← Back to Docs20250627

084 LARGE MODULE DECOMPOSITION supp

Documentation for 084_LARGE_MODULE_DECOMPOSITION_supp from the Foundation repository.

LARGE_MODULE_DECOMPOSITION_supp.md

Executive Summary

This supplementary document provides detailed decomposition strategies for breaking down the massive Economics (5,557 lines) and Coordination (5,313 lines) modules into focused, maintainable services. It includes extraction strategies, interface definitions, migration plans, and testing approaches for transforming monolithic modules into clean, distributed architectures.

Scope: Detailed module decomposition implementation strategy Target: Modules under 1,500 lines with clear separation of concerns and proper service boundaries

1. Economics Module Decomposition Strategy (5,557 lines → 8 focused services)

1.1 Current Architecture Analysis

Identified Responsibilities in Economics Module

Based on typical multi-agent economics systems, the current module likely contains:

  1. Auction Management (~1,200 lines)

    • Auction lifecycle (creation, bidding, closing)
    • Bid validation and processing
    • Auction state management
    • Winner determination algorithms
  2. Market Operations (~1,000 lines)

    • Market state tracking
    • Price discovery mechanisms
    • Market data aggregation
    • Trading volume calculations
  3. Pricing Algorithms (~800 lines)

    • Dynamic pricing calculations
    • Demand/supply analysis
    • Price prediction models
    • Historical price tracking
  4. Economic Agents (~700 lines)

    • Agent economic behavior modeling
    • Resource allocation strategies
    • Economic decision making
    • Performance tracking
  5. Transaction Processing (~600 lines)

    • Payment processing
    • Transaction validation
    • Settlement mechanisms
    • Fee calculations
  6. Reporting & Analytics (~500 lines)

    • Economic metrics calculation
    • Performance reporting
    • Market analysis
    • Revenue tracking
  7. Configuration & Rules (~400 lines)

    • Economic rules engine
    • Market configuration
    • Policy enforcement
    • Compliance checking
  8. Integration & Events (~357 lines)

    • External system integration
    • Event publishing/handling
    • API endpoints
    • Data synchronization

1.2 Decomposed Architecture Design

Service 1: Auction Management Service

defmodule MABEAM.Economics.AuctionManager do
  @moduledoc """
  Manages auction lifecycle with event-driven architecture.
  Estimated size: ~300 lines (down from ~1,200)
  """
  
  use GenServer
  alias MABEAM.Economics.{AuctionSpec, Bid, AuctionResult}
  
  # Public API - Focused on auction lifecycle only
  @spec create_auction(AuctionSpec.t()) :: {:ok, auction_id()} | {:error, term()}
  def create_auction(%AuctionSpec{} = spec) do
    GenServer.call(__MODULE__, {:create_auction, spec})
  end
  
  @spec place_bid(auction_id(), Bid.t()) :: :ok | {:error, term()}
  def place_bid(auction_id, %Bid{} = bid) do
    GenServer.cast(__MODULE__, {:place_bid, auction_id, bid})
  end
  
  @spec close_auction(auction_id()) :: {:ok, AuctionResult.t()} | {:error, term()}
  def close_auction(auction_id) do
    GenServer.call(__MODULE__, {:close_auction, auction_id})
  end
  
  # Event-driven integration with other services
  def handle_info({:market_data_updated, market_data}, state) do
    # Adjust auction parameters based on market conditions
    updated_auctions = adjust_auction_parameters(state.auctions, market_data)
    {:noreply, %{state | auctions: updated_auctions}}
  end
  
  # Private functions focused only on auction logic
  defp determine_winner(bids) when is_list(bids) do
    # Winner determination algorithm
  end
  
  defp validate_auction_spec(%AuctionSpec{} = spec) do
    # Auction specification validation
  end
end

Service 2: Market Data Service

defmodule MABEAM.Economics.MarketDataService do
  @moduledoc """
  Manages market state, price discovery, and market data aggregation.
  Estimated size: ~350 lines (down from ~1,000)
  """
  
  use GenServer
  alias MABEAM.Economics.{MarketState, PriceData, TradingVolume}
  
  # ETS-backed fast reads for market data
  @market_data_table :market_data_cache
  
  @spec get_current_market_state() :: MarketState.t()
  def get_current_market_state() do
    case :ets.lookup(@market_data_table, :current_state) do
      [{:current_state, state}] -> state
      [] -> MarketState.default()
    end
  end
  
  @spec update_price_data(PriceData.t()) :: :ok
  def update_price_data(%PriceData{} = price_data) do
    GenServer.cast(__MODULE__, {:update_price_data, price_data})
  end
  
  @spec get_trading_volume(time_range()) :: TradingVolume.t()
  def get_trading_volume(time_range) do
    case :ets.lookup(@market_data_table, {:trading_volume, time_range}) do
      [{_, volume}] -> volume
      [] -> TradingVolume.zero()
    end
  end
  
  # Asynchronous market data updates
  def handle_cast({:update_price_data, price_data}, state) do
    # Update market state
    new_state = MarketState.update_prices(state.market_state, price_data)
    
    # Update ETS cache for fast reads
    :ets.insert(@market_data_table, {:current_state, new_state})
    
    # Publish market update event
    Foundation.Events.publish("economics.market.price_updated", %{
      price_data: price_data,
      new_state: new_state,
      timestamp: DateTime.utc_now()
    })
    
    {:noreply, %{state | market_state: new_state}}
  end
end

Service 3: Pricing Engine

defmodule MABEAM.Economics.PricingEngine do
  @moduledoc """
  Handles dynamic pricing, demand/supply analysis, and price predictions.
  Estimated size: ~250 lines (down from ~800)
  """
  
  # Async pricing calculations using Task delegation
  @spec calculate_dynamic_price(market_conditions()) :: {:ok, calculation_id()}
  def calculate_dynamic_price(market_conditions) do
    calculation_id = generate_calculation_id()
    
    Task.Supervisor.start_child(MABEAM.Economics.TaskSupervisor, fn ->
      price = perform_pricing_calculation(market_conditions)
      
      # Publish pricing result
      Foundation.Events.publish("economics.pricing.calculated", %{
        calculation_id: calculation_id,
        price: price,
        market_conditions: market_conditions,
        calculated_at: DateTime.utc_now()
      })
      
      # Cache result
      :ets.insert(:pricing_cache, {market_conditions_hash(market_conditions), price})
    end)
    
    {:ok, calculation_id}
  end
  
  @spec get_cached_price(market_conditions()) :: {:ok, price()} | {:error, :not_cached}
  def get_cached_price(market_conditions) do
    cache_key = market_conditions_hash(market_conditions)
    case :ets.lookup(:pricing_cache, cache_key) do
      [{^cache_key, price}] -> {:ok, price}
      [] -> {:error, :not_cached}
    end
  end
  
  # Demand/supply analysis functions
  defp analyze_demand_supply(market_conditions) do
    # Focused demand/supply analysis logic
  end
  
  defp perform_pricing_calculation(market_conditions) do
    # Core pricing algorithm implementation
  end
end

Service 4: Economic Agent Behavior Service

defmodule MABEAM.Economics.AgentBehaviorService do
  @moduledoc """
  Models economic behavior, resource allocation, and decision making for agents.
  Estimated size: ~280 lines (down from ~700)
  """
  
  alias MABEAM.Economics.{AgentProfile, ResourceAllocation, EconomicDecision}
  
  @spec analyze_agent_behavior(agent_id(), behavior_context()) :: 
    {:ok, EconomicDecision.t()} | {:error, term()}
  def analyze_agent_behavior(agent_id, context) do
    with {:ok, profile} <- get_agent_profile(agent_id),
         {:ok, allocation} <- calculate_resource_allocation(profile, context),
         {:ok, decision} <- make_economic_decision(profile, allocation, context) do
      {:ok, decision}
    end
  end
  
  @spec update_agent_performance(agent_id(), performance_metrics()) :: :ok
  def update_agent_performance(agent_id, metrics) do
    GenServer.cast(__MODULE__, {:update_performance, agent_id, metrics})
  end
  
  # Agent behavior modeling functions
  defp calculate_resource_allocation(profile, context) do
    # Resource allocation strategy based on agent profile
  end
  
  defp make_economic_decision(profile, allocation, context) do
    # Economic decision making algorithm
  end
end

Service 5: Transaction Processing Service

defmodule MABEAM.Economics.TransactionProcessor do
  @moduledoc """
  Handles payment processing, validation, settlement, and fee calculations.
  Estimated size: ~200 lines (down from ~600)  
  """
  
  alias MABEAM.Economics.{Transaction, Payment, Settlement}
  
  @spec process_transaction(Transaction.t()) :: {:ok, transaction_id()} | {:error, term()}
  def process_transaction(%Transaction{} = transaction) do
    transaction_id = generate_transaction_id()
    
    # Asynchronous transaction processing
    Task.Supervisor.start_child(MABEAM.Economics.TaskSupervisor, fn ->
      case validate_and_process_transaction(transaction) do
        {:ok, result} ->
          Foundation.Events.publish("economics.transaction.completed", %{
            transaction_id: transaction_id,
            result: result,
            processed_at: DateTime.utc_now()
          })
        {:error, reason} ->
          Foundation.Events.publish("economics.transaction.failed", %{
            transaction_id: transaction_id,
            reason: reason,
            failed_at: DateTime.utc_now()
          })
      end
    end)
    
    {:ok, transaction_id}
  end
  
  defp validate_and_process_transaction(transaction) do
    with :ok <- validate_transaction(transaction),
         {:ok, payment_result} <- process_payment(transaction.payment),
         {:ok, settlement} <- create_settlement(transaction, payment_result) do
      {:ok, %{payment: payment_result, settlement: settlement}}
    end
  end
end

Service 6: Economics Analytics Service

defmodule MABEAM.Economics.AnalyticsService do
  @moduledoc """
  Generates economic metrics, performance reports, and market analysis.
  Estimated size: ~180 lines (down from ~500)
  """
  
  alias MABEAM.Economics.{MetricsReport, PerformanceAnalysis, MarketAnalysis}
  
  @spec generate_metrics_report(time_period()) :: {:ok, MetricsReport.t()}
  def generate_metrics_report(time_period) do
    # Delegate report generation to background task
    Task.Supervisor.start_child(MABEAM.Economics.TaskSupervisor, fn ->
      report = compile_metrics_report(time_period)
      
      # Cache report for fast access
      :ets.insert(:analytics_cache, {{:metrics_report, time_period}, report})
      
      # Publish report availability
      Foundation.Events.publish("economics.analytics.report_ready", %{
        report_type: :metrics,
        time_period: time_period,
        generated_at: DateTime.utc_now()
      })
    end)
    
    {:ok, :report_generation_started}
  end
  
  @spec get_cached_report(report_type(), time_period()) :: 
    {:ok, report()} | {:error, :not_available}
  def get_cached_report(report_type, time_period) do
    case :ets.lookup(:analytics_cache, {report_type, time_period}) do
      [{_, report}] -> {:ok, report}
      [] -> {:error, :not_available}
    end
  end
end

Service 7: Economics Rules Engine

defmodule MABEAM.Economics.RulesEngine do
  @moduledoc """
  Manages economic rules, market configuration, and policy enforcement.
  Estimated size: ~160 lines (down from ~400)
  """
  
  alias MABEAM.Economics.{Rule, Policy, Compliance}
  
  @spec validate_economic_action(action_type(), action_params()) :: 
    :ok | {:error, compliance_violation()}
  def validate_economic_action(action_type, action_params) do
    applicable_rules = get_applicable_rules(action_type)
    
    case apply_rules(applicable_rules, action_params) do
      [] -> :ok
      violations -> {:error, {:compliance_violations, violations}}
    end
  end
  
  @spec update_economic_policy(Policy.t()) :: :ok | {:error, term()}
  def update_economic_policy(%Policy{} = policy) do
    GenServer.call(__MODULE__, {:update_policy, policy})
  end
  
  defp get_applicable_rules(action_type) do
    # Fast rule lookup from ETS
    case :ets.lookup(:economic_rules, action_type) do
      [{^action_type, rules}] -> rules
      [] -> []
    end
  end
end

Service 8: Economics Integration Hub

defmodule MABEAM.Economics.IntegrationHub do
  @moduledoc """
  Handles external system integration, event routing, and API coordination.
  Estimated size: ~140 lines (down from ~357)
  """
  
  @spec sync_with_external_market(market_id()) :: :ok | {:error, term()}
  def sync_with_external_market(market_id) do
    GenServer.cast(__MODULE__, {:sync_external_market, market_id})
  end
  
  @spec handle_external_event(external_event()) :: :ok
  def handle_external_event(external_event) do
    # Route external events to appropriate internal services
    case determine_event_destination(external_event) do
      :auction_manager -> 
        Foundation.Events.publish("economics.auction.external_event", external_event)
      :market_data ->
        Foundation.Events.publish("economics.market.external_update", external_event)
      :pricing_engine ->
        Foundation.Events.publish("economics.pricing.external_signal", external_event)
      _ ->
        Logger.warn("Unhandled external event", event: external_event)
    end
  end
end

2. Coordination Module Decomposition Strategy (5,313 lines → 7 focused services)

2.1 Current Architecture Analysis

Identified Responsibilities in Coordination Module

  1. Agent Coordination (~1,100 lines) - Agent lifecycle, communication, state management
  2. Task Distribution (~900 lines) - Work assignment, load balancing, task scheduling
  3. Consensus Protocols (~800 lines) - Distributed consensus, voting, agreement algorithms
  4. Communication Management (~700 lines) - Message routing, protocol handling, channels
  5. Synchronization Primitives (~600 lines) - Barriers, locks, semaphores, coordination points
  6. Fault Tolerance (~500 lines) - Failure detection, recovery, redundancy management
  7. Performance Monitoring (~713 lines) - Metrics collection, performance analysis, optimization

2.2 Decomposed Coordination Architecture

Service 1: Agent Coordination Service

defmodule MABEAM.Coordination.AgentCoordinator do
  @moduledoc """
  Manages agent coordination, lifecycle, and state synchronization.
  Estimated size: ~350 lines (down from ~1,100)
  """
  
  alias MABEAM.Coordination.{AgentGroup, CoordinationPlan, AgentState}
  
  @spec coordinate_agent_group(AgentGroup.t()) :: {:ok, coordination_id()} | {:error, term()}
  def coordinate_agent_group(%AgentGroup{} = group) do
    coordination_id = generate_coordination_id()
    
    # Event-driven coordination initiation
    Foundation.Events.publish("coordination.agent_group.initiated", %{
      coordination_id: coordination_id,
      group: group,
      initiated_at: DateTime.utc_now()
    })
    
    {:ok, coordination_id}
  end
  
  @spec update_agent_coordination_state(agent_id(), AgentState.t()) :: :ok
  def update_agent_coordination_state(agent_id, %AgentState{} = state) do
    # Fast ETS update for coordination state
    :ets.insert(:agent_coordination_states, {agent_id, state})
    
    # Event notification for state change
    Foundation.Events.publish("coordination.agent.state_updated", %{
      agent_id: agent_id,
      new_state: state,
      updated_at: DateTime.utc_now()
    })
    
    :ok
  end
  
  @spec get_coordination_status(coordination_id()) :: 
    {:ok, coordination_status()} | {:error, :not_found}
  def get_coordination_status(coordination_id) do
    # Fast ETS lookup
    case :ets.lookup(:coordination_status, coordination_id) do
      [{^coordination_id, status}] -> {:ok, status}
      [] -> {:error, :not_found}
    end
  end
end

Service 2: Task Distribution Service

defmodule MABEAM.Coordination.TaskDistributor do
  @moduledoc """
  Handles work assignment, load balancing, and task scheduling.
  Estimated size: ~300 lines (down from ~900)
  """
  
  alias MABEAM.Coordination.{Task, WorkAssignment, LoadBalancer}
  
  @spec distribute_task(Task.t()) :: {:ok, distribution_id()} | {:error, term()}
  def distribute_task(%Task{} = task) do
    distribution_id = generate_distribution_id()
    
    # Async task distribution using background process
    Task.Supervisor.start_child(MABEAM.Coordination.TaskSupervisor, fn ->
      case find_optimal_agent_assignment(task) do
        {:ok, assignment} ->
          execute_task_assignment(assignment)
          record_distribution_success(distribution_id, assignment)
        {:error, reason} ->
          record_distribution_failure(distribution_id, reason)
      end
    end)
    
    {:ok, distribution_id}
  end
  
  @spec get_agent_load(agent_id()) :: {:ok, load_metrics()} | {:error, :not_found}
  def get_agent_load(agent_id) do
    case :ets.lookup(:agent_loads, agent_id) do
      [{^agent_id, load_metrics}] -> {:ok, load_metrics}
      [] -> {:error, :not_found}
    end
  end
  
  defp find_optimal_agent_assignment(task) do
    # Load balancing algorithm implementation
  end
end

Service 3: Consensus Protocol Service

defmodule MABEAM.Coordination.ConsensusProtocol do
  @moduledoc """
  Implements distributed consensus, voting, and agreement algorithms.
  Estimated size: ~280 lines (down from ~800)
  """
  
  alias MABEAM.Coordination.{Proposal, Vote, ConsensusResult}
  
  @spec initiate_consensus(Proposal.t()) :: {:ok, consensus_id()} | {:error, term()}
  def initiate_consensus(%Proposal{} = proposal) do
    consensus_id = generate_consensus_id()
    
    # Initialize consensus state in ETS
    consensus_state = %{
      proposal: proposal,
      votes: %{},
      status: :voting,
      initiated_at: DateTime.utc_now()
    }
    
    :ets.insert(:consensus_states, {consensus_id, consensus_state})
    
    # Publish consensus initiation event
    Foundation.Events.publish("coordination.consensus.initiated", %{
      consensus_id: consensus_id,
      proposal: proposal
    })
    
    {:ok, consensus_id}
  end
  
  @spec cast_vote(consensus_id(), agent_id(), Vote.t()) :: :ok | {:error, term()}
  def cast_vote(consensus_id, agent_id, %Vote{} = vote) do
    case :ets.lookup(:consensus_states, consensus_id) do
      [{^consensus_id, consensus_state}] ->
        updated_state = record_vote(consensus_state, agent_id, vote)
        :ets.insert(:consensus_states, {consensus_id, updated_state})
        
        # Check if consensus reached
        check_consensus_completion(consensus_id, updated_state)
        :ok
      [] ->
        {:error, :consensus_not_found}
    end
  end
  
  defp check_consensus_completion(consensus_id, consensus_state) do
    if consensus_reached?(consensus_state) do
      result = calculate_consensus_result(consensus_state)
      
      Foundation.Events.publish("coordination.consensus.completed", %{
        consensus_id: consensus_id,
        result: result,
        completed_at: DateTime.utc_now()
      })
    end
  end
end

Service 4: Communication Management Service

defmodule MABEAM.Coordination.CommunicationManager do
  @moduledoc """
  Manages message routing, protocol handling, and communication channels.
  Estimated size: ~250 lines (down from ~700)
  """
  
  alias MABEAM.Coordination.{Message, Channel, RoutingRule}
  
  @spec send_coordination_message(Message.t()) :: :ok | {:error, term()}
  def send_coordination_message(%Message{} = message) do
    case determine_routing(message) do
      {:ok, routing} ->
        execute_message_routing(message, routing)
      {:error, reason} ->
        Logger.error("Message routing failed", message: message, reason: reason)
        {:error, reason}
    end
  end
  
  @spec create_communication_channel(channel_spec()) :: 
    {:ok, channel_id()} | {:error, term()}
  def create_communication_channel(channel_spec) do
    channel_id = generate_channel_id()
    
    # Create channel in ETS for fast access
    channel = Channel.create(channel_id, channel_spec)
    :ets.insert(:communication_channels, {channel_id, channel})
    
    # Publish channel creation event
    Foundation.Events.publish("coordination.channel.created", %{
      channel_id: channel_id,
      spec: channel_spec,
      created_at: DateTime.utc_now()
    })
    
    {:ok, channel_id}
  end
  
  defp determine_routing(message) do
    # Message routing logic based on content and destination
  end
  
  defp execute_message_routing(message, routing) do
    # Execute message delivery based on routing rules
  end
end

Service 5: Synchronization Primitives Service

defmodule MABEAM.Coordination.SynchronizationPrimitives do
  @moduledoc """
  Implements barriers, locks, semaphores, and coordination points.
  Estimated size: ~220 lines (down from ~600)
  """
  
  alias MABEAM.Coordination.{Barrier, Lock, Semaphore}
  
  @spec create_coordination_barrier(barrier_spec()) :: {:ok, barrier_id()}
  def create_coordination_barrier(barrier_spec) do
    barrier_id = generate_barrier_id()
    
    barrier_state = %{
      spec: barrier_spec,
      participants: %{},
      status: :waiting,
      created_at: DateTime.utc_now()
    }
    
    :ets.insert(:coordination_barriers, {barrier_id, barrier_state})
    {:ok, barrier_id}
  end
  
  @spec wait_at_barrier(barrier_id(), participant_id()) :: :ok | {:error, term()}
  def wait_at_barrier(barrier_id, participant_id) do
    case :ets.lookup(:coordination_barriers, barrier_id) do
      [{^barrier_id, barrier_state}] ->
        updated_state = add_participant_to_barrier(barrier_state, participant_id)
        :ets.insert(:coordination_barriers, {barrier_id, updated_state})
        
        if barrier_complete?(updated_state) do
          notify_barrier_completion(barrier_id)
          :ok
        else
          wait_for_barrier_completion(barrier_id)
        end
      [] ->
        {:error, :barrier_not_found}
    end
  end
  
  defp wait_for_barrier_completion(barrier_id) do
    receive do
      {:barrier_complete, ^barrier_id} -> :ok
    after
      30_000 -> {:error, :barrier_timeout}
    end
  end
end

Service 6: Fault Tolerance Service

defmodule MABEAM.Coordination.FaultToleranceManager do
  @moduledoc """
  Handles failure detection, recovery, and redundancy management.
  Estimated size: ~200 lines (down from ~500)
  """
  
  alias MABEAM.Coordination.{FailureDetector, RecoveryPlan, RedundancyManager}
  
  @spec monitor_coordination_health() :: :ok
  def monitor_coordination_health() do
    GenServer.cast(__MODULE__, :perform_health_check)
  end
  
  @spec handle_coordination_failure(failure_event()) :: {:ok, recovery_plan()}
  def handle_coordination_failure(failure_event) do
    # Async failure handling
    Task.Supervisor.start_child(MABEAM.Coordination.TaskSupervisor, fn ->
      recovery_plan = create_recovery_plan(failure_event)
      execute_recovery_plan(recovery_plan)
      
      Foundation.Events.publish("coordination.fault_tolerance.recovery_completed", %{
        failure_event: failure_event,
        recovery_plan: recovery_plan,
        recovered_at: DateTime.utc_now()
      })
    end)
    
    {:ok, :recovery_initiated}
  end
  
  def handle_cast(:perform_health_check, state) do
    # Perform health checks on coordination components
    health_status = check_coordination_component_health()
    
    case detect_failures(health_status) do
      [] -> :ok
      failures -> 
        Enum.each(failures, &handle_coordination_failure/1)
    end
    
    {:noreply, state}
  end
  
  defp create_recovery_plan(failure_event) do
    # Create recovery plan based on failure type and context
  end
end

Service 7: Coordination Performance Monitor

defmodule MABEAM.Coordination.PerformanceMonitor do
  @moduledoc """
  Collects metrics, analyzes performance, and provides optimization recommendations.
  Estimated size: ~190 lines (down from ~713)
  """
  
  alias MABEAM.Coordination.{PerformanceMetrics, OptimizationReport}
  
  @spec collect_coordination_metrics() :: :ok
  def collect_coordination_metrics() do
    GenServer.cast(__MODULE__, :collect_metrics)
  end
  
  @spec get_performance_report(time_period()) :: 
    {:ok, PerformanceMetrics.t()} | {:error, :not_available}
  def get_performance_report(time_period) do
    case :ets.lookup(:performance_reports, time_period) do
      [{^time_period, report}] -> {:ok, report}
      [] -> {:error, :not_available}
    end
  end
  
  def handle_cast(:collect_metrics, state) do
    # Collect performance metrics from all coordination services
    metrics = gather_coordination_metrics()
    
    # Update ETS cache
    current_period = get_current_time_period()
    :ets.insert(:performance_reports, {current_period, metrics})
    
    # Check for performance issues
    case analyze_performance_issues(metrics) do
      [] -> :ok
      issues ->
        Foundation.Events.publish("coordination.performance.issues_detected", %{
          issues: issues,
          metrics: metrics,
          detected_at: DateTime.utc_now()
        })
    end
    
    {:noreply, state}
  end
  
  defp gather_coordination_metrics() do
    # Collect metrics from all coordination services
  end
end

3. Migration Strategy and Implementation Plan

3.1 Phased Decomposition Approach

Phase 1: Service Extraction (Weeks 1-2)

defmodule MABEAM.Migration.ServiceExtractor do
  @moduledoc """
  Utilities for extracting services from monolithic modules.
  """
  
  @spec extract_service_from_module(
    source_module :: atom(), 
    target_service :: atom(), 
    functions :: [atom()]
  ) :: {:ok, extraction_result()} | {:error, term()}
  def extract_service_from_module(source_module, target_service, functions) do
    with :ok <- validate_extraction_feasibility(source_module, functions),
         {:ok, extracted_code} <- extract_functions(source_module, functions),
         {:ok, service_module} <- create_service_module(target_service, extracted_code),
         :ok <- setup_service_supervision(target_service),
         :ok <- update_client_references(source_module, target_service, functions) do
      {:ok, %{
        extracted_functions: functions,
        service_module: service_module,
        clients_updated: true
      }}
    end
  end
  
  # Service supervision setup
  defp setup_service_supervision(service_module) do
    # Add service to appropriate supervision tree
    case service_module do
      module when module in [
        MABEAM.Economics.AuctionManager,
        MABEAM.Economics.MarketDataService,
        MABEAM.Economics.PricingEngine
      ] ->
        add_to_economics_supervisor(module)
      module when module in [
        MABEAM.Coordination.AgentCoordinator,
        MABEAM.Coordination.TaskDistributor,
        MABEAM.Coordination.ConsensusProtocol
      ] ->
        add_to_coordination_supervisor(module)
    end
  end
end

Phase 2: Interface Establishment (Week 3)

defmodule MABEAM.Migration.InterfaceEstablisher do
  @moduledoc """
  Establishes clean interfaces between decomposed services.
  """
  
  @spec establish_service_interfaces(services :: [atom()]) :: :ok | {:error, term()}
  def establish_service_interfaces(services) do
    Enum.each(services, fn service ->
      create_service_interface(service)
      setup_event_subscriptions(service)
      configure_service_dependencies(service)
    end)
  end
  
  defp create_service_interface(service) do
    # Create standardized service interface
    interface_module = Module.concat([service, "Interface"])
    
    # Generate interface based on service public functions
    public_functions = get_public_functions(service)
    create_interface_module(interface_module, public_functions)
  end
  
  defp setup_event_subscriptions(service) do
    # Setup appropriate event subscriptions for each service
    subscriptions = determine_event_subscriptions(service)
    
    Enum.each(subscriptions, fn {event_pattern, handler} ->
      Foundation.Events.subscribe(service, event_pattern, handler)
    end)
  end
end

Phase 3: Data Migration (Week 4)

defmodule MABEAM.Migration.DataMigrator do
  @moduledoc """
  Migrates data from monolithic GenServer state to distributed service states.
  """
  
  @spec migrate_economics_data() :: {:ok, migration_result()} | {:error, term()}
  def migrate_economics_data() do
    # Extract current economics state
    {:ok, current_state} = get_current_economics_state()
    
    # Distribute data to appropriate services
    migration_tasks = [
      migrate_auction_data(current_state.auctions),
      migrate_market_data(current_state.market_data),
      migrate_pricing_data(current_state.pricing_data),
      migrate_agent_behavior_data(current_state.agent_data),
      migrate_transaction_data(current_state.transactions),
      migrate_analytics_data(current_state.analytics)
    ]
    
    # Execute migrations concurrently
    results = Task.await_many(migration_tasks, 30_000)
    
    # Verify migration success
    case verify_data_migration() do
      :ok -> {:ok, %{migrated_services: 6, verification: :passed}}
      {:error, reason} -> {:error, {:migration_verification_failed, reason}}
    end
  end
  
  defp migrate_auction_data(auction_data) do
    Task.async(fn ->
      Enum.each(auction_data, fn {auction_id, auction_state} ->
        MABEAM.Economics.AuctionManager.restore_auction_state(auction_id, auction_state)
      end)
    end)
  end
  
  defp verify_data_migration() do
    # Comprehensive verification that all data was migrated correctly
    verification_checks = [
      verify_auction_data_integrity(),
      verify_market_data_integrity(),
      verify_pricing_data_integrity(),
      verify_analytics_data_integrity()
    ]
    
    case Enum.all?(verification_checks, & &1 == :ok) do
      true -> :ok
      false -> {:error, :data_integrity_check_failed}
    end
  end
end

3.2 Rollback Strategy

Rollback Implementation

defmodule MABEAM.Migration.RollbackManager do
  @moduledoc """
  Comprehensive rollback strategy for module decomposition.
  """
  
  @spec rollback_decomposition(module :: atom()) :: 
    {:ok, rollback_result()} | {:error, term()}
  def rollback_decomposition(module) do
    case module do
      MABEAM.Economics ->
        rollback_economics_decomposition()
      MABEAM.Coordination ->
        rollback_coordination_decomposition()
      _ ->
        {:error, :unknown_module}
    end
  end
  
  defp rollback_economics_decomposition() do
    rollback_steps = [
      :stop_decomposed_services,
      :restore_original_economics_module,
      :migrate_data_back_to_monolith,
      :update_client_references,
      :verify_rollback_success
    ]
    
    execute_rollback_steps(rollback_steps, :economics)
  end
  
  defp execute_rollback_steps(steps, module) do
    Enum.reduce_while(steps, {:ok, []}, fn step, {:ok, completed_steps} ->
      case execute_rollback_step(step, module) do
        :ok -> 
          {:cont, {:ok, [step | completed_steps]}}
        {:error, reason} -> 
          {:halt, {:error, {step, reason, completed_steps}}}
      end
    end)
  end
  
  defp execute_rollback_step(:stop_decomposed_services, :economics) do
    services = [
      MABEAM.Economics.AuctionManager,
      MABEAM.Economics.MarketDataService,
      MABEAM.Economics.PricingEngine,
      MABEAM.Economics.AgentBehaviorService,
      MABEAM.Economics.TransactionProcessor,
      MABEAM.Economics.AnalyticsService
    ]
    
    Enum.each(services, fn service ->
      GenServer.stop(service, :normal, 5_000)
    end)
    
    :ok
  end
end

4. Testing Strategy for Decomposed Modules

4.1 Service Integration Testing

Integration Test Framework

defmodule MABEAM.Test.ServiceIntegration do
  @moduledoc """
  Integration testing framework for decomposed services.
  """
  
  use ExUnit.Case
  
  describe "Economics service integration" do
    test "auction creation triggers market data update" do
      # Setup
      auction_spec = build_auction_spec()
      
      # Subscribe to market data events
      Foundation.Events.subscribe(self(), "economics.market.auction_created")
      
      # Create auction
      {:ok, auction_id} = MABEAM.Economics.AuctionManager.create_auction(auction_spec)
      
      # Verify market data service receives event
      assert_receive {:event, "economics.market.auction_created", %{auction_id: ^auction_id}}, 1_000
      
      # Verify market state was updated
      market_state = MABEAM.Economics.MarketDataService.get_current_market_state()
      assert market_state.active_auctions[auction_id] != nil
    end
    
    test "pricing calculation triggers analytics update" do
      market_conditions = build_market_conditions()
      
      # Subscribe to analytics events
      Foundation.Events.subscribe(self(), "economics.analytics.pricing_updated")
      
      # Trigger pricing calculation
      {:ok, calculation_id} = 
        MABEAM.Economics.PricingEngine.calculate_dynamic_price(market_conditions)
      
      # Wait for calculation completion
      assert_receive {:event, "economics.pricing.calculated", %{calculation_id: ^calculation_id}}, 5_000
      
      # Verify analytics service was notified
      assert_receive {:event, "economics.analytics.pricing_updated", _}, 1_000
    end
  end
  
  describe "Coordination service integration" do
    test "agent coordination triggers task distribution" do
      agent_group = build_agent_group()
      
      # Subscribe to task distribution events
      Foundation.Events.subscribe(self(), "coordination.task.distribution_started")
      
      # Initiate coordination
      {:ok, coordination_id} = 
        MABEAM.Coordination.AgentCoordinator.coordinate_agent_group(agent_group)
      
      # Verify task distribution was triggered
      assert_receive {:event, "coordination.task.distribution_started", 
                     %{coordination_id: ^coordination_id}}, 2_000
    end
  end
end

4.2 Performance Testing for Decomposed Services

Performance Validation Framework

defmodule MABEAM.Test.DecompositionPerformance do
  @moduledoc """
  Performance testing to validate decomposition benefits.
  """
  
  use ExUnit.Case
  
  test "decomposed economics services handle concurrent load" do
    concurrent_operations = 1000
    
    # Test concurrent auction operations
    auction_tasks = Enum.map(1..concurrent_operations, fn _i ->
      Task.async(fn ->
        auction_spec = build_auction_spec()
        start_time = System.monotonic_time(:microsecond)
        
        {:ok, _auction_id} = MABEAM.Economics.AuctionManager.create_auction(auction_spec)
        
        end_time = System.monotonic_time(:microsecond)
        end_time - start_time
      end)
    end)
    
    # Wait for all operations to complete
    durations = Task.await_many(auction_tasks, 30_000)
    
    # Validate performance characteristics
    avg_duration = Enum.sum(durations) / length(durations)
    max_duration = Enum.max(durations)
    
    # Performance should be better than monolithic version
    assert avg_duration < 50_000  # 50ms average
    assert max_duration < 200_000  # 200ms max
    assert length(durations) == concurrent_operations  # All operations succeeded
  end
  
  test "decomposed coordination services maintain low latency" do
    # Test coordination latency with decomposed services
    coordination_operations = 500
    
    latency_measurements = Enum.map(1..coordination_operations, fn _i ->
      agent_group = build_agent_group()
      start_time = System.monotonic_time(:microsecond)
      
      {:ok, _coordination_id} = 
        MABEAM.Coordination.AgentCoordinator.coordinate_agent_group(agent_group)
      
      end_time = System.monotonic_time(:microsecond)
      end_time - start_time
    end)
    
    # Validate latency characteristics
    avg_latency = Enum.sum(latency_measurements) / length(latency_measurements)
    p95_latency = percentile(latency_measurements, 95)
    
    assert avg_latency < 10_000  # 10ms average
    assert p95_latency < 50_000  # 50ms p95
  end
end

Conclusion

This comprehensive decomposition strategy transforms two massive monolithic modules into 15 focused, maintainable services:

Economics Module: 5,557 lines → 8 services (~2,260 total lines, 59% reduction) Coordination Module: 5,313 lines → 7 services (~2,010 total lines, 62% reduction)

Key Benefits Achieved:

  1. Maintainability: Clear separation of concerns with focused responsibilities
  2. Performance: Elimination of GenServer bottlenecks through service distribution
  3. Scalability: Independent scaling of services based on load requirements
  4. Fault Tolerance: Isolated failure domains with targeted recovery strategies
  5. Testability: Focused unit tests and comprehensive integration testing
  6. Development Velocity: Parallel development across service boundaries

Implementation Priority: MEDIUM - After critical architecture fixes Dependencies: GenServer bottleneck elimination, Foundation event system Testing Requirements: Comprehensive integration and performance validation