Performance Optimization Roadmap
Executive Summary
This roadmap synthesizes findings from multiple performance analyses to provide a comprehensive strategy for optimizing the Foundation + MABEAM platform. We have identified specific bottlenecks, anti-patterns, and systematic improvements that will transform this revolutionary multi-agent ML system into a high-performance, production-ready platform.
Current Performance Assessment
✅ Architectural Strengths
Based on comprehensive analysis, the system has solid performance foundations:
- Process-per-Agent Model: Efficient BEAM lightweight processes (~1MB per agent)
- ETS-Based Registries: Sub-millisecond service discovery
- Event-Driven Architecture: Asynchronous coordination protocols
- Distributed Design: Built for horizontal scaling across BEAM clusters
🔴 Critical Performance Issues
1. GenServer Bottlenecks (CRITICAL)
From GENSERVER_BOTTLENECK_ANALYSIS.md:
- Issue: Excessive
GenServer.call
usage creating serialization points - Hotspots:
mabeam/economics.ex
,mabeam/coordination.ex
, Foundation services - Impact: Reduced concurrency, cascading failures under load
2. Process.sleep Anti-Patterns (HIGH)
From PERFORMANCE_AND_SLEEP_AUDIT.md:
- Issue: 75+ files using
Process.sleep
for timing - Impact: Non-deterministic tests, unreliable performance measurements
- Test Flakiness: ~15% test failure rate due to timing issues
3. Memory Testing Inaccuracy (HIGH)
From PERFORMANCE_CODE_FIXES.md:
- Issue: Global memory measurements using
:erlang.memory(:total)
- Impact: Noisy, unreliable memory leak detection
- Testing: 50% memory reduction assertions failing randomly
4. Manual Performance Testing (MEDIUM)
From CODE_PERFORMANCE.md:
- Issue: Manual timing with
:timer.tc
, no statistical analysis - Impact: Unreliable performance regression detection
- Missing: Service Level Objectives (SLOs) and performance budgets
Performance Optimization Strategy
Phase 1: Eliminate Synchronous Bottlenecks (Weeks 1-2)
Target: 50% reduction in GenServer.call usage, 3x concurrency improvement
Week 1: Critical Path Optimization
1.1 MABEAM Economics Async Conversion
# Current bottleneck (mabeam/economics.ex)
def calculate_resource_allocation(agents, resources) do
# Multiple synchronous calls creating serialization
Enum.map(agents, fn agent ->
GenServer.call(agent, :get_resource_needs) # Bottleneck!
end)
end
# Optimized version
def calculate_resource_allocation_async(agents, resources) do
# Parallel resource need gathering
tasks = Enum.map(agents, fn agent ->
Task.async(fn -> GenServer.call(agent, :get_resource_needs) end)
end)
# Collect results asynchronously
resource_needs = Task.await_many(tasks, 5000)
# Delegate computation to Task
Task.async(fn ->
compute_optimal_allocation(resource_needs, resources)
end)
end
1.2 Coordination Protocol Optimization
# Current bottleneck (mabeam/coordination.ex)
def broadcast_consensus_proposal(proposal, agents) do
Enum.each(agents, fn agent ->
GenServer.call(agent, {:consensus_proposal, proposal}) # Serialized!
end)
end
# Optimized version
def broadcast_consensus_proposal_async(proposal, agents) do
# Parallel proposal broadcasting
Enum.each(agents, fn agent ->
GenServer.cast(agent, {:consensus_proposal, proposal}) # Async!
end)
# Use separate collector for responses
start_consensus_collector(proposal.id, length(agents))
end
1.3 Foundation Service CQRS Pattern
# Current bottleneck (Foundation services)
defmodule Foundation.ProcessRegistry do
# All reads go through GenServer call
def lookup(namespace, service) do
GenServer.call(__MODULE__, {:lookup, {namespace, service}}) # Bottleneck!
end
end
# Optimized CQRS pattern
defmodule Foundation.ProcessRegistry do
# Reads from ETS (fast, concurrent)
def lookup(namespace, service) do
case :ets.lookup(:process_registry_read, {namespace, service}) do
[{_, pid, metadata}] -> {:ok, pid}
[] -> :error
end
end
# Writes through GenServer (consistency)
def register(namespace, service, pid, metadata) do
GenServer.call(__MODULE__, {:register, {namespace, service}, pid, metadata})
end
# GenServer maintains ETS read table
def handle_call({:register, key, pid, metadata}, _from, state) do
# Update ETS for fast reads
:ets.insert(:process_registry_read, {key, pid, metadata})
# Update backend for persistence
{:ok, new_state} = backend_register(state, key, pid, metadata)
{:reply, :ok, new_state}
end
end
Week 2: Agent Communication Optimization
2.1 Variable Synchronization Batching
# Current: Individual variable updates
def update_agent_variable(agent_id, variable, value) do
case get_agent_pid(agent_id) do
{:ok, pid} -> GenServer.call(pid, {:update_variable, variable, value}) # Per-variable call
error -> error
end
end
# Optimized: Batched updates
def update_agent_variables_batch(agent_id, variable_updates) do
case get_agent_pid(agent_id) do
{:ok, pid} -> GenServer.cast(pid, {:update_variables_batch, variable_updates}) # Async batch
error -> error
end
end
def broadcast_variable_updates_batch(variable_updates) do
agents = get_all_active_agents()
# Parallel broadcasting
Task.async(fn ->
Enum.each(agents, fn agent_pid ->
GenServer.cast(agent_pid, {:update_variables_batch, variable_updates})
end)
end)
end
2.2 Agent Pool Management
# Optimized agent spawning
defmodule MABEAM.AgentPool do
use GenServer
def init(_opts) do
# Pre-spawn agent pool for faster task assignment
pool = spawn_agent_pool(10) # 10 ready agents
{:ok, %{pool: pool, active: %{}}}
end
def get_agent(agent_type) do
GenServer.call(__MODULE__, {:get_agent, agent_type})
end
def handle_call({:get_agent, agent_type}, _from, state) do
case get_pooled_agent(state.pool, agent_type) do
{:ok, agent_pid, new_pool} ->
new_state = %{state |
pool: new_pool,
active: Map.put(state.active, agent_pid, agent_type)
}
{:reply, {:ok, agent_pid}, new_state}
:pool_empty ->
# Spawn new agent if pool empty
{:ok, agent_pid} = MABEAM.AgentSupervisor.start_agent(agent_type)
{:reply, {:ok, agent_pid}, state}
end
end
end
Week 1-2 Success Criteria:
- 50% reduction in GenServer.call usage for non-critical operations
- 3x improvement in concurrent agent coordination
- <10ms latency for variable synchronization across 100+ agents
- CQRS pattern implemented for all read-heavy Foundation services
Phase 2: Statistical Performance Testing (Weeks 3-4)
Target: Reliable performance regression detection, baseline memory monitoring
Week 3: Benchee Integration & SLO Definition
3.1 Statistical Performance Framework
# Replace manual timing with Benchee
defmodule Foundation.PerformanceBenchmarks do
use ExUnit.Case
@tag :performance
test "agent coordination latency SLO" do
agents = setup_test_agents(100)
# Statistical benchmarking with Benchee
Benchee.run(%{
"variable_update_broadcast" => fn ->
MABEAM.Coordination.broadcast_variable_update(:learning_rate, 0.01)
end,
"consensus_proposal" => fn ->
MABEAM.Coordination.propose_variable_change(:batch_size, 128)
end
},
time: 10,
memory_time: 2,
formatters: [{Benchee.Formatters.Console, extended_statistics: true}]
)
# Assert SLOs based on statistical results
assert_slo("variable_update_broadcast", %{
p99_latency_ms: 50, # 99th percentile < 50ms
mean_latency_ms: 10, # Mean < 10ms
throughput_ops: 1000 # > 1000 ops/sec
})
end
end
defmodule Foundation.SLOValidator do
def assert_slo(operation, slo_config) do
results = get_benchmark_results(operation)
# Validate 99th percentile latency
p99_ms = results.percentiles[99] / 1_000_000 # Convert to ms
assert p99_ms < slo_config.p99_latency_ms,
"P99 latency #{p99_ms}ms exceeds SLO #{slo_config.p99_latency_ms}ms"
# Validate mean latency
mean_ms = results.average / 1_000_000
assert mean_ms < slo_config.mean_latency_ms,
"Mean latency #{mean_ms}ms exceeds SLO #{slo_config.mean_latency_ms}ms"
# Validate throughput
ops_per_sec = 1_000_000_000 / results.average
assert ops_per_sec > slo_config.throughput_ops,
"Throughput #{ops_per_sec} ops/sec below SLO #{slo_config.throughput_ops}"
end
end
3.2 Memory Leak Detection with Baselines
# Replace global memory measurements
defmodule Foundation.MemoryMonitor do
def measure_process_memory_growth(process_name, workload_fn, iterations \\ 100) do
# Get initial process memory
{:ok, pid} = Foundation.ProcessRegistry.lookup(:production, process_name)
{:memory, initial_memory} = Process.info(pid, :memory)
# Force GC before measurement
:erlang.garbage_collect(pid)
Process.sleep(10) # Allow GC to complete
{:memory, baseline_memory} = Process.info(pid, :memory)
# Run workload
for _ <- 1..iterations do
workload_fn.(pid)
end
# Force GC after workload
:erlang.garbage_collect(pid)
Process.sleep(10)
{:memory, final_memory} = Process.info(pid, :memory)
memory_growth = final_memory - baseline_memory
growth_per_iteration = memory_growth / iterations
%{
baseline_memory: baseline_memory,
final_memory: final_memory,
total_growth: memory_growth,
growth_per_iteration: growth_per_iteration,
iterations: iterations
}
end
end
# Property-based memory testing
defmodule Foundation.MemoryProperties do
use ExUnit.Case
use ExUnitProperties
property "ProcessRegistry memory usage remains stable under load" do
check all(
operation_count <- integer(1..1000),
max_runs: 10
) do
memory_stats = Foundation.MemoryMonitor.measure_process_memory_growth(
:process_registry,
fn _pid ->
Foundation.ProcessRegistry.register(:test, :temp_service, self())
Foundation.ProcessRegistry.unregister(:test, :temp_service)
end,
operation_count
)
# Assert memory growth per operation is bounded
assert memory_stats.growth_per_iteration < 1024 # < 1KB per operation
# Assert total memory growth is reasonable
max_growth = operation_count * 1024 # 1KB per operation max
assert memory_stats.total_growth < max_growth
end
end
end
Week 4: Event-Driven Test Patterns
4.1 Replace Process.sleep with Deterministic Patterns
# Current anti-pattern
test "agent coordination eventually completes" do
agents = start_test_agents(5)
MABEAM.Coordination.start_consensus(:learning_rate, 0.01)
Process.sleep(1000) # Non-deterministic!
assert consensus_reached?(:learning_rate)
end
# Optimized event-driven pattern
test "agent coordination completes deterministically" do
agents = start_test_agents(5)
# Subscribe to consensus events
:ok = MABEAM.Coordination.subscribe_to_consensus_events(self())
# Start consensus
MABEAM.Coordination.start_consensus(:learning_rate, 0.01)
# Wait for specific event - deterministic
assert_receive {:consensus_reached, :learning_rate, 0.01}, 5000
# Verify final state
assert consensus_reached?(:learning_rate)
end
# Pattern: Use monitors instead of polling
test "agent crash detection is immediate" do
{:ok, agent_pid} = MABEAM.AgentRegistry.start_agent(:test_agent)
# Monitor for crash notification
ref = Process.monitor(agent_pid)
# Crash the agent
Process.exit(agent_pid, :kill)
# Deterministic crash detection
assert_receive {:DOWN, ^ref, :process, ^agent_pid, :killed}, 1000
# Verify registry updated
assert {:error, :not_found} = MABEAM.AgentRegistry.get_agent_pid(:test_agent)
end
4.2 Service Availability Testing Fix
# Current race condition
test "service becomes available" do
start_service(:config_server)
Process.sleep(100) # Race condition!
assert service_available?(:config_server)
end
# Deterministic service startup
test "service availability is deterministic" do
# Start service and wait for ready signal
{:ok, service_pid} = start_service_monitored(:config_server)
# Service sends ready notification when fully initialized
assert_receive {:service_ready, :config_server, ^service_pid}, 5000
# Now safe to test availability
assert service_available?(:config_server)
end
defp start_service_monitored(service_name) do
# Start service with explicit ready notification
{:ok, pid} = Foundation.ConfigServer.start_link([notify_ready: self()])
# Register in test namespace
Foundation.ProcessRegistry.register(:test, service_name, pid)
{:ok, pid}
end
Week 3-4 Success Criteria:
- Statistical performance testing with Benchee for all critical components
- Memory leak detection with <1KB growth per operation baseline
- Zero Process.sleep usage in performance tests
- Deterministic test execution with event-driven patterns
- SLO violations automatically fail CI builds
Phase 3: Memory & Resource Optimization (Weeks 5-6)
Target: Zero memory leaks, optimized resource usage, automatic cleanup
Week 5: Memory Management Optimization
5.1 ETS Table Management
# Optimized ETS lifecycle management
defmodule Foundation.OptimizedETS do
def create_managed_table(name, opts) do
# Create table with automatic cleanup
table = :ets.new(name, [:named_table, :public | opts])
# Register cleanup process
cleanup_pid = spawn_link(fn ->
receive
{:cleanup, ^table} -> cleanup_table(table)
end
end)
# Store cleanup reference
:persistent_term.put({:ets_cleanup, table}, cleanup_pid)
table
end
def cleanup_table(table) do
case :ets.info(table) do
:undefined -> :ok
_ ->
:ets.delete(table)
:persistent_term.erase({:ets_cleanup, table})
end
end
end
5.2 Agent Memory Limits
# Agent process memory management
defmodule MABEAM.Agents.BaseAgent do
use GenServer
def init(opts) do
# Set process memory limits
max_memory = Keyword.get(opts, :max_memory, 50_000_000) # 50MB default
Process.flag(:max_heap_size, %{
size: max_memory,
kill: true,
error_logger: true
})
# Set process priority
priority = Keyword.get(opts, :priority, :normal)
Process.flag(:priority, priority)
# Initialize with memory monitoring
state = %{
agent_id: opts[:agent_id],
memory_limit: max_memory,
last_gc: System.monotonic_time(),
gc_interval: 30_000 # 30 seconds
}
schedule_memory_check(state.gc_interval)
{:ok, state}
end
def handle_info(:memory_check, state) do
{:memory, current_memory} = Process.info(self(), :memory)
if current_memory > state.memory_limit * 0.8 do # 80% threshold
:erlang.garbage_collect(self())
Logger.warn("Agent #{state.agent_id} triggered GC: #{current_memory} bytes")
end
schedule_memory_check(state.gc_interval)
{:noreply, state}
end
end
Week 6: Resource Pool Optimization
6.1 Connection Pool Management
# Optimized connection pooling
defmodule Foundation.ConnectionPool do
use GenServer
def init(opts) do
pool_size = Keyword.get(opts, :pool_size, 10)
max_overflow = Keyword.get(opts, :max_overflow, 5)
# Create initial pool
pool = create_connection_pool(pool_size)
state = %{
pool: pool,
pool_size: pool_size,
max_overflow: max_overflow,
overflow_count: 0,
waiting: :queue.new()
}
{:ok, state}
end
def handle_call(:get_connection, from, state) do
case get_available_connection(state.pool) do
{:ok, conn, new_pool} ->
new_state = %{state | pool: new_pool}
{:reply, {:ok, conn}, new_state}
:pool_empty when state.overflow_count < state.max_overflow ->
# Create overflow connection
{:ok, conn} = create_connection()
new_state = %{state | overflow_count: state.overflow_count + 1}
{:reply, {:ok, conn}, new_state}
:pool_empty ->
# Add to waiting queue
new_waiting = :queue.in(from, state.waiting)
new_state = %{state | waiting: new_waiting}
{:noreply, new_state}
end
end
end
6.2 Task Pool for Coordination
# Optimized task pooling for coordination
defmodule MABEAM.CoordinationTaskPool do
use GenServer
def init(opts) do
worker_count = Keyword.get(opts, :worker_count, System.schedulers_online())
# Start worker pool
workers = Enum.map(1..worker_count, fn i ->
{:ok, pid} = MABEAM.CoordinationWorker.start_link([worker_id: i])
{i, pid}
end)
{:ok, %{workers: Map.new(workers), next_worker: 1}}
end
def execute_coordination_task(task) do
GenServer.call(__MODULE__, {:execute_task, task})
end
def handle_call({:execute_task, task}, _from, state) do
# Round-robin task assignment
worker_id = state.next_worker
worker_pid = Map.get(state.workers, worker_id)
# Execute task asynchronously
Task.start(fn ->
MABEAM.CoordinationWorker.execute(worker_pid, task)
end)
# Update next worker
next_worker = rem(worker_id, map_size(state.workers)) + 1
new_state = %{state | next_worker: next_worker}
{:reply, :ok, new_state}
end
end
Week 5-6 Success Criteria:
- Zero memory leaks in long-running processes
- Automatic resource cleanup for all ETS tables
- Process memory limits enforced for all agents
- Connection pooling optimized for coordination traffic
- Memory usage stays flat under sustained load
Phase 4: Advanced Performance Features (Weeks 7-8)
Target: Production-grade performance monitoring, optimization automation
Week 7: Real-Time Performance Monitoring
7.1 Performance Metrics Collection
# Real-time performance telemetry
defmodule Foundation.PerformanceTelemetry do
def track_operation(operation_name, operation_fn) do
start_time = System.monotonic_time(:microsecond)
try do
result = operation_fn.()
duration = System.monotonic_time(:microsecond) - start_time
# Emit performance metrics
:telemetry.execute(
[:foundation, :performance, :operation_completed],
%{duration: duration},
%{operation: operation_name, status: :success}
)
result
rescue
error ->
duration = System.monotonic_time(:microsecond) - start_time
:telemetry.execute(
[:foundation, :performance, :operation_completed],
%{duration: duration},
%{operation: operation_name, status: :error, error: error}
)
reraise error, __STACKTRACE__
end
end
end
# Automatic SLO monitoring
defmodule Foundation.SLOMonitor do
use GenServer
def init(_opts) do
# Subscribe to performance events
:telemetry.attach_many(
:slo_monitor,
[
[:foundation, :performance, :operation_completed],
[:mabeam, :coordination, :consensus_completed],
[:mabeam, :agent, :variable_updated]
],
&handle_telemetry_event/4,
%{}
)
{:ok, %{slo_violations: [], operation_stats: %{}}}
end
def handle_telemetry_event(event, measurements, metadata, state) do
# Check SLO violations
case check_slo_violation(event, measurements, metadata) do
{:violation, violation} ->
Logger.error("SLO Violation: #{inspect(violation)}")
# Send alert
send_slo_alert(violation)
:ok ->
:ok
end
# Update operation statistics
update_operation_stats(state, event, measurements, metadata)
end
end
7.2 Adaptive Performance Optimization
# Automatic performance tuning
defmodule MABEAM.AdaptiveOptimizer do
use GenServer
def init(_opts) do
# Start with baseline configuration
config = %{
batch_size: 32,
consensus_timeout: 5000,
variable_sync_interval: 100,
agent_pool_size: 10
}
schedule_optimization_cycle(60_000) # Optimize every minute
{:ok, %{config: config, performance_history: []}}
end
def handle_info(:optimize, state) do
# Analyze recent performance
recent_performance = analyze_recent_performance()
# Determine optimization strategy
optimization = determine_optimization(recent_performance, state.config)
# Apply optimization
new_config = apply_optimization(optimization, state.config)
# Update system configuration
update_system_config(new_config)
Logger.info("Applied performance optimization: #{inspect(optimization)}")
schedule_optimization_cycle(60_000)
{:noreply, %{state | config: new_config}}
end
defp determine_optimization(performance, current_config) do
cond do
performance.avg_latency > 50 ->
# Latency too high - increase parallelism
%{action: :increase_parallelism, factor: 1.2}
performance.memory_usage > 0.8 ->
# Memory pressure - reduce batch sizes
%{action: :reduce_batch_size, factor: 0.8}
performance.throughput < performance.target_throughput * 0.9 ->
# Throughput too low - optimize coordination
%{action: :optimize_coordination, strategy: :reduce_consensus_timeout}
true ->
# Performance within acceptable range
%{action: :no_change}
end
end
end
Week 8: Performance Budgeting & CI Integration
8.1 Automated Performance Regression Detection
# Performance budget enforcement
defmodule Foundation.PerformanceBudget do
@performance_budgets %{
# Agent coordination must not exceed these thresholds
agent_variable_update: %{max_p99_ms: 10, max_mean_ms: 2},
consensus_operation: %{max_p99_ms: 50, max_mean_ms: 20},
service_discovery: %{max_p99_ms: 1, max_mean_ms: 0.5},
# Memory budgets
agent_memory_per_hour: %{max_growth_mb: 1},
system_memory_baseline: %{max_growth_mb: 10}
}
def check_performance_budget(operation, results) do
budget = Map.get(@performance_budgets, operation)
cond do
is_nil(budget) ->
{:ok, :no_budget_defined}
results.p99_ms > budget.max_p99_ms ->
{:budget_exceeded, :p99_latency, results.p99_ms, budget.max_p99_ms}
results.mean_ms > budget.max_mean_ms ->
{:budget_exceeded, :mean_latency, results.mean_ms, budget.max_mean_ms}
true ->
{:ok, :within_budget}
end
end
end
# CI integration
defmodule Foundation.CIPerformanceCheck do
def run_performance_gate do
results = %{
agent_coordination: run_agent_coordination_benchmark(),
consensus_operations: run_consensus_benchmark(),
service_discovery: run_service_discovery_benchmark(),
memory_usage: run_memory_benchmark()
}
violations = Enum.flat_map(results, fn {operation, result} ->
case Foundation.PerformanceBudget.check_performance_budget(operation, result) do
{:budget_exceeded, metric, actual, budget} ->
[%{operation: operation, metric: metric, actual: actual, budget: budget}]
{:ok, _} ->
[]
end
end)
case violations do
[] ->
IO.puts("✅ All performance budgets met")
System.halt(0)
violations ->
IO.puts("❌ Performance budget violations:")
Enum.each(violations, fn v ->
IO.puts(" #{v.operation}.#{v.metric}: #{v.actual} > #{v.budget}")
end)
System.halt(1)
end
end
end
Week 7-8 Success Criteria:
- Real-time performance monitoring with SLO alerting
- Adaptive optimization automatically tunes system parameters
- Performance budgets enforced in CI/CD pipeline
- Zero performance regressions merged to main branch
- Production-ready observability and alerting
Performance Testing Framework
Comprehensive Benchmark Suite
defmodule Foundation.ComprehensiveBenchmarks do
use ExUnit.Case
@tag :performance
test "comprehensive system performance benchmarks" do
# System-wide performance test
Benchee.run(%{
# Core Foundation operations
"service_discovery" => fn ->
Foundation.ProcessRegistry.lookup(:production, :config_server)
end,
"configuration_retrieval" => fn ->
Foundation.ConfigServer.get_config([:mabeam, :agents])
end,
"event_emission" => fn ->
Foundation.EventStore.append(%{type: :test, data: %{}})
end,
# MABEAM agent operations
"agent_variable_update" => fn ->
MABEAM.Coordination.update_agent_variable(:agent_1, :learning_rate, 0.01)
end,
"consensus_proposal" => fn ->
MABEAM.Coordination.propose_variable_change(:batch_size, 128)
end,
"agent_coordination" => fn ->
MABEAM.Coordination.coordinate_agents([:agent_1, :agent_2], :optimize)
end,
# Multi-agent scenarios
"100_agent_coordination" => fn ->
agents = get_test_agents(100)
MABEAM.Coordination.broadcast_variable_update(:temperature, 0.8, agents)
end,
"distributed_consensus" => fn ->
MABEAM.Coordination.distributed_consensus(:model_architecture, :transformer)
end
},
time: 10,
memory_time: 2,
parallel: 1,
formatters: [
Benchee.Formatters.HTML,
Benchee.Formatters.Console,
{Foundation.PerformanceBudget.Formatter, []}
]
)
end
end
Success Metrics & SLOs
Service Level Objectives
@system_slos %{
# Latency SLOs
service_discovery_p99: 1, # ms
agent_coordination_p99: 10, # ms
consensus_operation_p99: 50, # ms
variable_sync_p99: 5, # ms
# Throughput SLOs
agent_operations_per_sec: 10_000,
consensus_operations_per_sec: 100,
service_calls_per_sec: 50_000,
# Memory SLOs
agent_memory_growth_per_hour: 1, # MB
system_memory_growth_per_day: 10, # MB
# Reliability SLOs
consensus_success_rate: 0.999, # 99.9%
agent_coordination_success_rate: 0.9999, # 99.99%
service_availability: 0.999 # 99.9%
}
Performance Monitoring Dashboard
# Real-time performance metrics
defmodule Foundation.PerformanceDashboard do
def get_real_time_metrics do
%{
current_latencies: %{
service_discovery: get_current_p99(:service_discovery),
agent_coordination: get_current_p99(:agent_coordination),
consensus_operations: get_current_p99(:consensus_operations)
},
throughput: %{
agent_operations: get_current_throughput(:agent_operations),
service_calls: get_current_throughput(:service_calls),
consensus_operations: get_current_throughput(:consensus_operations)
},
resource_usage: %{
total_agents: MABEAM.AgentRegistry.count_active_agents(),
memory_usage: get_system_memory_usage(),
cpu_utilization: get_cpu_utilization()
},
slo_compliance: %{
latency_slos_met: check_latency_slos(),
throughput_slos_met: check_throughput_slos(),
reliability_slos_met: check_reliability_slos()
}
}
end
end
Conclusion
This performance optimization roadmap provides a systematic approach to transforming the Foundation + MABEAM platform into a high-performance, production-ready system. The strategy addresses:
- Critical Bottlenecks: Eliminating GenServer serialization points and synchronous communication patterns
- Testing Reliability: Statistical performance testing with deterministic event-driven patterns
- Memory Management: Zero-leak memory monitoring with automatic resource cleanup
- Production Monitoring: Real-time SLO monitoring with adaptive optimization
Expected Performance Improvements:
- 50% reduction in GenServer.call bottlenecks
- 3x improvement in concurrent agent coordination
- 95% reduction in test flakiness
- Zero memory leaks in long-running processes
- Automatic performance optimization based on real-time metrics
Timeline: 8 weeks for complete performance optimization
Critical Path: Weeks 1-2 for bottleneck elimination, immediate impact
ROI: 5-10x performance improvement with production-grade reliability
This systematic approach ensures that the revolutionary multi-agent ML capabilities are enhanced with enterprise-grade performance characteristics, making the platform ready for production deployment at scale.