent_id) do
# Coordinate with other Byzantine agents for sophisticated attack
byzantine_coalition = get_byzantine_coalition(session_id)
if agent_id == hd(byzantine_coalition) do
# Leader Byzantine agent coordinates the attack
coordinate_coalition_attack(session_id, byzantine_coalition)
else
# Follower Byzantine agent waits for coordination
wait_for_coalition_commands(session_id, agent_id)
end
end
end
3.2 Network Partition and Recovery Testing
Scenario: Simulating realistic network conditions and partition scenarios
- Partition Types: Complete partitions, partial connectivity, intermittent failures
- Recovery Patterns: Automatic reconnection, state synchronization, conflict resolution
File: /examples/network_partition_testing.exs
defmodule Examples.NetworkPartitionTesting do
@moduledoc """
Tests coordination behavior under various network partition scenarios.
This example validates:
- Behavior during network partitions
- Recovery mechanisms after partition healing
- Data consistency across partitions
- Performance impact of partition detection
- Graceful degradation strategies
"""
def run_partition_testing() do
IO.puts("🌐 Starting Network Partition Testing")
# Test various partition scenarios
partition_scenarios = [
%{name: "Clean Split", type: :clean_split, agents: 12, partition_sizes: [6, 6]},
%{name: "Minority Isolation", type: :minority_isolation, agents: 15, partition_sizes: [12, 3]},
%{name: "Multiple Fragments", type: :fragmentation, agents: 18, partition_sizes: [8, 6, 4]},
%{name: "Intermittent Connectivity", type: :intermittent, agents: 10, partition_sizes: [5, 5]}
]
results = for scenario <- partition_scenarios do
IO.puts("🔌 Testing #{scenario.name} scenario...")
test_partition_scenario(scenario)
end
generate_partition_resilience_report(results)
end
defp test_partition_scenario(scenario) do
# Setup agents in single network initially
{:ok, all_agents} = setup_networked_agents(scenario.agents)
# Start consensus process
proposal = %{
task: :distributed_computation,
deadline: DateTime.add(DateTime.utc_now(), 60, :second),
fault_tolerance: :network_partition_resilient
}
{:ok, session_id} = Coordination.start_byzantine_consensus(
proposal,
all_agents,
[
fault_tolerance: 2,
partition_detection: true,
partition_healing: true,
timeout_ms: 45_000
]
)
# Allow normal operation for initial period
Process.sleep(5000)
# Create network partition
partition_groups = create_network_partition(all_agents, scenario)
partition_start_time = System.monotonic_time(:millisecond)
# Monitor behavior during partition
{:ok, partition_monitor} = monitor_partition_behavior(session_id, partition_groups)
# Simulate partition duration
partition_duration = simulate_partition_duration(scenario.type)
Process.sleep(partition_duration)
# Heal partition
heal_network_partition(partition_groups)
healing_start_time = System.monotonic_time(:millisecond)
# Monitor recovery behavior
{:ok, recovery_monitor} = monitor_recovery_behavior(session_id)
# Wait for final consensus
{:ok, result} = Coordination.get_coordination_result(session_id)
completion_time = System.monotonic_time(:millisecond)
analyze_partition_resilience(
scenario,
result,
partition_monitor,
recovery_monitor,
%{
partition_start: partition_start_time,
healing_start: healing_start_time,
completion: completion_time
}
)
end
end
Part 4: Real-World ML/LLM Coordination Scenarios
4.1 Distributed ML Training Coordination
Scenario: Coordinating a distributed machine learning training process
- Resource Allocation: GPU/CPU allocation across heterogeneous agents
- Hyperparameter Optimization: Multi-agent hyperparameter search coordination
- Fault Recovery: Handling agent failures during training
File: /examples/distributed_ml_training.exs
defmodule Examples.DistributedMLTraining do
@moduledoc """
Demonstrates coordination for distributed ML training scenarios.
This example validates:
- Resource allocation for heterogeneous compute agents
- Hyperparameter optimization across multiple agents
- Fault tolerance during long-running training
- Dynamic load balancing and agent scaling
- Cost optimization and budget management
"""
def run_distributed_training_example() do
IO.puts("🤖 Starting Distributed ML Training Coordination")
# Phase 1: Resource Discovery and Agent Characterization
{:ok, compute_agents} = discover_and_characterize_compute_agents()
# Phase 2: Training Strategy Consensus
{:ok, training_strategy} = coordinate_training_strategy(compute_agents)
# Phase 3: Resource Allocation Optimization
{:ok, resource_allocation} = optimize_resource_allocation(compute_agents, training_strategy)
# Phase 4: Distributed Training Execution with Coordination
{:ok, training_results} = execute_coordinated_training(compute_agents, resource_allocation)
# Phase 5: Results Aggregation and Model Selection
{:ok, final_model} = coordinate_model_selection(training_results)
validate_distributed_training_results(final_model, training_results)
end
defp discover_and_characterize_compute_agents() do
# Create realistic heterogeneous compute environment
agent_specifications = [
# High-end GPU servers
%{type: :gpu_powerhouse, count: 4, spec: %{gpus: 8, memory: "80GB", cpu_cores: 64}},
# Mid-range GPU workstations
%{type: :gpu_workstation, count: 8, spec: %{gpus: 2, memory: "16GB", cpu_cores: 16}},
# CPU-only servers for preprocessing
%{type: :cpu_server, count: 12, spec: %{gpus: 0, memory: "32GB", cpu_cores: 32}},
# Edge devices for inference testing
%{type: :edge_device, count: 20, spec: %{gpus: 0, memory: "4GB", cpu_cores: 4}}
]
agents = for spec <- agent_specifications, i <- 1..spec.count do
agent_id = :"#{spec.type}_#{i}"
create_compute_agent(agent_id, spec.type, spec.spec)
end
# Characterize agents through benchmarking coordination
{:ok, characterization_session} = Coordination.start_weighted_consensus(
%{task: :agent_characterization, benchmark_suite: :ml_training},
agents,
[timeout_ms: 30_000, consensus_threshold: 0.9]
)
{:ok, characterization_results} = Coordination.get_coordination_result(characterization_session)
# Enhance agents with characterization data
characterized_agents = enhance_agents_with_benchmarks(agents, characterization_results)
{:ok, characterized_agents}
end
defp coordinate_training_strategy(compute_agents) do
# Use iterative refinement to develop optimal training strategy
initial_strategy = %{
model_architecture: :transformer,
dataset: :large_language_corpus,
training_approach: :data_parallel,
optimization_algorithm: :adamw,
learning_rate_schedule: :cosine_annealing
}
{:ok, strategy_session} = Coordination.start_iterative_consensus(
initial_strategy,
compute_agents,
[
max_rounds: 5,
convergence_threshold: 0.85,
timeout_ms: 120_000
]
)
# Simulate expert feedback during iterative refinement
spawn(fn -> provide_expert_feedback(strategy_session, compute_agents) end)
{:ok, refined_strategy} = Coordination.get_coordination_result(strategy_session)
{:ok, refined_strategy}
end
defp optimize_resource_allocation(compute_agents, training_strategy) do
# Use weighted voting with resource-based expertise scoring
allocation_proposal = %{
strategy: training_strategy,
available_resources: summarize_available_resources(compute_agents),
optimization_objectives: %{
minimize_training_time: 0.4,
minimize_cost: 0.3,
maximize_fault_tolerance: 0.3
}
}
# Weight agents based on their resource capacity and reliability
expertise_weights = calculate_resource_expertise_weights(compute_agents)
{:ok, allocation_session} = Coordination.start_weighted_consensus(
allocation_proposal,
compute_agents,
[
timeout_ms: 60_000,
consensus_threshold: 0.8,
initial_weights: expertise_weights,
dynamic_weight_updates: true
]
)
{:ok, allocation_result} = Coordination.get_coordination_result(allocation_session)
{:ok, allocation_result}
end
end
4.2 LLM Ensemble Reasoning Coordination
Scenario: Coordinating multiple LLM agents for complex reasoning tasks
- Chain-of-Thought Coordination: Multi-step reasoning across specialized LLMs
- Reasoning Consensus: Aggregating insights from different reasoning approaches
- Quality Assessment: Evaluating and selecting best reasoning paths
File: /examples/llm_ensemble_reasoning.exs
defmodule Examples.LLMEnsembleReasoning do
@moduledoc """
Demonstrates coordination of multiple LLM agents for complex reasoning.
This example validates:
- Chain-of-thought coordination across specialized LLMs
- Reasoning consensus and quality assessment
- Multi-modal reasoning integration
- Adaptive reasoning strategy selection
- Real-time reasoning quality monitoring
"""
def run_ensemble_reasoning_example() do
IO.puts("🧠 Starting LLM Ensemble Reasoning Coordination")
# Phase 1: Setup Specialized LLM Agents
{:ok, llm_ensemble} = setup_specialized_llm_agents()
# Phase 2: Complex Reasoning Task Coordination
{:ok, reasoning_results} = coordinate_complex_reasoning_task(llm_ensemble)
# Phase 3: Reasoning Quality Assessment and Selection
{:ok, best_reasoning} = assess_and_select_reasoning(reasoning_results)
# Phase 4: Multi-Modal Integration
{:ok, enhanced_reasoning} = integrate_multimodal_insights(best_reasoning, llm_ensemble)
validate_reasoning_quality(enhanced_reasoning)
end
defp setup_specialized_llm_agents() do
# Create diverse LLM agents with different specializations
llm_specifications = [
# Mathematical reasoning specialists
%{type: :math_specialist, count: 3, model: "gpt-4-math", specialization: :mathematical_reasoning},
# Logical reasoning specialists
%{type: :logic_specialist, count: 3, model: "claude-logic", specialization: :logical_reasoning},
# Creative reasoning specialists
%{type: :creative_specialist, count: 2, model: "gpt-4-creative", specialization: :creative_reasoning},
# Scientific reasoning specialists
%{type: :science_specialist, count: 3, model: "llama-science", specialization: :scientific_reasoning},
# Common sense reasoning specialists
%{type: :commonsense_specialist, count: 2, model: "claude-commonsense", specialization: :commonsense_reasoning}
]
agents = for spec <- llm_specifications, i <- 1..spec.count do
agent_id = :"#{spec.type}_#{i}"
create_llm_agent(agent_id, spec)
end
# Test and characterize each agent's reasoning capabilities
{:ok, characterization_results} = characterize_llm_reasoning_abilities(agents)
# Create specialized agent groups
ensemble = %{
math_agents: filter_agents_by_type(agents, :math_specialist),
logic_agents: filter_agents_by_type(agents, :logic_specialist),
creative_agents: filter_agents_by_type(agents, :creative_specialist),
science_agents: filter_agents_by_type(agents, :science_specialist),
commonsense_agents: filter_agents_by_type(agents, :commonsense_specialist),
all_agents: agents,
characterization: characterization_results
}
{:ok, ensemble}
end
defp coordinate_complex_reasoning_task(llm_ensemble) do
# Complex multi-step reasoning problem requiring diverse expertise
reasoning_task = %{
problem: """
A research laboratory is designing a sustainable energy system for a remote island community.
The system must:
1. Provide reliable 24/7 power for 500 residents
2. Use only renewable energy sources
3. Operate within a $2M budget
4. Be maintainable by local technicians
5. Survive extreme weather events (hurricanes, typhoons)
Design an optimal solution considering technical feasibility, environmental impact,
economic constraints, and social acceptance.
""",
reasoning_requirements: %{
mathematical_analysis: :required, # Power calculations, cost analysis
logical_reasoning: :required, # System design logic
creative_problem_solving: :helpful, # Innovative solutions
scientific_analysis: :required, # Technical feasibility
practical_considerations: :required # Real-world constraints
},
output_format: :structured_solution,
quality_threshold: 0.9
}
# Phase 1: Individual Reasoning by Specialized Agents
individual_results = coordinate_individual_reasoning(llm_ensemble, reasoning_task)
# Phase 2: Cross-Pollination of Ideas
cross_pollinated_results = coordinate_idea_cross_pollination(llm_ensemble, individual_results)
# Phase 3: Consensus Building
consensus_results = coordinate_reasoning_consensus(llm_ensemble, cross_pollinated_results)
{:ok, %{
individual: individual_results,
cross_pollinated: cross_pollinated_results,
consensus: consensus_results
}}
end
defp coordinate_individual_reasoning(llm_ensemble, reasoning_task) do
# Each agent group works on their specialized aspect
reasoning_assignments = %{
math_agents: extract_mathematical_aspects(reasoning_task),
logic_agents: extract_logical_aspects(reasoning_task),
creative_agents: extract_creative_aspects(reasoning_task),
science_agents: extract_scientific_aspects(reasoning_task),
commonsense_agents: extract_practical_aspects(reasoning_task)
}
# Coordinate parallel reasoning sessions
results = for {agent_group, task_aspect} <- reasoning_assignments do
agents = Map.get(llm_ensemble, agent_group)
{:ok, session_id} = Coordination.start_weighted_consensus(
task_aspect,
agents,
[
timeout_ms: 180_000, # 3 minutes for deep reasoning
consensus_threshold: 0.7,
reasoning_mode: :chain_of_thought,
quality_assessment: true
]
)
{:ok, result} = Coordination.get_coordination_result(session_id)
{agent_group, result}
end
Map.new(results)
end
end
Part 5: Integration and Stress Testing Examples
5.1 Full Foundation Ecosystem Integration
Scenario: Testing coordination with all Foundation services active
- Service Dependencies: ProcessRegistry, Events, Config, Telemetry integration
- Cross-Service Coordination: Coordination triggering events in other services
- Resource Contention: Multiple services competing for resources
File: /examples/full_ecosystem_integration.exs
5.2 Long-Running Coordination Stress Test
Scenario: Extended operation testing for production readiness
- Memory Leak Detection: 24+ hour continuous operation
- Performance Degradation: Monitoring for gradual slowdowns
- Resource Cleanup: Validation of proper resource management
File: /examples/long_running_stress_test.exs
Part 6: Validation Framework and Success Metrics
6.1 Automated Validation Suite
defmodule Examples.ValidationFramework do
@moduledoc """
Automated validation framework for all coordination examples.
This framework provides:
- Automated example execution and validation
- Performance regression detection
- Quality metrics collection and analysis
- Continuous integration test suite
- Production readiness assessment
"""
def run_full_validation_suite() do
IO.puts("🔬 Starting Full Validation Suite")
# Execute all example categories
results = %{
multi_algorithm: run_multi_algorithm_examples(),
scale_performance: run_scale_performance_examples(),
fault_tolerance: run_fault_tolerance_examples(),
ml_scenarios: run_ml_scenario_examples(),
integration: run_integration_examples()
}
# Generate comprehensive validation report
generate_validation_report(results)
# Check production readiness criteria
assess_production_readiness(results)
end
defp assess_production_readiness(results) do
criteria = %{
byzantine_fault_tolerance: check_byzantine_guarantees(results),
performance_requirements: check_performance_requirements(results),
scalability_limits: check_scalability_limits(results),
resource_efficiency: check_resource_efficiency(results),
integration_stability: check_integration_stability(results),
code_quality: check_code_quality_metrics(),
documentation_completeness: check_documentation_completeness()
}
overall_readiness = calculate_overall_readiness(criteria)
%{
production_ready: overall_readiness >= 0.95,
readiness_score: overall_readiness,
criteria: criteria,
recommendations: generate_improvement_recommendations(criteria)
}
end
end
6.2 Success Criteria Specification
Functional Requirements:
- All Byzantine consensus examples maintain safety and liveness
- Weighted voting examples produce fair and accurate results
- Iterative refinement examples converge to high-quality solutions
- All coordination algorithms integrate seamlessly with Foundation services
Performance Requirements:
- Byzantine consensus: <5 seconds for 13 agents, <30 seconds for 100 agents
- Weighted voting: <2 seconds for 50 agents, <10 seconds for 200 agents
- Iterative refinement: <5 rounds for 90% convergence, <30 seconds per round
- Memory usage: <1GB total for 100 concurrent coordination sessions
Quality Requirements:
- Zero memory leaks during 24+ hour stress tests
- <1% performance degradation over extended operation
- >99.9% success rate under normal operating conditions
- Graceful degradation under fault conditions
Integration Requirements:
- Seamless integration with all Foundation services
- Proper telemetry emission for all coordination events
- Effective error handling and recovery mechanisms
- Consistent behavior across different deployment environments
This comprehensive examples specification provides a robust validation framework that goes far beyond basic functionality testing. It ensures the Foundation MABEAM system is production-ready for real-world multi-agent coordination scenarios while validating all critical properties of distributed consensus, fault tolerance, and performance.