DSPEx Integration: Universal ML Intelligence on Foundation OS
Version 1.0 - Revolutionary ML Platform Integration
Date: June 27, 2025
Executive Summary
This document outlines the comprehensive integration of DSPEx (the Elixir port of DSPy) with the Foundation OS platform. The integration transforms DSPEx from a standalone ML library into a first-class citizen of the world’s most sophisticated multi-agent platform. DSPEx programs become Jido agents, ML variables participate in MABEAM coordination, and teleprompters orchestrate entire agent ecosystems.
The result is a revolutionary ML platform that combines DSPy’s optimization capabilities with the BEAM’s fault tolerance, Jido’s agent model, and MABEAM’s coordination intelligence.
Integration Philosophy
Core Principles
- Preserve DSPEx Excellence: Maintain the sophisticated ML capabilities and DSPy compatibility
- Natural Agent Integration: DSPEx programs naturally become Jido agents
- Universal Variable Coordination: ML variables participate in MABEAM orchestration
- Enhanced Teleprompters: Optimization algorithms coordinate entire agent teams
- Schema-Driven Validation: ML-native data validation throughout the platform
- Backwards Compatibility: Existing DSPEx code continues to work
Strategic Value Proposition
The integration creates Universal ML Intelligence that provides:
- Agent-Native ML: ML programs as first-class Jido agents
- Multi-Agent Optimization: Teleprompters that optimize entire teams
- Variable Orchestration: ML parameters as universal coordination primitives
- Fault-Tolerant ML: OTP supervision for ML workflows
- Distributed Intelligence: ML workloads across BEAM clusters
Current DSPEx Architecture Analysis
Existing DSPEx Structure
lib/elixir_ml/
├── schema/ # ML-native validation system
├── variable/ # Variable abstraction system
├── process/ # ML workflow orchestration
└── mabeam.ex # Multi-agent bridge
ds_ex/lib/
├── dspex/
│ ├── program.ex # Core DSPEx program
│ ├── predict.ex # Prediction interface
│ ├── signature.ex # Program signatures
│ ├── teleprompter/ # Optimization algorithms
│ ├── client.ex # LLM client
│ └── adapter.ex # Response adapters
Integration Opportunities
- Program-Agent Bridge: Convert DSPEx programs to Jido agents
- Variable System Integration: Bridge ElixirML variables with MABEAM
- Teleprompter Enhancement: Multi-agent optimization capabilities
- Schema Integration: ML validation throughout the platform
- Client Enhancement: Foundation infrastructure integration
Detailed Integration Strategy
1. DSPEx Program as Jido Agent
Core Program-Agent Bridge
# lib/dspex/agent.ex
defmodule DSPEx.Agent do
@moduledoc """
Bridge that converts DSPEx programs into Jido agents.
Enables DSPEx programs to participate in multi-agent coordination.
"""
defmacro __using__(opts) do
quote do
use Jido.Agent
use DSPEx.Program, unquote(opts)
# Enhanced agent initialization with DSPEx capabilities
def init(opts) do
# Initialize Jido agent
{:ok, jido_state} = super(opts)
# Initialize DSPEx program
program_config = Keyword.get(opts, :program_config, %{})
dspex_state = DSPEx.Program.init_state(program_config)
# Merge states
state = Map.merge(jido_state, %{
dspex: dspex_state,
signature: Keyword.get(opts, :signature),
teleprompter: Keyword.get(opts, :teleprompter),
ml_variables: extract_ml_variables(opts)
})
# Register ML variables with MABEAM if enabled
if opts[:mabeam_coordination] do
register_ml_variables_with_mabeam(state.ml_variables)
end
{:ok, state}
end
# Enhanced predict with agent integration
def predict(input, context \\ %{}) do
# Get current variable values from MABEAM if coordinated
resolved_variables = if context[:use_mabeam_variables] do
resolve_mabeam_variables(context[:agent_id])
else
context[:variables] || %{}
end
# Execute prediction with current configuration
enhanced_context = Map.merge(context, %{
variables: resolved_variables,
agent_id: context[:agent_id],
coordination_enabled: true
})
DSPEx.Program.predict(__MODULE__, input, enhanced_context)
end
# Jido action for prediction
def handle_instruction(%Jido.Instruction{action: :predict, params: params}, state) do
input = params[:input]
context = Map.merge(params[:context] || %{}, %{agent_id: state.agent_id})
case predict(input, context) do
{:ok, result} ->
# Track prediction metrics
Foundation.Telemetry.AgentTelemetry.track_agent_action(
state.agent_id,
:predict,
result.duration || 0,
{:ok, result}
)
# Publish prediction signal
signal = %JidoSignal{
id: JidoSignal.ID.generate(),
type: "dspex.prediction.completed",
source: state.agent_id,
data: %{
input: input,
output: result.output,
metadata: result.metadata
}
}
JidoSignal.Bus.publish(signal)
{:reply, {:ok, result}, state}
{:error, reason} ->
Foundation.Telemetry.AgentTelemetry.track_agent_action(
state.agent_id,
:predict,
0,
{:error, reason}
)
{:reply, {:error, reason}, state}
end
end
# Handle variable updates from MABEAM
def handle_info({:mabeam_variable_update, variable_id, new_value}, state) do
# Update DSPEx program configuration
new_dspex_state = DSPEx.Program.update_variable(
state.dspex,
variable_id,
new_value
)
new_state = %{state | dspex: new_dspex_state}
# Notify about configuration change
Foundation.Services.EventStore.publish(%Foundation.Types.Event{
type: :dspex_variable_updated,
source: state.agent_id,
data: %{variable_id: variable_id, new_value: new_value}
})
{:noreply, new_state}
end
# Extract ML variables from program configuration
defp extract_ml_variables(opts) do
signature = opts[:signature]
program_variables = opts[:variables] || []
# Combine signature variables with explicit variables
signature_variables = if signature do
DSPEx.Signature.extract_variables(signature)
else
[]
end
signature_variables ++ program_variables
end
# Register ML variables with MABEAM orchestrator
defp register_ml_variables_with_mabeam(variables) do
Enum.each(variables, fn variable ->
MABEAM.Orchestrator.register_variable(variable)
end)
end
# Resolve current MABEAM variable values
defp resolve_mabeam_variables(agent_id) do
agent_variables = MABEAM.Orchestrator.get_agent_variables(agent_id)
Enum.into(agent_variables, %{}, fn variable_id ->
value = MABEAM.Orchestrator.get_variable_value(variable_id)
{variable_id, value}
end)
end
end
end
end
# Example usage
defmodule CoderAgent do
use DSPEx.Agent,
signature: CoderSignature,
teleprompter: DSPEx.Teleprompter.SIMBA,
mabeam_coordination: true,
variables: [
ElixirML.Variable.MLTypes.temperature(:temperature),
ElixirML.Variable.MLTypes.max_tokens(:max_tokens),
ElixirML.Variable.MLTypes.reasoning_strategy(:reasoning)
]
# DSPEx program implementation
def forward(inputs, context) do
# Use coordinated variables
temperature = context.variables[:temperature] || 0.7
max_tokens = context.variables[:max_tokens] || 1000
# ML logic here
{:ok, generate_code(inputs, temperature, max_tokens)}
end
end
2. Enhanced Variable System Integration
MABEAM-DSPEx Variable Bridge
# lib/dspex/variable/mabeam_bridge.ex
defmodule DSPEx.Variable.MABEAMBridge do
@moduledoc """
Bridge between DSPEx/ElixirML variables and MABEAM orchestration.
Enables ML variables to participate in multi-agent coordination.
"""
def convert_ml_variable_to_mabeam(ml_variable) do
# Convert ElixirML.Variable to MABEAM.Variable
%MABEAM.Variable{
id: ml_variable.id,
type: convert_variable_type(ml_variable.type),
constraints: convert_constraints(ml_variable.constraints),
coordination_strategy: determine_coordination_strategy(ml_variable),
agents: [], # Will be populated when agents register
metadata: %{
ml_type: ml_variable.type,
original_variable: ml_variable,
optimization_hint: ml_variable.metadata[:optimization_hint]
}
}
end
def create_ml_variable_space_for_agents(agents, ml_variables) do
# Create a MABEAM multi-agent space for ML variables
mabeam_variables = Enum.map(ml_variables, &convert_ml_variable_to_mabeam/1)
space = %MABEAM.Variable.MultiAgentSpace{
id: :ml_coordination_space,
name: "ML Variable Coordination Space",
agents: create_agent_configs(agents),
orchestration_variables: index_by_id(mabeam_variables),
coordination_graph: build_ml_coordination_graph(agents, mabeam_variables),
performance_metrics: %{},
adaptation_history: []
}
# Register space with MABEAM orchestrator
MABEAM.Orchestrator.register_space(space)
space
end
def coordinate_ml_variables(space, coordination_context) do
# Coordinate ML variables across agents
results = Enum.map(space.orchestration_variables, fn {var_id, variable} ->
case MABEAM.Coordination.coordinate_variable(variable, coordination_context) do
{:ok, coordination_result} ->
# Apply coordination result to all participating agents
apply_coordination_result(variable, coordination_result)
{var_id, {:ok, coordination_result}}
{:error, reason} ->
{var_id, {:error, reason}}
end
end)
# Update space with coordination results
update_space_with_results(space, results)
end
defp convert_variable_type(:float), do: :continuous
defp convert_variable_type(:integer), do: :discrete
defp convert_variable_type(:choice), do: :categorical
defp convert_variable_type(:module), do: :agent_selection
defp convert_variable_type(type), do: type
defp convert_constraints(constraints) do
Enum.map(constraints, fn
{:range, {min, max}} -> {:value_range, min, max}
{:options, options} -> {:allowed_values, options}
{:min, min} -> {:minimum_value, min}
{:max, max} -> {:maximum_value, max}
constraint -> constraint
end)
end
defp determine_coordination_strategy(ml_variable) do
case ml_variable.type do
:float -> :weighted_consensus
:integer -> :voting
:choice -> :auction
:module -> :capability_based_selection
_ -> :simple_coordination
end
end
defp create_agent_configs(agents) do
Enum.into(agents, %{}, fn agent_id ->
{agent_id, %{
module: agent_id,
supervision_strategy: :one_for_one,
resource_requirements: %{memory: 100, cpu: 0.1},
communication_interfaces: [:jido_signal],
local_variable_space: %{},
role: :ml_worker,
status: :active
}}
end)
end
defp build_ml_coordination_graph(agents, variables) do
# Build coordination graph based on variable dependencies
nodes = agents
edges = for agent1 <- agents,
agent2 <- agents,
agent1 != agent2,
shared_variable?(agent1, agent2, variables) do
{agent1, agent2, :variable_coordination}
end
%{
nodes: nodes,
edges: edges,
topology: :mesh # For ML coordination, mesh is often optimal
}
end
defp shared_variable?(agent1, agent2, variables) do
# Check if agents share any variables
agent1_vars = get_agent_variables(agent1, variables)
agent2_vars = get_agent_variables(agent2, variables)
length(agent1_vars -- agent2_vars) != length(agent1_vars)
end
defp get_agent_variables(agent_id, variables) do
# Get variables that affect this agent
Enum.filter(variables, fn variable ->
agent_id in (variable.metadata[:affecting_agents] || [])
end)
end
defp apply_coordination_result(variable, coordination_result) do
# Apply coordination result to all agents using this variable
Enum.each(coordination_result.agent_directives, fn directive ->
case directive.action do
:update_variable ->
send_variable_update(directive.agent, variable.id, directive.parameters.new_value)
:reconfigure ->
send_reconfiguration(directive.agent, directive.parameters)
_ ->
send_generic_directive(directive.agent, directive)
end
end)
end
defp send_variable_update(agent_id, variable_id, new_value) do
case Foundation.ProcessRegistry.lookup(agent_id) do
{:ok, pid} ->
send(pid, {:mabeam_variable_update, variable_id, new_value})
{:error, :not_found} ->
{:error, :agent_not_found}
end
end
end
# lib/dspex/variable/ml_coordination.ex
defmodule DSPEx.Variable.MLCoordination do
@moduledoc """
ML-specific coordination protocols for DSPEx variables.
"""
def coordinate_temperature_across_agents(agents, context) do
# Negotiate temperature based on task requirements
preferences = Enum.map(agents, fn agent_id ->
task_type = get_agent_task_type(agent_id)
preferred_temp = get_preferred_temperature(task_type)
weight = get_agent_coordination_weight(agent_id)
{agent_id, preferred_temp, weight}
end)
# Calculate weighted consensus
total_weight = Enum.sum(Enum.map(preferences, fn {_, _, weight} -> weight end))
consensus_temp = preferences
|> Enum.map(fn {_, temp, weight} -> temp * weight end)
|> Enum.sum()
|> Kernel./(total_weight)
# Ensure within valid range
final_temp = max(0.0, min(2.0, consensus_temp))
{:ok, %{
coordinated_value: final_temp,
agent_directives: Enum.map(agents, fn agent_id ->
%{
agent: agent_id,
action: :update_variable,
parameters: %{variable_id: :temperature, new_value: final_temp},
priority: 1,
timeout: 5000
}
end)
}}
end
def coordinate_model_selection(agents, available_models, context) do
# Coordinate model selection based on task requirements and resource constraints
agent_requirements = Enum.map(agents, fn agent_id ->
task_complexity = get_agent_task_complexity(agent_id)
resource_budget = get_agent_resource_budget(agent_id)
{agent_id, task_complexity, resource_budget}
end)
# Select optimal model for each agent
model_assignments = Enum.map(agent_requirements, fn {agent_id, complexity, budget} ->
optimal_model = select_optimal_model(available_models, complexity, budget)
{agent_id, optimal_model}
end)
{:ok, %{
coordinated_assignments: model_assignments,
agent_directives: Enum.map(model_assignments, fn {agent_id, model} ->
%{
agent: agent_id,
action: :update_variable,
parameters: %{variable_id: :model, new_value: model},
priority: 1,
timeout: 10000
}
end)
}}
end
def coordinate_reasoning_strategies(agents, context) do
# Coordinate reasoning strategies to maximize team effectiveness
task_distribution = analyze_task_distribution(agents, context)
strategy_assignments = case task_distribution.pattern do
:sequential ->
# Assign complementary strategies for sequential tasks
assign_sequential_strategies(agents)
:parallel ->
# Assign diverse strategies for parallel exploration
assign_diverse_strategies(agents)
:hierarchical ->
# Assign strategies based on hierarchy
assign_hierarchical_strategies(agents, task_distribution.hierarchy)
_ ->
# Default to balanced assignment
assign_balanced_strategies(agents)
end
{:ok, %{
coordinated_strategies: strategy_assignments,
agent_directives: create_strategy_directives(strategy_assignments)
}}
end
defp get_agent_task_type(agent_id) do
# Get task type from agent metadata
case Foundation.ProcessRegistry.get_metadata(agent_id) do
{:ok, metadata} -> metadata[:task_type] || :general
_ -> :general
end
end
defp get_preferred_temperature(:creative), do: 1.2
defp get_preferred_temperature(:analytical), do: 0.3
defp get_preferred_temperature(:balanced), do: 0.7
defp get_preferred_temperature(_), do: 0.7
defp get_agent_coordination_weight(agent_id) do
# Get coordination weight from agent configuration
case Foundation.ProcessRegistry.get_metadata(agent_id) do
{:ok, metadata} -> metadata[:coordination_weight] || 1.0
_ -> 1.0
end
end
defp select_optimal_model(available_models, complexity, budget) do
# Select model based on complexity and budget constraints
suitable_models = Enum.filter(available_models, fn model ->
model.cost_per_token <= budget.max_cost_per_token &&
model.capability_level >= complexity_to_capability_level(complexity)
end)
# Choose the most cost-effective suitable model
Enum.min_by(suitable_models, & &1.cost_per_token, fn -> List.first(available_models) end)
end
defp complexity_to_capability_level(:simple), do: 1
defp complexity_to_capability_level(:medium), do: 2
defp complexity_to_capability_level(:complex), do: 3
defp complexity_to_capability_level(:expert), do: 4
defp complexity_to_capability_level(_), do: 2
end
3. Enhanced Teleprompter System
Multi-Agent Teleprompters
# lib/dspex/teleprompter/multi_agent.ex
defmodule DSPEx.Teleprompter.MultiAgent do
@moduledoc """
Multi-agent teleprompters that optimize entire agent teams.
Extends SIMBA, BEACON, and other algorithms to work across agent boundaries.
"""
def simba(agent_team, training_data, metric_fn, opts \\ []) do
# Multi-agent SIMBA optimization
generations = opts[:generations] || 20
mutation_strategies = opts[:mutation_strategies] || [:parameter_mutation, :agent_selection]
# Initialize multi-agent configuration
initial_config = create_initial_team_config(agent_team)
# Track best configuration
best_config = initial_config
best_score = evaluate_team_configuration(agent_team, initial_config, training_data, metric_fn)
# Evolution loop
for generation <- 1..generations do
# Generate candidate configurations
candidates = generate_candidate_configurations(
best_config,
mutation_strategies,
opts[:candidate_count] || 10
)
# Evaluate candidates in parallel
candidate_scores = candidates
|> Task.async_stream(fn config ->
score = evaluate_team_configuration(agent_team, config, training_data, metric_fn)
{config, score}
end, max_concurrency: System.schedulers_online())
|> Enum.map(fn {:ok, result} -> result end)
# Select best candidate
{candidate_config, candidate_score} = Enum.max_by(candidate_scores, fn {_, score} -> score end)
if candidate_score > best_score do
best_config = candidate_config
best_score = candidate_score
# Apply best configuration to team
apply_team_configuration(agent_team, best_config)
# Track progress
Foundation.Telemetry.track_optimization_progress(
:multi_agent_simba,
generation,
best_score
)
end
end
{:ok, %{
optimized_config: best_config,
final_score: best_score,
agent_team: agent_team
}}
end
def beacon(agent_team, training_data, metric_fn, opts \\ []) do
# Multi-agent BEACON for rapid team composition optimization
max_rounds = opts[:max_rounds] || 10
# Start with random team composition
current_composition = initialize_random_composition(agent_team, opts)
best_composition = current_composition
best_score = evaluate_team_composition(current_composition, training_data, metric_fn)
for round <- 1..max_rounds do
# Generate composition variations
variations = generate_composition_variations(current_composition, opts)
# Evaluate variations
variation_scores = Enum.map(variations, fn composition ->
score = evaluate_team_composition(composition, training_data, metric_fn)
{composition, score}
end)
# Select best variation
{best_variation, variation_score} = Enum.max_by(variation_scores, fn {_, score} -> score end)
if variation_score > best_score do
best_composition = best_variation
best_score = variation_score
current_composition = best_variation
# Apply composition to team
apply_team_composition(agent_team, best_composition)
end
end
{:ok, %{
optimized_composition: best_composition,
final_score: best_score,
optimization_rounds: max_rounds
}}
end
def bootstrap_fewshot_team(agent_team, training_data, opts \\ []) do
# Bootstrap few-shot optimization across multiple specialized agents
# Partition training data by task type
partitioned_data = partition_training_data_by_type(training_data)
# Assign agents to data partitions based on capabilities
agent_assignments = assign_agents_to_partitions(agent_team, partitioned_data)
# Optimize each agent on its assigned data
optimization_results = Enum.map(agent_assignments, fn {agent_id, data_partition} ->
result = DSPEx.Teleprompter.BootstrapFewShot.optimize(
agent_id,
data_partition,
opts
)
{agent_id, result}
end)
# Coordinate optimized agents
coordinated_team = coordinate_optimized_agents(optimization_results)
{:ok, %{
agent_optimizations: optimization_results,
coordinated_team: coordinated_team,
team_configuration: extract_team_configuration(coordinated_team)
}}
end
defp create_initial_team_config(agent_team) do
Enum.into(agent_team, %{}, fn agent_id ->
# Get current agent configuration
case Foundation.ProcessRegistry.get_metadata(agent_id) do
{:ok, metadata} ->
variables = metadata[:coordination_variables] || []
config = Enum.into(variables, %{}, fn var_id ->
value = MABEAM.Orchestrator.get_variable_value(var_id)
{var_id, value}
end)
{agent_id, config}
_ ->
{agent_id, %{}}
end
end)
end
defp generate_candidate_configurations(base_config, mutation_strategies, count) do
for _ <- 1..count do
mutate_team_configuration(base_config, mutation_strategies)
end
end
defp mutate_team_configuration(config, strategies) do
strategy = Enum.random(strategies)
case strategy do
:parameter_mutation ->
mutate_parameters(config)
:agent_selection ->
mutate_agent_selection(config)
:topology_mutation ->
mutate_communication_topology(config)
:resource_reallocation ->
mutate_resource_allocation(config)
end
end
defp evaluate_team_configuration(agent_team, config, training_data, metric_fn) do
# Apply configuration to team
apply_team_configuration(agent_team, config)
# Run team on training data
results = Enum.map(training_data, fn example ->
team_result = execute_team_on_example(agent_team, example)
metric_fn.(team_result, example)
end)
# Calculate average performance
Enum.sum(results) / length(results)
end
defp apply_team_configuration(agent_team, config) do
Enum.each(config, fn {agent_id, agent_config} ->
Enum.each(agent_config, fn {variable_id, value} ->
MABEAM.Orchestrator.update_variable_for_agent(agent_id, variable_id, value)
end)
end)
end
defp execute_team_on_example(agent_team, example) do
# Coordinate team execution on a single example
coordinator = List.first(agent_team) # Use first agent as coordinator
instruction = %Jido.Instruction{
action: :coordinate_team_prediction,
params: %{
team: agent_team,
input: example.input,
expected_output: example.expected_output
}
}
case Jido.Agent.cmd(coordinator, instruction) do
{:ok, result} -> result
{:error, _} -> %{success: false, output: nil}
end
end
end
# lib/dspex/teleprompter/coordination_aware.ex
defmodule DSPEx.Teleprompter.CoordinationAware do
@moduledoc """
Base teleprompter that is aware of agent coordination and variables.
"""
defmacro __using__(_opts) do
quote do
# Get coordinated variables for optimization
def get_coordination_variables(agent_id) do
case Foundation.ProcessRegistry.get_metadata(agent_id) do
{:ok, metadata} -> metadata[:coordination_variables] || []
_ -> []
end
end
# Update coordinated variables
def update_coordination_variables(agent_id, variable_updates) do
Enum.each(variable_updates, fn {variable_id, value} ->
MABEAM.Orchestrator.update_variable_for_agent(agent_id, variable_id, value)
end)
end
# Get team performance metrics
def get_team_performance_metrics(agent_team) do
Enum.into(agent_team, %{}, fn agent_id ->
metrics = Foundation.Telemetry.AgentTelemetry.get_agent_metrics(agent_id)
{agent_id, metrics}
end)
end
# Coordinate optimization across team
def coordinate_team_optimization(agent_team, optimization_fn) do
# Create coordination context
context = %{
team: agent_team,
coordination_variables: get_all_coordination_variables(agent_team),
performance_baseline: get_team_performance_metrics(agent_team)
}
# Execute optimization with coordination
result = optimization_fn.(context)
# Apply coordination results
if result.coordination_updates do
apply_coordination_updates(agent_team, result.coordination_updates)
end
result
end
defp get_all_coordination_variables(agent_team) do
agent_team
|> Enum.flat_map(&get_coordination_variables/1)
|> Enum.uniq()
end
defp apply_coordination_updates(agent_team, updates) do
Enum.each(updates, fn {variable_id, value} ->
Enum.each(agent_team, fn agent_id ->
if variable_id in get_coordination_variables(agent_id) do
update_coordination_variables(agent_id, [{variable_id, value}])
end
end)
end)
end
end
end
end
4. Enhanced Schema Integration
ML-Native Validation with Signal Integration
# lib/dspex/schema/signal_integration.ex
defmodule DSPEx.Schema.SignalIntegration do
@moduledoc """
Integration between DSPEx schemas and Jido signal system.
Enables ML validation events and schema-driven signal routing.
"""
def validate_with_signals(schema_module, data, context \\ %{}) do
# Start validation with signal tracking
validation_id = generate_validation_id()
# Publish validation start signal
publish_validation_signal(validation_id, :started, %{
schema: schema_module,
data_type: get_data_type(data),
context: context
})
# Perform validation
start_time = System.monotonic_time(:millisecond)
result = case schema_module.validate(data) do
{:ok, validated_data} ->
duration = System.monotonic_time(:millisecond) - start_time
# Publish success signal
publish_validation_signal(validation_id, :success, %{
schema: schema_module,
duration: duration,
validated_data: validated_data
})
{:ok, validated_data}
{:error, errors} ->
duration = System.monotonic_time(:millisecond) - start_time
# Publish error signal
publish_validation_signal(validation_id, :error, %{
schema: schema_module,
duration: duration,
errors: errors
})
{:error, errors}
end
# Track validation metrics
Foundation.Telemetry.track_schema_validation(
schema_module,
result,
System.monotonic_time(:millisecond) - start_time
)
result
end
def setup_schema_signal_routing(schema_module, routing_rules) do
# Setup signal routing based on validation outcomes
Enum.each(routing_rules, fn {outcome, routing_config} ->
JidoSignal.Router.add_route(
"schema.validation.#{outcome}",
create_schema_filter(schema_module),
routing_config
)
end)
end
def create_ml_validation_pipeline(schemas, signal_handlers) do
# Create a validation pipeline with signal-driven flow control
pipeline_id = generate_pipeline_id()
# Setup pipeline stages
stages = Enum.with_index(schemas, fn schema, index ->
stage_id = "#{pipeline_id}_stage_#{index}"
%{
id: stage_id,
schema: schema,
signal_handler: Map.get(signal_handlers, schema),
next_stage: get_next_stage_id(schemas, index, pipeline_id)
}
end)
# Register pipeline with signal router
JidoSignal.Router.register_pipeline(pipeline_id, stages)
{:ok, pipeline_id}
end
defp publish_validation_signal(validation_id, event_type, data) do
signal = %JidoSignal{
id: JidoSignal.ID.generate(),
type: "schema.validation.#{event_type}",
source: :dspex_schema,
data: Map.merge(data, %{validation_id: validation_id}),
timestamp: DateTime.utc_now()
}
JidoSignal.Bus.publish(signal)
end
defp generate_validation_id() do
:crypto.strong_rand_bytes(8) |> Base.encode16(case: :lower)
end
defp generate_pipeline_id() do
"ml_pipeline_" <> (:crypto.strong_rand_bytes(8) |> Base.encode16(case: :lower))
end
defp get_data_type(data) when is_map(data), do: :map
defp get_data_type(data) when is_list(data), do: :list
defp get_data_type(data) when is_binary(data), do: :string
defp get_data_type(data) when is_number(data), do: :number
defp get_data_type(_), do: :unknown
defp create_schema_filter(schema_module) do
fn signal ->
signal.data[:schema] == schema_module
end
end
defp get_next_stage_id(schemas, current_index, pipeline_id) do
if current_index + 1 < length(schemas) do
"#{pipeline_id}_stage_#{current_index + 1}"
else
:pipeline_complete
end
end
end
# lib/dspex/schema/ml_aware_validation.ex
defmodule DSPEx.Schema.MLAwareValidation do
@moduledoc """
ML-aware validation with agent coordination and variable integration.
"""
def validate_with_coordination(schema_module, data, coordination_context) do
# Get coordination variables that might affect validation
coordination_vars = coordination_context[:variables] || %{}
# Adjust validation parameters based on coordination
validation_params = adjust_validation_params(schema_module, coordination_vars)
# Perform coordinated validation
case schema_module.validate(data, validation_params) do
{:ok, validated_data} ->
# Coordinate successful validation results
coordinate_validation_success(
schema_module,
validated_data,
coordination_context
)
{:ok, validated_data}
{:error, errors} ->
# Coordinate validation failures for team learning
coordinate_validation_failure(
schema_module,
errors,
coordination_context
)
{:error, errors}
end
end
def setup_ml_validation_coordination(agent_team, schemas) do
# Setup coordination for ML validation across agent team
coordination_config = %{
team: agent_team,
schemas: schemas,
coordination_variables: extract_validation_variables(schemas),
error_sharing: true,
success_sharing: true
}
# Register with MABEAM
MABEAM.Orchestrator.register_coordination(
:ml_validation_coordination,
coordination_config
)
# Setup signal routing for coordination
setup_validation_coordination_signals(agent_team, schemas)
{:ok, coordination_config}
end
defp adjust_validation_params(schema_module, coordination_vars) do
# Adjust validation based on coordination variables
base_params = %{strict: true, detailed_errors: true}
# Example adjustments based on common ML variables
adjustments = %{
confidence_threshold: coordination_vars[:confidence_threshold],
tolerance: coordination_vars[:tolerance],
max_iterations: coordination_vars[:max_validation_iterations]
}
Map.merge(base_params, adjustments)
end
defp coordinate_validation_success(schema_module, validated_data, context) do
# Share successful validation patterns with team
success_signal = %JidoSignal{
id: JidoSignal.ID.generate(),
type: "validation.success.shared",
source: context[:agent_id],
data: %{
schema: schema_module,
pattern: extract_validation_pattern(validated_data),
context: context
}
}
JidoSignal.Bus.publish(success_signal)
end
defp coordinate_validation_failure(schema_module, errors, context) do
# Share validation failures for team learning
failure_signal = %JidoSignal{
id: JidoSignal.ID.generate(),
type: "validation.failure.shared",
source: context[:agent_id],
data: %{
schema: schema_module,
errors: errors,
context: context
}
}
JidoSignal.Bus.publish(failure_signal)
end
defp extract_validation_variables(schemas) do
# Extract variables that affect validation from schemas
Enum.flat_map(schemas, fn schema ->
case schema.__info__(:attributes) do
attributes when is_list(attributes) ->
Keyword.get(attributes, :validation_variables, [])
_ ->
[]
end
end)
|> Enum.uniq()
end
defp setup_validation_coordination_signals(agent_team, schemas) do
# Setup signal routing for validation coordination
Enum.each(schemas, fn schema ->
# Route validation success signals
JidoSignal.Router.add_route(
"validation.success.shared",
fn signal -> signal.data.schema == schema end,
%{dispatch: {:broadcast, agent_team}}
)
# Route validation failure signals
JidoSignal.Router.add_route(
"validation.failure.shared",
fn signal -> signal.data.schema == schema end,
%{dispatch: {:broadcast, agent_team}}
)
end)
end
defp extract_validation_pattern(validated_data) do
# Extract patterns from successfully validated data
%{
data_shape: analyze_data_shape(validated_data),
field_types: analyze_field_types(validated_data),
value_ranges: analyze_value_ranges(validated_data)
}
end
defp analyze_data_shape(data) when is_map(data) do
%{type: :map, keys: Map.keys(data), size: map_size(data)}
end
defp analyze_data_shape(data) when is_list(data) do
%{type: :list, length: length(data), element_types: analyze_list_types(data)}
end
defp analyze_data_shape(_), do: %{type: :scalar}
defp analyze_field_types(data) when is_map(data) do
Enum.into(data, %{}, fn {key, value} ->
{key, get_value_type(value)}
end)
end
defp analyze_field_types(_), do: %{}
defp analyze_value_ranges(data) when is_map(data) do
Enum.into(data, %{}, fn {key, value} ->
{key, get_value_range(value)}
end)
|> Enum.filter(fn {_, range} -> range != nil end)
|> Enum.into(%{})
end
defp analyze_value_ranges(_), do: %{}
defp get_value_type(value) when is_number(value), do: :number
defp get_value_type(value) when is_binary(value), do: :string
defp get_value_type(value) when is_boolean(value), do: :boolean
defp get_value_type(value) when is_list(value), do: :list
defp get_value_type(value) when is_map(value), do: :map
defp get_value_type(_), do: :unknown
defp get_value_range(value) when is_number(value), do: {value, value}
defp get_value_range(value) when is_binary(value), do: {String.length(value), String.length(value)}
defp get_value_range(_), do: nil
defp analyze_list_types(list) do
list
|> Enum.map(&get_value_type/1)
|> Enum.uniq()
end
end
Migration and Testing Strategy
Phase 1: Core Integration (Week 1)
- Implement DSPEx.Agent bridge for program-to-agent conversion
- Create MABEAM variable bridge for ML variables
- Integrate DSPEx client with Foundation infrastructure
- Basic signal integration for DSPEx events
Phase 2: Enhanced Coordination (Week 2)
- Implement multi-agent variable coordination
- Create ML-specific coordination protocols
- Enhance teleprompters for multi-agent optimization
- Schema validation with signal integration
Phase 3: Advanced Features (Week 3)
- Multi-agent SIMBA and BEACON implementation
- Comprehensive schema-signal integration
- Performance optimization and telemetry
- Integration testing with real ML workflows
Phase 4: Production Readiness (Week 4)
- Comprehensive testing and benchmarking
- Documentation and examples
- Performance tuning and optimization
- Final integration validation
Performance and Scale Considerations
Optimization Strategies
- Agent Pooling: Pool of pre-initialized DSPEx agents for rapid task assignment
- Variable Caching: ETS-based caching of frequently accessed ML variables
- Batch Processing: Batch ML operations for improved throughput
- Lazy Coordination: Only coordinate variables when necessary
Scale Targets
- 1000+ Agents: Support for large-scale ML workflows
- Sub-second Coordination: Variable coordination in <500ms
- High Throughput: 10,000+ predictions per second across agent fleet
- Low Latency: <10ms overhead for agent-native ML operations
Success Metrics
Technical Excellence
- Zero Regression: All existing DSPEx functionality preserved
- Enhanced Performance: 50%+ improvement in ML workflow orchestration
- Fault Tolerance: 99.9% uptime for ML agent systems
- Scale: Support for 1000+ coordinated ML agents
Integration Quality
- API Consistency: Unified programming model for ML agents
- Observability: Complete visibility into ML agent coordination
- Developer Experience: Simplified multi-agent ML development
- Production Readiness: Battle-tested ML workflows on BEAM
This integration creates the world’s most sophisticated ML platform, combining DSPy’s optimization excellence with the BEAM’s fault tolerance and the Foundation OS’s coordination intelligence.
<function_calls>