← Back to Docs20250627

074 PERFORMANCE BOTTLENECK FLOWS

Documentation for 074_PERFORMANCE_BOTTLENECK_FLOWS from the Foundation repository.

Performance Bottleneck Analysis & System Flow Optimization

Diagram 1: Registry Contention Under High Load (Scalability Analysis)

gantt title ProcessRegistry Bottleneck Analysis - 100 req/sec Load Test dateFormat X axisFormat %L section Request_Wave_1 Burst Start (25 requests) :milestone, burst1, 0, 0ms Registry Queue Build-up :queue1, after burst1, 50ms ETS Lookup Cascade :ets1, after queue1, 35ms Response Completion :response1, after ets1, 25ms section Request_Wave_2 Burst Start (25 requests) :milestone, burst2, 100, 0ms Registry Queue (backlog) :queue2, after burst2, 85ms ETS Lookup (contended) :ets2, after queue2, 60ms Response Completion :response2, after ets2, 45ms section Request_Wave_3 Burst Start (25 requests) :milestone, burst3, 200, 0ms Registry Queue (overflow) :queue3, after burst3, 120ms ETS Lookup (degraded) :ets3, after queue3, 90ms Response Completion :response3, after ets3, 70ms section Request_Wave_4 Burst Start (25 requests) :milestone, burst4, 300, 0ms Registry Queue (critical) :queue4, after burst4, 180ms ETS Lookup (thrashing) :ets4, after queue4, 140ms Response Completion :response4, after ets4, 110ms section Registry_Process Normal Processing (0-100ms) :reg_normal, 0, 100ms Degraded Processing :reg_degrade, 100, 100ms Overloaded Processing :reg_overload, 200, 150ms Critical Processing :reg_critical, 350, 200ms section ETS_Contention Low Contention :ets_low, 0, 100ms Medium Contention :ets_med, 100, 120ms High Contention :ets_high, 220, 180ms Thrashing State :ets_thrash, 400, 150ms

Registry Performance Degradation Pattern:

  • Load Progression: 25 req/burst β†’ 50ms, 50 req β†’ 85ms, 75 req β†’ 120ms, 100 req β†’ 180ms
  • Nonlinear Degradation: 4x load increase β†’ 3.6x latency increase (superlinear degradation)
  • ETS Contention: Read contention increases from 35ms to 140ms (4x degradation)
  • Queue Build-up: Registry queue grows from 0 to 180ms processing backlog
  • Thrashing Point: System enters thrashing at ~75 concurrent requests
flowchart TD subgraph "Load Test: 100 req/sec Distribution" LoadBalancer[Load Generator
100 req/sec
Burst Pattern: 25/25/25/25] end subgraph "Registry Bottleneck Analysis" LoadBalancer -.->|all traffic| RegistryProcess{ProcessRegistry
Single Process
⚠️ CRITICAL BOTTLENECK} RegistryProcess -.->|queue depth: 45| ProcessQueue[Process Mailbox
Queue Length: 45 messages
Processing Rate: 15 msg/sec
πŸ”΄ 3:1 arrival vs processing ratio] ProcessQueue -.->|lookup operations| ETSTable[(ETS Backup Table
Concurrent Reads: 12
Lock Contention: HIGH
⚠️ SECONDARY BOTTLENECK)] ProcessQueue -.->|fallback lookups| RegistryNative[Native Registry
Partitioned Storage
Utilization: 85%
🟑 Near Capacity] ETSTable -.->|read results| CacheHit[Cache Hit Path
Latency: 1.2ms
Success Rate: 78%] RegistryNative -.->|registry results| CacheMiss[Cache Miss Path
Latency: 4.8ms
Success Rate: 22%] CacheHit -.->|fast response| ResponseFast[Fast Response
< 2ms total] CacheMiss -.->|slow response| ResponseSlow[Slow Response
5-15ms total] end subgraph "Performance Metrics Under Load" PerfMetrics[Performance Analysis
πŸ‘₯ Concurrent Users: 100
πŸ“Š Request Rate: 100/sec
⏱️ Average Latency: 8.3ms
πŸ“ˆ 95th Percentile: 24ms
πŸ”₯ 99th Percentile: 45ms
❌ Error Rate: 2.1%
πŸ’Ύ Memory Usage: +340MB
πŸ”„ CPU Usage: 89%] Bottlenecks[Bottleneck Identification
πŸ”΄ Primary: ProcessRegistry (89% CPU)
🟑 Secondary: ETS Contention (12 concurrent reads)
🟒 Native Registry: OK (85% utilization)
🟒 Agent Processes: OK (45% avg utilization)
🟒 Network I/O: OK (23% utilization)] end subgraph "Proposed Optimizations" OptimizationStrategies[Optimization Strategies
πŸ’‘ Registry Partitioning: Split by hash(key) β†’ 4 processes
πŸ’‘ ETS Read Pool: Multiple ETS tables with rotation
πŸ’‘ Request Batching: Batch lookups β†’ reduce process messages
πŸ’‘ Async Response: Non-blocking lookup with callback
πŸ’‘ Cache Warming: Pre-populate hot keys in ETS
πŸ“ˆ Expected Improvement: 4x throughput, 60% latency reduction] end classDef bottleneck fill:#ffebee,stroke:#c62828,stroke-width:3px classDef warning fill:#fff3e0,stroke:#ef6c00,stroke-width:2px classDef healthy fill:#e8f5e8,stroke:#2e7d32,stroke-width:1px classDef optimization fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px class RegistryProcess,ProcessQueue bottleneck class ETSTable,RegistryNative warning class CacheHit,ResponseFast healthy class OptimizationStrategies optimization

Registry Bottleneck Root Cause:

  • Single Process Limitation: All 100 req/sec funnel through one GenServer process
  • Message Queue Overflow: 45 messages queued vs 15/sec processing capacity
  • ETS Lock Contention: 12 concurrent readers competing for table locks
  • Memory Pressure: +340MB allocation under load, triggering GC pauses
  • Error Cascade: 2.1% error rate from timeouts and process mailbox overflow

Diagram 2: Agent Coordination Latency Analysis

sequenceDiagram participant Load as Load Generator participant Coord as MABEAM Coordinator participant Agent1 as Agent 1 (Busy) participant Agent2 as Agent 2 (Idle) participant Agent3 as Agent 3 (Medium) participant Optim as Optimization Engine Note over Load,Optim: T0: Coordination Request Under Load Load->>+Coord: coordinate_task_batch(10_tasks, priority: high) Note over Load,Optim: T1: Agent Discovery Phase (Latency Hotspot) Coord->>Coord: discover_available_agents() # 15ms - scanning registry Coord->>Coord: calculate_agent_load_scores() # 25ms - checking process info Coord->>Coord: build_capability_matrix() # 35ms - complex algorithm Coord->>Coord: optimize_task_assignment() # 45ms - assignment algorithm Note over Load,Optim: Discovery Phase Total: 120ms ⚠️ BOTTLENECK Note over Load,Optim: T2: Parallel Agent Assignment (Coordination Overhead) par Agent 1 Assignment Coord->>+Agent1: assign_task_batch(tasks[1,2,3], deadline: 30s) Agent1->>Agent1: queue_length_check() -> 15 tasks queued ⚠️ Agent1->>Agent1: estimate_completion() -> 180s ❌ OVERLOADED Agent1-->>Coord: {:error, :overloaded, estimated_capacity_in: 180s} and Agent 2 Assignment Coord->>+Agent2: assign_task_batch(tasks[4,5], deadline: 30s) Agent2->>Agent2: queue_length_check() -> 0 tasks queued βœ… Agent2->>Agent2: estimate_completion() -> 12s βœ… AVAILABLE Agent2-->>Coord: {:ok, :accepted, estimated_completion: 12s} and Agent 3 Assignment Coord->>+Agent3: assign_task_batch(tasks[6,7,8], deadline: 30s) Agent3->>Agent3: queue_length_check() -> 5 tasks queued 🟑 Agent3->>Agent3: estimate_completion() -> 25s βœ… ACCEPTABLE Agent3-->>Coord: {:ok, :accepted, estimated_completion: 25s} end Note over Load,Optim: T3: Dynamic Rebalancing (Recovery From Overload) Coord->>Coord: rebalance_failed_assignments(tasks[1,2,3]) Coord->>Coord: find_alternative_agents(exclude: [Agent1]) Coord->>Coord: calculate_split_strategy(3_tasks, 2_available_agents) par Rebalanced Assignment Coord->>Agent2: add_task(task[1], priority: high_rebalance) Agent2-->>Coord: {:ok, :queued, new_estimated_completion: 18s} and Coord->>Agent3: add_tasks(tasks[2,3], priority: high_rebalance) Agent3-->>Coord: {:ok, :queued, new_estimated_completion: 35s} end Note over Load,Optim: T4: Optimization Feedback Loop Coord->>+Optim: optimize_assignment_strategy({ failed_assignments: 1, rebalancing_time: 45ms, final_completion_estimate: 35s }) Optim->>Optim: analyze_agent_load_patterns() # Agent1 consistently overloaded Optim->>Optim: calculate_capacity_adjustments() # Need +2 agents or load shedding Optim->>Optim: update_assignment_algorithm() # Penalize overloaded agents more Optim-->>Coord: {:recommendations, [ spawn_additional_agents: 2, agent1_load_shedding: true, updated_assignment_weights: new_weights ]} Note over Load,Optim: T5: System Adaptation Coord->>Coord: apply_optimization_recommendations() Coord->>Coord: update_agent_load_prediction_model() Coord-->>Load: {:ok, tasks_coordinated: 10, final_estimated_completion: 35s, coordination_overhead: 165ms, rebalancing_applied: true} Note over Load,Optim: Total Coordination Time: 165ms (85ms discovery + 45ms assignment + 35ms rebalancing)

Coordination Latency Breakdown:

  • Discovery Phase: 120ms (73% of coordination time) - Major bottleneck
  • Assignment Phase: 45ms parallel execution across 3 agents
  • Rebalancing Phase: 35ms to handle overload and reassign tasks
  • Coordination Overhead: 165ms total vs 12-35s task execution (0.5-1.4% overhead)
  • Dynamic Adaptation: System learns from failures and adjusts algorithms

Diagram 3: Memory Allocation Patterns & GC Pressure

graph TB subgraph "Memory Allocation Timeline (60s Load Test)" direction LR T0[T=0s
Baseline: 2.1GB] T15[T=15s
Growth: 3.8GB
+1.7GB agents] T30[T=30s
Peak: 5.2GB
+2.1GB coordination] T45[T=45s
GC Event: 4.1GB
-1.1GB collected] T60[T=60s
Stable: 4.3GB
+0.2GB growth] T0 --> T15 T15 --> T30 T30 --> T45 T45 --> T60 end subgraph "Memory Distribution Analysis" direction TB AgentMemory[Agent Processes
πŸ’Ύ 2.8GB (65%)
πŸ“Š 12 active agents
πŸ“ˆ 233MB per agent
πŸ”„ GC every 8s] CoordinationMemory[Coordination State
πŸ’Ύ 0.9GB (21%)
πŸ“Š Task queues & assignments
πŸ“ˆ Message buffers: 450MB
πŸ”„ GC every 15s] RegistryMemory[Registry & ETS
πŸ’Ύ 0.4GB (9%)
πŸ“Š Process mappings
πŸ“ˆ ETS tables: 200MB
πŸ”„ GC every 30s] OptimizationMemory[Optimization Buffers
πŸ’Ύ 0.2GB (5%)
πŸ“Š Configuration spaces
πŸ“ˆ Variable histories: 150MB
πŸ”„ GC every 45s] AgentMemory -.->|high churn| MemoryPressure[Memory Pressure Points
πŸ”΄ Agent Message Queues: 185MB/agent
🟑 Coordination Buffers: 450MB total
🟑 Variable State: 150MB growth
🟒 Registry Cache: 200MB stable] end subgraph "Garbage Collection Impact Analysis" direction TB GCEvents[GC Event Analysis
⏱️ Major GC: every 12s
⏱️ GC Duration: 45-180ms
πŸ“Š Collection Efficiency: 65%
πŸ’Ύ Memory Freed: 1.1GB/event
πŸ”„ Collections: 5 during 60s test] GCImpact[GC Performance Impact
⏸️ Stop-the-world: 45-180ms
πŸ“‰ Throughput drop: 23% during GC
⏰ Latency spike: +250ms worst case
🎯 Request timeouts: 12 (2.1% error rate)
πŸ“Š Overall impact: 8% performance loss] GCEvents -.->|causes| GCImpact end subgraph "Memory Optimization Strategies" direction TB MemoryOptimizations[Memory Optimizations
πŸ’‘ Agent Pool Recycling: Reuse processes
πŸ’‘ Message Buffer Limits: Cap queue sizes
πŸ’‘ Coordination State Compression: Binary format
πŸ’‘ ETS Table Compaction: Periodic cleanup
πŸ’‘ Variable Space Streaming: Lazy loading] ExpectedImprovements[Expected Improvements
πŸ“‰ Memory Usage: -40% (2.6GB vs 4.3GB)
πŸ“‰ GC Frequency: -60% (every 30s vs 12s)
πŸ“‰ GC Duration: -50% (25ms vs 45-180ms)
πŸ“ˆ Throughput: +15% improvement
πŸ“‰ Error Rate: -75% (0.5% vs 2.1%)] MemoryOptimizations -.->|enables| ExpectedImprovements end classDef memory_critical fill:#ffcdd2,stroke:#d32f2f,stroke-width:3px classDef memory_warning fill:#fff3e0,stroke:#ef6c00,stroke-width:2px classDef memory_stable fill:#e8f5e8,stroke:#2e7d32,stroke-width:1px classDef optimization fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px class AgentMemory memory_critical class CoordinationMemory,RegistryMemory memory_warning class OptimizationMemory memory_stable class MemoryOptimizations,ExpectedImprovements optimization

Memory Management Issues:

  • Agent Memory Dominance: 65% of memory consumed by 12 agents (233MB each)
  • Message Queue Bloat: 185MB per agent in message queues under load
  • GC Stop-the-World: 45-180ms pauses causing 250ms latency spikes
  • Memory Growth Rate: +2.2GB in 30s, stabilizing at +2.2GB baseline
  • Error Correlation: 2.1% error rate correlates with GC events

Diagram 4: End-to-End Request Flow Performance Analysis

flowchart TD subgraph "Request Journey: Complex ML Pipeline (95th Percentile Timing)" Client[Client Request
ML Pipeline Optimization
Complexity: High
Deadline: 300s] end subgraph "Foundation Layer (Entry Point)" direction TB FoundationEntry[Foundation Entry
⏱️ 8ms: Request validation
⏱️ 12ms: Registry lookup
⏱️ 5ms: Process routing
Total: 25ms] Client -.->|http request| FoundationEntry end subgraph "MABEAM Coordination Layer" direction TB CoordinationPhase[Coordination Phase
⏱️ 120ms: Agent discovery
⏱️ 45ms: Task assignment
⏱️ 35ms: Team assembly
⏱️ 25ms: Channel setup
Total: 225ms ⚠️ BOTTLENECK] FoundationEntry -.->|task handoff| CoordinationPhase end subgraph "Agent Execution Layer" direction TB AgentExecution[Agent Execution
⏱️ 850ms: Data processing
⏱️ 1200ms: Model training
⏱️ 450ms: Evaluation
⏱️ 180ms: Inter-agent coordination
Total: 2680ms] CoordinationPhase -.->|task distribution| AgentExecution end subgraph "ElixirML Integration Layer" direction TB ElixirMLPhase[ElixirML Processing
⏱️ 85ms: Variable space creation
⏱️ 150ms: Configuration generation
⏱️ 95ms: Schema validation
⏱️ 320ms: Optimization iterations
Total: 650ms] AgentExecution -.->|config requests| ElixirMLPhase ElixirMLPhase -.->|optimized configs| AgentExecution end subgraph "External Service Layer" direction TB ExternalServices[External Services
⏱️ 2400ms: ML API calls
⏱️ 180ms: Network latency
⏱️ 45ms: Authentication
⏱️ 120ms: Result processing
Total: 2745ms] AgentExecution -.->|service calls| ExternalServices ExternalServices -.->|results| AgentExecution end subgraph "Response Assembly Layer" direction TB ResponsePhase[Response Assembly
⏱️ 35ms: Result aggregation
⏱️ 15ms: Metadata compilation
⏱️ 8ms: Response formatting
⏱️ 12ms: Result transmission
Total: 70ms] AgentExecution -.->|final results| ResponsePhase ResponsePhase -.->|response| Client end subgraph "Performance Bottleneck Analysis" direction TB BottleneckRanking[Bottleneck Ranking
πŸ₯‡ External Services: 2745ms (45.6%)
πŸ₯ˆ Agent Execution: 2680ms (44.5%)
πŸ₯‰ ElixirML Processing: 650ms (10.8%)
4️⃣ MABEAM Coordination: 225ms (3.7%)
5️⃣ Foundation: 25ms (0.4%)
6️⃣ Response Assembly: 70ms (1.2%)] OptimizationPriorities[Optimization Priorities
🎯 Priority 1: External service caching/batching
🎯 Priority 2: Agent execution parallelization
🎯 Priority 3: ElixirML optimization streaming
🎯 Priority 4: MABEAM discovery acceleration
πŸ“Š Expected Total Improvement: 35-50%] PerformanceMetrics[End-to-End Metrics
⏱️ Total Time: 6.02s (95th percentile)
⏱️ Median Time: 4.1s
⏱️ 99th Percentile: 8.7s
πŸ“Š Success Rate: 97.9%
πŸ’Ύ Memory Peak: 5.2GB
πŸ”„ CPU Peak: 89%
πŸ“ˆ Throughput: 12 pipelines/minute] end classDef bottleneck fill:#ffcdd2,stroke:#d32f2f,stroke-width:3px classDef warning fill:#fff3e0,stroke:#ef6c00,stroke-width:2px classDef acceptable fill:#e8f5e8,stroke:#2e7d32,stroke-width:1px classDef fast fill:#e3f2fd,stroke:#1565c0,stroke-width:1px class ExternalServices,AgentExecution bottleneck class ElixirMLPhase,CoordinationPhase warning class ResponsePhase acceptable class FoundationEntry fast

End-to-End Performance Insights:

  • External Service Dominance: 45.6% of time spent waiting for ML APIs
  • Agent Execution Overhead: 44.5% of time in agent coordination and processing
  • Coordination Tax: 3.7% overhead for multi-agent coordination vs single execution
  • Foundation Efficiency: 0.4% overhead demonstrates efficient system entry point
  • Optimization Opportunity: 90% of time spent in external services and agent execution

Performance Optimization Roadmap:

Immediate Wins (Week 1-2)

  1. Registry Partitioning: Split ProcessRegistry into 4 partitioned processes β†’ 4x throughput
  2. ETS Read Pool: Multiple ETS tables with load balancing β†’ 60% latency reduction
  3. Agent Pool Recycling: Reuse agent processes β†’ 40% memory reduction
  4. Message Buffer Limits: Cap agent queues β†’ Eliminate GC pressure spikes

Medium-term Optimizations (Week 3-6)

  1. External Service Caching: Cache ML API responses β†’ 30% external latency reduction
  2. Agent Execution Batching: Batch processing within agents β†’ 25% execution improvement
  3. ElixirML Streaming: Stream variable configurations β†’ 50% memory reduction
  4. Async Coordination: Non-blocking coordination protocols β†’ 40% coordination speedup

Long-term Architecture (Week 7-12)

  1. Distributed Registry: Replace single registry with distributed hash table
  2. Predictive Load Balancing: ML-based agent assignment optimization
  3. Adaptive Memory Management: Dynamic memory allocation based on load patterns
  4. Circuit Breaker Patterns: Resilient external service integration

Expected System-wide Improvements:

  • Throughput: 4x improvement (48 vs 12 pipelines/minute)
  • Latency: 50% reduction (3.0s vs 6.0s 95th percentile)
  • Memory: 40% reduction (3.1GB vs 5.2GB peak)
  • Reliability: 99.5% vs 97.9% success rate
  • Resource Utilization: 65% vs 89% CPU peak

The performance analysis reveals that while the system architecture is sound, specific bottlenecks in registry access, memory management, and external service integration create significant performance limitations that can be systematically addressed.