Multi-Agent Coordination Patterns
Overview
This document defines the coordination patterns used in MABEAM for multi-agent ML workflows, including consensus protocols, leader election, distributed decision making, and variable synchronization across agent networks.
Coordination Architecture
Coordination System Hierarchy
MABEAM.CoordinationSupervisor
├── MABEAM.Coordination (Consensus & Leader Election)
├── MABEAM.Economics (Resource Allocation & Cost Optimization)
└── MABEAM.LoadBalancer (Workload Distribution)
Coordination Primitives
1. Consensus Protocol (Modified Raft)
- Purpose: Distributed agreement on parameter changes
- Participants: All agents marked as
participates_in_consensus: true
- Guarantee: At least majority agreement before parameter changes
- Fault Tolerance: Handles network partitions and agent failures
2. Leader Election
- Purpose: Designate coordination leader for conflict resolution
- Algorithm: Bully algorithm with stability preference
- Failover: Automatic re-election on leader failure
- Scope: Can be global or per-agent-group
3. Variable Synchronization
- Purpose: Coordinate ML parameter updates across agents
- Pattern: Broadcast with acknowledgment
- Consistency: Eventual consistency with conflict resolution
- Ordering: Vector clocks for causal ordering
4. Distributed Barriers
- Purpose: Synchronize multi-agent operations
- Implementation: Count-based barriers with timeout
- Use Cases: Coordinated training epochs, checkpoint synchronization
Core Coordination Patterns
Pattern 1: Variable Consensus Protocol
Consensus Initiation
defmodule MABEAM.Coordination do
def propose_variable_change(variable_name, new_value, metadata \\ %{}) do
proposal = %{
id: generate_proposal_id(),
variable: variable_name,
value: new_value,
proposer: self(),
timestamp: DateTime.utc_now(),
metadata: metadata
}
# Start consensus round
start_consensus_round(proposal)
end
defp start_consensus_round(proposal) do
# Get all agents eligible for consensus
eligible_agents = get_consensus_eligible_agents()
# Broadcast proposal to all agents
for agent_pid <- eligible_agents do
GenServer.cast(agent_pid, {:consensus_proposal, proposal})
end
# Set timeout for consensus
ref = make_ref()
Process.send_after(self(), {:consensus_timeout, proposal.id, ref}, 30_000)
# Track consensus state
consensus_state = %{
proposal: proposal,
votes: %{},
participants: eligible_agents,
timeout_ref: ref,
status: :voting
}
put_consensus_state(proposal.id, consensus_state)
end
end
Agent Consensus Participation
defmodule MABEAM.Agents.BaseAgent do
def handle_cast({:consensus_proposal, proposal}, state) do
# Evaluate proposal based on agent's current context
vote = evaluate_consensus_proposal(proposal, state)
# Cast vote back to coordination system
MABEAM.Coordination.cast_vote(proposal.id, vote, %{
agent_id: state.agent_id,
rationale: vote.rationale
})
{:noreply, state}
end
defp evaluate_consensus_proposal(proposal, state) do
# Agent-specific evaluation logic
case proposal.variable do
:learning_rate ->
evaluate_learning_rate_change(proposal.value, state)
:batch_size ->
evaluate_batch_size_change(proposal.value, state)
:model_architecture ->
evaluate_architecture_change(proposal.value, state)
_ ->
# Default: accept if no specific concerns
%{vote: :accept, confidence: 0.5, rationale: "no specific concerns"}
end
end
end
Consensus Resolution
def handle_call({:cast_vote, proposal_id, vote, metadata}, {agent_pid, _}, state) do
case get_consensus_state(proposal_id) do
{:ok, consensus_state} when consensus_state.status == :voting ->
# Record vote
new_votes = Map.put(consensus_state.votes, agent_pid, {vote, metadata})
updated_state = %{consensus_state | votes: new_votes}
# Check if we have enough votes
case check_consensus_threshold(updated_state) do
{:consensus_reached, decision} ->
finalize_consensus(proposal_id, decision, updated_state)
{:reply, :ok, state}
{:consensus_failed, reason} ->
fail_consensus(proposal_id, reason, updated_state)
{:reply, :ok, state}
:insufficient_votes ->
put_consensus_state(proposal_id, updated_state)
{:reply, :ok, state}
end
_ ->
{:reply, {:error, :invalid_consensus_state}, state}
end
end
defp check_consensus_threshold(consensus_state) do
total_agents = length(consensus_state.participants)
votes_cast = map_size(consensus_state.votes)
# Require majority participation
if votes_cast >= div(total_agents, 2) + 1 do
# Analyze vote distribution
vote_summary = analyze_votes(consensus_state.votes)
cond do
vote_summary.accept_ratio >= 0.6 ->
{:consensus_reached, :accept}
vote_summary.reject_ratio >= 0.4 ->
{:consensus_reached, :reject}
true ->
{:consensus_failed, :no_clear_majority}
end
else
:insufficient_votes
end
end
Pattern 2: Leader Election Protocol
Election Initiation
defmodule MABEAM.Coordination.LeaderElection do
def start_election(reason \\ :leadership_vacant) do
election_id = generate_election_id()
# Get all leadership-eligible agents
candidates = get_leadership_eligible_agents()
election_context = %{
id: election_id,
reason: reason,
candidates: candidates,
votes: %{},
started_at: DateTime.utc_now(),
status: :voting
}
# Broadcast election call to all agents
for agent_pid <- get_all_agents() do
GenServer.cast(agent_pid, {:leader_election, election_context})
end
# Set election timeout
Process.send_after(self(), {:election_timeout, election_id}, 15_000)
put_election_state(election_id, election_context)
end
def handle_cast({:election_vote, election_id, voted_for, voter_metadata}, state) do
case get_election_state(election_id) do
{:ok, election} when election.status == :voting ->
# Record vote
new_votes = Map.put(election.votes, voter_metadata.agent_id, voted_for)
updated_election = %{election | votes: new_votes}
# Check if election can be decided
case tally_election_votes(updated_election) do
{:leader_elected, leader_agent_id} ->
finalize_leader_election(election_id, leader_agent_id)
{:noreply, state}
:insufficient_votes ->
put_election_state(election_id, updated_election)
{:noreply, state}
end
_ ->
{:noreply, state}
end
end
end
Agent Election Participation
def handle_cast({:leader_election, election_context}, state) do
# Evaluate candidates and cast vote
preferred_leader = evaluate_leadership_candidates(
election_context.candidates,
state
)
# Cast vote for preferred leader
MABEAM.Coordination.LeaderElection.cast_vote(
election_context.id,
preferred_leader,
%{agent_id: state.agent_id, timestamp: DateTime.utc_now()}
)
{:noreply, state}
end
defp evaluate_leadership_candidates(candidates, state) do
# Score candidates based on:
# - Performance metrics
# - Resource availability
# - Specialization match
# - Historical reliability
candidate_scores = Enum.map(candidates, fn candidate ->
score = calculate_leadership_score(candidate, state)
{candidate, score}
end)
# Return candidate with highest score
{best_candidate, _score} = Enum.max_by(candidate_scores, fn {_, score} -> score end)
best_candidate
end
Pattern 3: Variable Synchronization
Broadcast Synchronization
defmodule MABEAM.Coordination.VariableSync do
def broadcast_variable_update(variable_name, new_value, metadata \\ %{}) do
update_context = %{
variable: variable_name,
value: new_value,
version: generate_version(),
timestamp: DateTime.utc_now(),
metadata: metadata,
coordinator: self()
}
# Vector clock for causal ordering
vector_clock = get_current_vector_clock()
update_with_clock = Map.put(update_context, :vector_clock, vector_clock)
# Broadcast to all agents
agents = get_all_active_agents()
for agent_pid <- agents do
GenServer.cast(agent_pid, {:variable_update, update_with_clock})
end
# Track acknowledgments
track_update_acknowledgments(update_context.version, agents)
end
def handle_cast({:variable_update_ack, version, agent_id, local_clock}, state) do
# Update vector clock with agent's local clock
merged_clock = merge_vector_clocks(state.vector_clock, local_clock)
# Mark acknowledgment received
mark_acknowledgment_received(version, agent_id)
# Check if all agents have acknowledged
case check_all_acknowledged(version) do
true ->
finalize_variable_update(version)
{:noreply, %{state | vector_clock: merged_clock}}
false ->
{:noreply, %{state | vector_clock: merged_clock}}
end
end
end
Agent Variable Synchronization
def handle_cast({:variable_update, update_context}, state) do
# Check if this update is newer than current state
case compare_vector_clocks(update_context.vector_clock, state.vector_clock) do
:newer ->
# Apply update
new_variables = Map.put(state.variables, update_context.variable, update_context.value)
new_state = %{state |
variables: new_variables,
vector_clock: update_context.vector_clock
}
# Acknowledge update
MABEAM.Coordination.VariableSync.acknowledge_update(
update_context.version,
state.agent_id,
new_state.vector_clock
)
# Trigger any necessary behavior changes
adapted_state = adapt_to_variable_change(
update_context.variable,
update_context.value,
new_state
)
{:noreply, adapted_state}
:older ->
# Ignore stale update
{:noreply, state}
:concurrent ->
# Conflict resolution needed
resolved_state = resolve_variable_conflict(update_context, state)
{:noreply, resolved_state}
end
end
Pattern 4: Distributed Barriers
Barrier Coordination
defmodule MABEAM.Coordination.Barriers do
def create_barrier(barrier_id, participant_count, timeout \\ 30_000) do
barrier_context = %{
id: barrier_id,
required_participants: participant_count,
arrived_participants: [],
timeout: timeout,
status: :waiting,
created_at: DateTime.utc_now()
}
# Set timeout
Process.send_after(self(), {:barrier_timeout, barrier_id}, timeout)
put_barrier_state(barrier_id, barrier_context)
end
def arrive_at_barrier(barrier_id, agent_id) do
case get_barrier_state(barrier_id) do
{:ok, barrier} when barrier.status == :waiting ->
# Add agent to arrived list
new_arrived = [agent_id | barrier.arrived_participants]
updated_barrier = %{barrier | arrived_participants: new_arrived}
# Check if barrier condition met
if length(new_arrived) >= barrier.required_participants do
# Release all waiting agents
release_barrier(barrier_id, updated_barrier)
else
put_barrier_state(barrier_id, updated_barrier)
end
_ ->
{:error, :barrier_not_available}
end
end
defp release_barrier(barrier_id, barrier_context) do
# Notify all participants that barrier is released
for agent_id <- barrier_context.arrived_participants do
case get_agent_pid(agent_id) do
{:ok, pid} ->
GenServer.cast(pid, {:barrier_released, barrier_id})
_ ->
:ok
end
end
# Update barrier status
completed_barrier = %{barrier_context |
status: :completed,
completed_at: DateTime.utc_now()
}
put_barrier_state(barrier_id, completed_barrier)
end
end
Agent Barrier Participation
def handle_call({:wait_for_barrier, barrier_id}, from, state) do
# Arrive at barrier
case MABEAM.Coordination.Barriers.arrive_at_barrier(barrier_id, state.agent_id) do
:ok ->
# Wait for barrier release
waiting_state = %{state |
waiting_for_barrier: barrier_id,
barrier_caller: from
}
{:noreply, waiting_state}
{:error, reason} ->
{:reply, {:error, reason}, state}
end
end
def handle_cast({:barrier_released, barrier_id}, state) do
if state.waiting_for_barrier == barrier_id do
# Reply to waiting caller
GenServer.reply(state.barrier_caller, :ok)
# Clear waiting state
new_state = %{state |
waiting_for_barrier: nil,
barrier_caller: nil
}
{:noreply, new_state}
else
{:noreply, state}
end
end
Coordination Use Cases
Use Case 1: Coordinated Hyperparameter Optimization
Scenario: Multiple agents optimize different aspects of ML pipeline
def coordinate_hyperparameter_optimization(optimization_context) do
# 1. Elect optimization coordinator
{:ok, coordinator} = MABEAM.Coordination.elect_coordinator(:hyperparameter_optimization)
# 2. Distribute optimization tasks
tasks = partition_hyperparameter_space(optimization_context.parameter_space)
for {agent_id, task} <- Enum.zip(get_optimizer_agents(), tasks) do
assign_optimization_task(agent_id, task)
end
# 3. Coordinate optimization rounds
for round <- 1..optimization_context.max_rounds do
# Barrier: Wait for all agents to complete round
barrier_id = "optimization_round_#{round}"
MABEAM.Coordination.Barriers.create_barrier(barrier_id, length(tasks))
# Agents perform optimization and arrive at barrier
# ...
# Consensus: Decide on best parameters from round
round_results = collect_round_results(round)
{:ok, best_params} = MABEAM.Coordination.reach_consensus_on_best_params(round_results)
# Broadcast: Update all agents with best parameters
MABEAM.Coordination.broadcast_parameter_update(best_params)
end
end
Use Case 2: Distributed Model Training
Scenario: Multiple agents train different parts of a model collaboratively
def coordinate_distributed_training(training_context) do
# 1. Partition training data across agents
data_partitions = partition_training_data(training_context.dataset)
# 2. Synchronize model initialization
initial_model = initialize_model(training_context.model_spec)
MABEAM.Coordination.broadcast_model_state(initial_model)
# 3. Coordinate training epochs
for epoch <- 1..training_context.epochs do
epoch_barrier = "training_epoch_#{epoch}"
# Start epoch
MABEAM.Coordination.broadcast_epoch_start(epoch)
# Agents train on local data
# ...
# Barrier: Wait for all agents to complete local training
MABEAM.Coordination.Barriers.create_barrier(epoch_barrier, length(data_partitions))
# Collect gradients from all agents
gradients = collect_agent_gradients(epoch)
# Consensus: Aggregate gradients (e.g., FedAvg)
{:ok, aggregated_gradients} = aggregate_gradients_with_consensus(gradients)
# Broadcast: Update model with aggregated gradients
MABEAM.Coordination.broadcast_model_update(aggregated_gradients)
end
end
Use Case 3: Multi-Agent Reinforcement Learning
Scenario: Agents coordinate exploration and exploitation strategies
def coordinate_multi_agent_rl(rl_context) do
# 1. Elect exploration coordinator
{:ok, coordinator} = MABEAM.Coordination.elect_coordinator(:exploration)
# 2. Coordinate exploration-exploitation balance
exploration_schedule = create_exploration_schedule(rl_context)
for episode <- 1..rl_context.episodes do
# Consensus: Decide exploration strategy for episode
exploration_strategy = determine_exploration_strategy(episode, exploration_schedule)
{:ok, agreed_strategy} = MABEAM.Coordination.reach_consensus_on_strategy(exploration_strategy)
# Broadcast: Update all agents with exploration strategy
MABEAM.Coordination.broadcast_exploration_strategy(agreed_strategy)
# Agents execute episode with coordinated strategy
# ...
# Collect experiences from all agents
experiences = collect_agent_experiences(episode)
# Consensus: Decide on experience sharing strategy
{:ok, shared_experiences} = MABEAM.Coordination.reach_consensus_on_experience_sharing(experiences)
# Broadcast: Share experiences across agents
MABEAM.Coordination.broadcast_shared_experiences(shared_experiences)
end
end
Performance Considerations
Latency Optimization
- Async Coordination: Use GenServer.cast for non-blocking coordination
- Batch Updates: Group multiple variable updates into single broadcasts
- Local Caching: Cache frequently accessed coordination state locally
Scalability Patterns
- Hierarchical Coordination: Organize agents into groups with group coordinators
- Gossip Protocols: Use epidemic protocols for large-scale information dissemination
- Partition Tolerance: Design coordination to handle network partitions gracefully
Fault Tolerance
- Coordinator Failover: Automatic re-election of coordination leaders
- Partial Consensus: Continue operation with reduced participant set
- State Recovery: Recover coordination state from persistent storage
Testing Coordination Patterns
Consensus Testing
test "consensus protocol handles majority agreement" do
# Setup agents with different preferences
agents = setup_test_agents(5)
# Propose parameter change
proposal = %{variable: :learning_rate, value: 0.01}
{:ok, proposal_id} = MABEAM.Coordination.propose_variable_change(proposal)
# Simulate votes (3 accept, 2 reject)
vote_pattern = [:accept, :accept, :accept, :reject, :reject]
simulate_consensus_votes(agents, proposal_id, vote_pattern)
# Verify consensus reached
assert_consensus_reached(proposal_id, :accept)
assert_variable_updated(:learning_rate, 0.01)
end
Leader Election Testing
test "leader election handles node failures" do
# Setup agents with different capabilities
agents = setup_test_agents_with_capabilities()
# Start election
{:ok, election_id} = MABEAM.Coordination.start_election()
# Simulate node failure during election
[leader_candidate | _] = agents
Process.exit(leader_candidate, :kill)
# Verify election completes with remaining candidates
assert_election_completed(election_id)
assert_leader_elected_from_remaining_candidates()
end
Summary
This coordination system provides:
- Distributed Consensus: Reliable parameter agreement across agent networks
- Leader Election: Automatic coordination leadership with failover
- Variable Synchronization: Consistent parameter updates with conflict resolution
- Barrier Synchronization: Coordinated multi-agent operations
- Fault Tolerance: Graceful handling of network partitions and agent failures
- Scalability: Hierarchical coordination for large agent networks
- Performance: Optimized for low-latency, high-throughput coordination
The coordination patterns enable sophisticated multi-agent ML workflows while maintaining the reliability and fault tolerance characteristics of the BEAM platform.