← Back to Docs20250627

109 TELEMETRY ARCHITECTURE

Documentation for 109_TELEMETRY_ARCHITECTURE from the Foundation repository.

Foundation OS Telemetry Architecture

Version 1.0 - Comprehensive Observability Across All System Layers
Date: June 27, 2025

Executive Summary

This document defines the comprehensive telemetry and observability architecture for Foundation OS, establishing unified monitoring, metrics, tracing, and alerting across Foundation, FoundationJido, and DSPEx layers. The architecture provides deep insights into system performance, multi-agent coordination effectiveness, and ML optimization progress.

Design Philosophy: Observability as a first-class citizen with minimal performance overhead
Architecture: Layered telemetry with automatic correlation and intelligent aggregation
Integration: Seamless integration with existing monitoring tools and cloud platforms

Current Telemetry Assessment

Existing Telemetry Capabilities

Based on the Foundation codebase and integration requirements:

  1. Foundation.Telemetry: Basic telemetry infrastructure exists
  2. Process Registry Telemetry: Basic process lifecycle events
  3. Infrastructure Telemetry: Circuit breaker and rate limiter metrics
  4. Jido Library Telemetry: Independent telemetry in Jido libraries
  5. DSPEx Telemetry: ML-specific metrics for optimization and performance

Gaps in Current System

  • No Cross-Layer Correlation: Cannot trace requests across Foundation → Jido → DSPEx
  • Limited Agent Coordination Visibility: Cannot monitor multi-agent workflows effectively
  • Inconsistent Metrics: Different metric formats and naming across layers
  • No ML-Specific Observability: Limited visibility into optimization progress and model performance
  • Missing Business Metrics: No tracking of coordination effectiveness or agent productivity

Unified Telemetry Architecture

Core Telemetry Infrastructure

defmodule Foundation.Telemetry do
  @moduledoc """
  Enhanced telemetry system for Foundation OS.
  Provides unified observability across all system layers.
  """
  
  @typedoc "Telemetry event name as hierarchical path"
  @type event_name :: [atom()]
  
  @typedoc "Numeric measurements"
  @type measurements :: %{atom() => number()}
  
  @typedoc "Event metadata and tags"
  @type metadata :: %{
    # Correlation IDs
    trace_id: String.t() | nil,
    span_id: String.t() | nil,
    request_id: String.t() | nil,
    
    # Entity identification
    agent_id: String.t() | nil,
    coordination_id: String.t() | nil,
    program_id: String.t() | nil,
    
    # Context information
    layer: :foundation | :foundation_jido | :dspex,
    node: atom(),
    environment: String.t(),
    
    # Custom metadata
    tags: [atom()],
    custom: map()
  }
  
  @doc """
  Execute telemetry event with enhanced metadata.
  """
  @spec execute(event_name(), measurements(), metadata()) :: :ok
  def execute(event_name, measurements \\ %{}, metadata \\ %{}) do
    enhanced_metadata = enrich_metadata(metadata)
    :telemetry.execute(event_name, measurements, enhanced_metadata)
  end
  
  @doc """
  Start a distributed trace span.
  """
  @spec start_span(String.t(), metadata()) :: String.t()
  def start_span(operation_name, metadata \\ %{}) do
    span_id = generate_span_id()
    trace_id = metadata[:trace_id] || generate_trace_id()
    
    execute([:foundation, :span, :start], %{timestamp: System.monotonic_time()}, %{
      span_id: span_id,
      trace_id: trace_id,
      operation: operation_name,
      parent_span: metadata[:span_id]
    })
    
    Process.put(:current_span, span_id)
    Process.put(:current_trace, trace_id)
    span_id
  end
  
  @doc """
  End current span and record duration.
  """
  @spec end_span(map()) :: :ok
  def end_span(additional_metadata \\ %{}) do
    case {Process.get(:current_span), Process.get(:current_trace)} do
      {span_id, trace_id} when not is_nil(span_id) ->
        start_time = get_span_start_time(span_id)
        duration = System.monotonic_time() - start_time
        
        execute([:foundation, :span, :end], %{duration: duration}, Map.merge(%{
          span_id: span_id,
          trace_id: trace_id
        }, additional_metadata))
        
        Process.delete(:current_span)
        :ok
      _ ->
        :ok
    end
  end
  
  @doc """
  Record metric with automatic aggregation.
  """
  @spec record_metric(String.t(), number(), map()) :: :ok
  def record_metric(metric_name, value, tags \\ %{}) do
    execute([:foundation, :metric], %{value: value}, %{
      metric: metric_name,
      tags: tags,
      timestamp: System.system_time(:millisecond)
    })
  end
  
  # Internal functions
  defp enrich_metadata(metadata) do
    base_metadata = %{
      node: Node.self(),
      timestamp: System.system_time(:millisecond),
      trace_id: Process.get(:current_trace),
      span_id: Process.get(:current_span)
    }
    
    Map.merge(base_metadata, metadata)
  end
  
  defp generate_trace_id, do: Base.encode16(:crypto.strong_rand_bytes(16))
  defp generate_span_id, do: Base.encode16(:crypto.strong_rand_bytes(8))
  
  # ... additional helper functions
end

Telemetry Event Taxonomy

Hierarchical Event Naming Convention:

# Foundation Layer Events
[:foundation, :process_registry, :register, :start]
[:foundation, :process_registry, :register, :complete]
[:foundation, :process_registry, :lookup, :start]
[:foundation, :infrastructure, :circuit_breaker, :state_change]
[:foundation, :infrastructure, :rate_limiter, :throttled]

# FoundationJido Integration Events
[:foundation_jido, :agent, :registration, :start]
[:foundation_jido, :agent, :registration, :complete]
[:foundation_jido, :signal, :dispatch, :start]
[:foundation_jido, :signal, :dispatch, :complete]
[:foundation_jido, :coordination, :auction, :start]
[:foundation_jido, :coordination, :auction, :bid_received]
[:foundation_jido, :coordination, :auction, :complete]

# DSPEx ML Events
[:dspex, :program, :execution, :start]
[:dspex, :program, :execution, :complete]
[:dspex, :optimization, :iteration, :start]
[:dspex, :optimization, :iteration, :complete]
[:dspex, :coordination, :multi_agent, :start]
[:dspex, :coordination, :multi_agent, :agent_result]
[:dspex, :coordination, :multi_agent, :complete]

# Cross-Layer Events
[:foundation_os, :request, :start]           # Full request lifecycle
[:foundation_os, :request, :complete]
[:foundation_os, :error, :occurred]          # Unified error tracking
[:foundation_os, :performance, :degradation] # Performance issues

Layer-Specific Telemetry Implementation

Foundation Layer Telemetry

# lib/foundation/telemetry/foundation_collector.ex
defmodule Foundation.Telemetry.FoundationCollector do
  @moduledoc """
  Collects telemetry specific to Foundation layer services.
  """
  
  use GenServer
  alias Foundation.Telemetry
  
  def start_link(opts) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def init(_opts) do
    # Attach to Foundation-specific events
    events = [
      [:foundation, :process_registry, :register],
      [:foundation, :process_registry, :lookup],
      [:foundation, :infrastructure, :circuit_breaker],
      [:foundation, :infrastructure, :rate_limiter]
    ]
    
    :telemetry.attach_many("foundation-collector", events, &handle_event/4, %{})
    
    {:ok, %{metrics: %{}, aggregations: %{}}}
  end
  
  def handle_event([:foundation, :process_registry, :register], measurements, metadata, _config) do
    # Track process registration patterns
    Telemetry.record_metric("foundation.process_registry.registrations", 1, %{
      namespace: metadata[:namespace],
      process_type: metadata[:process_type]
    })
    
    # Track registration latency
    if measurements[:duration] do
      Telemetry.record_metric("foundation.process_registry.registration_duration", 
                             measurements[:duration], %{namespace: metadata[:namespace]})
    end
  end
  
  def handle_event([:foundation, :infrastructure, :circuit_breaker], measurements, metadata, _config) do
    case metadata[:state_change] do
      {:closed, :open} ->
        Telemetry.record_metric("foundation.circuit_breaker.opened", 1, %{
          name: metadata[:circuit_breaker],
          reason: metadata[:reason]
        })
      
      {:open, :closed} ->
        Telemetry.record_metric("foundation.circuit_breaker.closed", 1, %{
          name: metadata[:circuit_breaker]
        })
      
      _ -> :ok
    end
  end
  
  # ... additional event handlers
end

FoundationJido Integration Telemetry

# lib/foundation_jido/telemetry/integration_collector.ex
defmodule FoundationJido.Telemetry.IntegrationCollector do
  @moduledoc """
  Collects telemetry for Jido integration layer.
  Tracks agent coordination and multi-agent workflows.
  """
  
  use GenServer
  alias Foundation.Telemetry
  
  def handle_event([:foundation_jido, :agent, :registration], measurements, metadata, _config) do
    # Track agent registration success rate
    Telemetry.record_metric("foundation_jido.agent.registrations", 1, %{
      success: metadata[:success],
      agent_type: metadata[:agent_type],
      capabilities: length(metadata[:capabilities] || [])
    })
    
    # Track agent startup time
    if measurements[:startup_duration] do
      Telemetry.record_metric("foundation_jido.agent.startup_duration",
                             measurements[:startup_duration], %{
        agent_type: metadata[:agent_type]
      })
    end
  end
  
  def handle_event([:foundation_jido, :coordination, :auction], measurements, metadata, _config) do
    case metadata[:phase] do
      :start ->
        # Track auction initiation
        Telemetry.record_metric("foundation_jido.auction.started", 1, %{
          resource_type: metadata[:resource_type],
          participant_count: metadata[:participant_count]
        })
      
      :bid_received ->
        # Track bid patterns
        Telemetry.record_metric("foundation_jido.auction.bids", 1, %{
          auction_id: metadata[:auction_id],
          bid_value: measurements[:bid_value]
        })
      
      :complete ->
        # Track auction outcomes
        Telemetry.record_metric("foundation_jido.auction.completed", 1, %{
          success: metadata[:success],
          winner_count: metadata[:winner_count],
          total_duration: measurements[:duration]
        })
    end
  end
  
  def handle_event([:foundation_jido, :signal, :dispatch], measurements, metadata, _config) do
    # Track signal dispatch patterns and performance
    Telemetry.record_metric("foundation_jido.signal.dispatches", 1, %{
      adapter: metadata[:adapter],
      success: metadata[:success],
      target_type: metadata[:target_type]
    })
    
    if measurements[:duration] do
      Telemetry.record_metric("foundation_jido.signal.dispatch_duration",
                             measurements[:duration], %{
        adapter: metadata[:adapter]
      })
    end
    
    # Track dispatch failures for alerting
    if not metadata[:success] do
      Telemetry.record_metric("foundation_jido.signal.dispatch_failures", 1, %{
        adapter: metadata[:adapter],
        error_category: metadata[:error_category]
      })
    end
  end
end

DSPEx ML Telemetry

# lib/dspex/telemetry/ml_collector.ex
defmodule DSPEx.Telemetry.MLCollector do
  @moduledoc """
  Collects ML-specific telemetry for DSPEx operations.
  Tracks optimization progress, model performance, and coordination effectiveness.
  """
  
  use GenServer
  alias Foundation.Telemetry
  
  def handle_event([:dspex, :program, :execution], measurements, metadata, _config) do
    case metadata[:phase] do
      :start ->
        # Track program execution patterns
        Telemetry.record_metric("dspex.program.executions", 1, %{
          program_type: metadata[:program_type],
          signature_complexity: metadata[:signature_complexity]
        })
      
      :complete ->
        # Track execution performance
        Telemetry.record_metric("dspex.program.execution_duration",
                               measurements[:duration], %{
          program_type: metadata[:program_type],
          success: metadata[:success]
        })
        
        # Track output quality metrics
        if metadata[:output_quality] do
          Telemetry.record_metric("dspex.program.output_quality",
                                 metadata[:output_quality], %{
            program_id: metadata[:program_id]
          })
        end
    end
  end
  
  def handle_event([:dspex, :optimization, :iteration], measurements, metadata, _config) do
    case metadata[:phase] do
      :start ->
        # Track optimization iteration start
        Telemetry.record_metric("dspex.optimization.iterations", 1, %{
          strategy: metadata[:strategy],
          iteration: metadata[:iteration]
        })
      
      :complete ->
        # Track optimization progress
        Telemetry.record_metric("dspex.optimization.iteration_duration",
                               measurements[:duration], %{
          strategy: metadata[:strategy]
        })
        
        # Track convergence metrics
        if measurements[:performance_score] do
          Telemetry.record_metric("dspex.optimization.performance_score",
                                 measurements[:performance_score], %{
            strategy: metadata[:strategy],
            iteration: metadata[:iteration]
          })
        end
        
        if measurements[:convergence_rate] do
          Telemetry.record_metric("dspex.optimization.convergence_rate",
                                 measurements[:convergence_rate], %{
            strategy: metadata[:strategy]
          })
        end
    end
  end
  
  def handle_event([:dspex, :coordination, :multi_agent], measurements, metadata, _config) do
    case metadata[:phase] do
      :start ->
        # Track multi-agent coordination initiation
        Telemetry.record_metric("dspex.coordination.multi_agent_start", 1, %{
          agent_count: metadata[:agent_count],
          coordination_type: metadata[:coordination_type]
        })
      
      :agent_result ->
        # Track individual agent contributions
        Telemetry.record_metric("dspex.coordination.agent_contributions", 1, %{
          agent_id: metadata[:agent_id],
          contribution_quality: measurements[:quality_score]
        })
      
      :complete ->
        # Track overall coordination effectiveness
        Telemetry.record_metric("dspex.coordination.multi_agent_complete", 1, %{
          success: metadata[:success],
          final_score: measurements[:final_performance],
          coordination_duration: measurements[:duration]
        })
        
        # Track coordination efficiency
        if measurements[:efficiency_score] do
          Telemetry.record_metric("dspex.coordination.efficiency",
                                 measurements[:efficiency_score], %{
            agent_count: metadata[:agent_count],
            coordination_type: metadata[:coordination_type]
          })
        end
    end
  end
end

Cross-Layer Request Tracing

Distributed Tracing Implementation

# lib/foundation/telemetry/distributed_tracer.ex
defmodule Foundation.Telemetry.DistributedTracer do
  @moduledoc """
  Implements distributed tracing across Foundation OS layers.
  Provides end-to-end visibility for complex multi-agent workflows.
  """
  
  alias Foundation.Telemetry
  
  @doc """
  Start a new distributed trace for a user request.
  """
  def start_request_trace(operation, metadata \\ %{}) do
    trace_id = Telemetry.generate_trace_id()
    span_id = Telemetry.start_span("request.#{operation}", %{
      trace_id: trace_id,
      layer: :foundation_os,
      operation_type: :user_request
    })
    
    Telemetry.execute([:foundation_os, :request, :start], %{
      timestamp: System.system_time(:millisecond)
    }, Map.merge(metadata, %{
      trace_id: trace_id,
      span_id: span_id,
      operation: operation
    }))
    
    {trace_id, span_id}
  end
  
  @doc """
  Create child span for layer-specific operations.
  """
  def create_child_span(operation, layer, metadata \\ %{}) do
    parent_trace = Process.get(:current_trace)
    parent_span = Process.get(:current_span)
    
    child_span = Telemetry.start_span("#{layer}.#{operation}", %{
      trace_id: parent_trace,
      parent_span: parent_span,
      layer: layer
    })
    
    {parent_trace, child_span}
  end
  
  @doc """
  Complete request trace with final metrics.
  """
  def complete_request_trace(trace_id, final_metadata \\ %{}) do
    Telemetry.execute([:foundation_os, :request, :complete], %{
      timestamp: System.system_time(:millisecond)
    }, Map.merge(final_metadata, %{
      trace_id: trace_id
    }))
    
    Telemetry.end_span(final_metadata)
  end
end

Request Tracing Usage Example

# Example: Multi-agent optimization request
defmodule DSPEx.OptimizationController do
  alias Foundation.Telemetry.DistributedTracer
  
  def optimize_with_coordination(program, training_data, opts) do
    # Start request trace
    {trace_id, _span} = DistributedTracer.start_request_trace("multi_agent_optimization", %{
      program_id: program.id,
      agent_count: opts[:agent_count]
    })
    
    try do
      # Foundation layer: Agent discovery
      {^trace_id, _} = DistributedTracer.create_child_span("agent_discovery", :foundation)
      agents = FoundationJido.Agent.find_agents_by_capability(:ml_optimization)
      Telemetry.end_span(%{agents_found: length(agents)})
      
      # FoundationJido layer: Coordination setup
      {^trace_id, _} = DistributedTracer.create_child_span("coordination_setup", :foundation_jido)
      coordination_spec = build_coordination_spec(program, opts)
      Telemetry.end_span(%{coordination_type: coordination_spec.type})
      
      # DSPEx layer: Multi-agent optimization
      {^trace_id, _} = DistributedTracer.create_child_span("multi_agent_optimization", :dspex)
      result = DSPEx.Coordination.optimize_with_agents(agents, program, training_data, coordination_spec)
      Telemetry.end_span(%{optimization_success: elem(result, 0) == :ok})
      
      # Complete request trace
      DistributedTracer.complete_request_trace(trace_id, %{
        request_success: elem(result, 0) == :ok,
        final_performance: get_performance_score(result)
      })
      
      result
    rescue
      exception ->
        DistributedTracer.complete_request_trace(trace_id, %{
          request_success: false,
          error: Exception.message(exception)
        })
        reraise exception, __STACKTRACE__
    end
  end
end

Metrics and Monitoring

Key Performance Indicators (KPIs)

Foundation Layer KPIs:

# System Health Metrics
foundation.process_registry.registration_rate     # Registrations per second
foundation.process_registry.lookup_latency        # Average lookup time
foundation.infrastructure.circuit_breaker.health  # % of circuit breakers healthy
foundation.infrastructure.error_rate              # Errors per minute

# Resource Utilization
foundation.memory.usage                           # Memory utilization %
foundation.cpu.usage                              # CPU utilization %
foundation.connections.active                     # Active connections count

FoundationJido Layer KPIs:

# Agent Coordination Metrics
foundation_jido.agents.active_count               # Currently active agents
foundation_jido.coordination.success_rate         # % successful coordinations
foundation_jido.coordination.average_duration     # Average coordination time
foundation_jido.signal.dispatch_success_rate      # % successful signal dispatches

# Multi-Agent Efficiency
foundation_jido.auction.participation_rate        # % agents participating in auctions
foundation_jido.auction.fairness_score           # Distribution fairness metric
foundation_jido.coordination.resource_utilization # Efficiency of resource allocation

DSPEx Layer KPIs:

# ML Performance Metrics
dspex.optimization.convergence_rate               # % optimizations that converge
dspex.optimization.performance_improvement        # Average performance gain
dspex.program.execution_success_rate              # % successful program executions
dspex.coordination.multi_agent_efficiency         # Multi-agent vs single-agent performance

# Business Value Metrics
dspex.cost_per_optimization                       # Cost efficiency
dspex.time_to_convergence                         # Speed of optimization
dspex.model_accuracy_improvement                  # Quality improvements

Automated Alerting System

# lib/foundation/telemetry/alerting.ex
defmodule Foundation.Telemetry.Alerting do
  @moduledoc """
  Intelligent alerting system based on telemetry data.
  Provides proactive alerting for system health and performance issues.
  """
  
  use GenServer
  alias Foundation.Telemetry
  
  # Alert rules configuration
  @alert_rules [
    # Foundation layer alerts
    %{
      name: "High Error Rate",
      metric: "foundation.error_rate",
      threshold: 0.05,  # 5% error rate
      window: :minute,
      severity: :warning
    },
    %{
      name: "Circuit Breaker Open",
      event: [:foundation, :infrastructure, :circuit_breaker],
      condition: &circuit_breaker_opened?/1,
      severity: :error
    },
    
    # FoundationJido layer alerts
    %{
      name: "Agent Coordination Failure",
      metric: "foundation_jido.coordination.success_rate",
      threshold: 0.8,   # Below 80% success rate
      window: :hour,
      severity: :warning
    },
    %{
      name: "Signal Dispatch Failures",
      metric: "foundation_jido.signal.dispatch_success_rate", 
      threshold: 0.9,   # Below 90% success rate
      window: :minute,
      severity: :error
    },
    
    # DSPEx layer alerts
    %{
      name: "Optimization Convergence Issues",
      metric: "dspex.optimization.convergence_rate",
      threshold: 0.7,   # Below 70% convergence rate
      window: :hour,
      severity: :warning
    },
    %{
      name: "Multi-Agent Coordination Inefficiency",
      metric: "dspex.coordination.efficiency",
      threshold: 0.6,   # Below 60% efficiency
      window: :hour,
      severity: :warning
    }
  ]
  
  def start_link(opts) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def init(opts) do
    # Setup metric collection for alerting
    :timer.send_interval(30_000, self(), :check_alerts)  # Check every 30 seconds
    
    {:ok, %{
      alert_rules: @alert_rules,
      metric_buffer: %{},
      active_alerts: %{}
    }}
  end
  
  def handle_info(:check_alerts, state) do
    new_state = Enum.reduce(state.alert_rules, state, fn rule, acc_state ->
      check_alert_rule(rule, acc_state)
    end)
    
    {:noreply, new_state}
  end
  
  defp check_alert_rule(%{metric: metric, threshold: threshold} = rule, state) do
    current_value = get_metric_value(metric, rule[:window])
    
    cond do
      current_value > threshold and not Map.has_key?(state.active_alerts, rule.name) ->
        # Trigger new alert
        trigger_alert(rule, current_value)
        put_in(state, [:active_alerts, rule.name], %{
          triggered_at: DateTime.utc_now(),
          current_value: current_value
        })
      
      current_value <= threshold and Map.has_key?(state.active_alerts, rule.name) ->
        # Resolve existing alert
        resolve_alert(rule, current_value)
        Map.update!(state, :active_alerts, &Map.delete(&1, rule.name))
      
      true ->
        state
    end
  end
  
  defp trigger_alert(rule, current_value) do
    alert_data = %{
      name: rule.name,
      severity: rule.severity,
      metric: rule[:metric],
      threshold: rule[:threshold],
      current_value: current_value,
      timestamp: DateTime.utc_now()
    }
    
    # Send to telemetry for external alert systems
    Telemetry.execute([:foundation_os, :alert, :triggered], %{severity_level: severity_to_number(rule.severity)}, alert_data)
    
    # Send notifications (email, Slack, PagerDuty, etc.)
    send_alert_notification(alert_data)
  end
  
  defp resolve_alert(rule, current_value) do
    Telemetry.execute([:foundation_os, :alert, :resolved], %{}, %{
      name: rule.name,
      resolved_at: DateTime.utc_now(),
      final_value: current_value
    })
  end
  
  # ... additional implementation
end

Performance Monitoring and Benchmarking

Performance Baseline Collection

# lib/foundation/telemetry/performance_monitor.ex
defmodule Foundation.Telemetry.PerformanceMonitor do
  @moduledoc """
  Continuous performance monitoring and baseline establishment.
  Tracks performance trends and detects degradation automatically.
  """
  
  use GenServer
  alias Foundation.Telemetry
  
  @performance_metrics [
    # Foundation performance baselines
    "foundation.process_registry.lookup_latency",
    "foundation.infrastructure.circuit_breaker.latency",
    
    # Integration layer performance
    "foundation_jido.agent.startup_duration", 
    "foundation_jido.coordination.duration",
    "foundation_jido.signal.dispatch_duration",
    
    # ML performance baselines
    "dspex.program.execution_duration",
    "dspex.optimization.iteration_duration",
    "dspex.coordination.multi_agent_duration"
  ]
  
  def collect_performance_baseline(duration \\ :hour) do
    baseline_data = Enum.map(@performance_metrics, fn metric ->
      {metric, collect_metric_statistics(metric, duration)}
    end)
    |> Map.new()
    
    # Store baseline for comparison
    store_performance_baseline(baseline_data)
    
    baseline_data
  end
  
  def detect_performance_degradation(current_metrics) do
    baseline = get_current_baseline()
    
    degradations = Enum.reduce(current_metrics, [], fn {metric, current_value}, acc ->
      case Map.get(baseline, metric) do
        nil -> acc  # No baseline for this metric
        baseline_stats ->
          if performance_degraded?(current_value, baseline_stats) do
            degradation = %{
              metric: metric,
              current: current_value,
              baseline_mean: baseline_stats.mean,
              baseline_p95: baseline_stats.p95,
              degradation_factor: current_value / baseline_stats.mean
            }
            [degradation | acc]
          else
            acc
          end
      end
    end)
    
    if length(degradations) > 0 do
      Telemetry.execute([:foundation_os, :performance, :degradation], %{
        degraded_metrics_count: length(degradations)
      }, %{
        degradations: degradations
      })
    end
    
    degradations
  end
  
  defp performance_degraded?(current_value, baseline_stats) do
    # Consider performance degraded if current value is more than 2x the baseline mean
    # or exceeds the 95th percentile by more than 50%
    current_value > baseline_stats.mean * 2.0 or 
    current_value > baseline_stats.p95 * 1.5
  end
  
  # ... additional implementation
end

Intelligent Sampling and Aggregation

# lib/foundation/telemetry/adaptive_sampler.ex
defmodule Foundation.Telemetry.AdaptiveSampler do
  @moduledoc """
  Adaptive sampling to reduce telemetry overhead while maintaining observability.
  Automatically adjusts sampling rates based on system load and error conditions.
  """
  
  use GenServer
  
  # Default sampling rates
  @base_sampling_rates %{
    # High frequency, low overhead events
    "foundation.process_registry.lookup" => 0.1,          # 10% sampling
    "foundation_jido.signal.dispatch" => 0.2,             # 20% sampling
    
    # Medium frequency events
    "foundation_jido.agent.registration" => 0.5,          # 50% sampling
    "dspex.program.execution" => 0.8,                     # 80% sampling
    
    # Low frequency, high value events
    "foundation_jido.coordination.auction" => 1.0,        # 100% sampling
    "dspex.optimization.iteration" => 1.0,                # 100% sampling
    "foundation_os.error.occurred" => 1.0                 # Always sample errors
  }
  
  def should_sample?(event_name, metadata \\ %{}) do
    base_rate = get_sampling_rate(event_name)
    adjusted_rate = adjust_sampling_rate(base_rate, event_name, metadata)
    
    :rand.uniform() <= adjusted_rate
  end
  
  defp adjust_sampling_rate(base_rate, event_name, metadata) do
    adjustments = [
      &error_boost/3,           # Increase sampling during errors
      &load_adjustment/3,       # Decrease sampling under high load
      &critical_path_boost/3    # Increase sampling for critical operations
    ]
    
    Enum.reduce(adjustments, base_rate, fn adjustment_fn, rate ->
      adjustment_fn.(rate, event_name, metadata)
    end)
    |> max(0.0)
    |> min(1.0)
  end
  
  defp error_boost(rate, _event_name, metadata) do
    # Increase sampling when errors are occurring
    if metadata[:error_context] or metadata[:retry_attempt] do
      min(rate * 2.0, 1.0)
    else
      rate
    end
  end
  
  defp load_adjustment(rate, _event_name, _metadata) do
    # Decrease sampling under high system load
    system_load = get_system_load()
    
    case system_load do
      load when load > 0.8 -> rate * 0.5    # High load: reduce sampling
      load when load > 0.6 -> rate * 0.7    # Medium load: slight reduction
      _ -> rate                              # Normal load: no adjustment
    end
  end
  
  defp critical_path_boost(rate, event_name, metadata) do
    # Increase sampling for critical business operations
    critical_patterns = [
      "dspex.coordination.multi_agent",
      "foundation_jido.coordination",
      "foundation_os.request"
    ]
    
    if Enum.any?(critical_patterns, &String.contains?(to_string(event_name), &1)) do
      min(rate * 1.5, 1.0)
    else
      rate
    end
  end
  
  # ... additional implementation
end

Integration with External Monitoring

Prometheus Metrics Export

# lib/foundation/telemetry/prometheus_exporter.ex
defmodule Foundation.Telemetry.PrometheusExporter do
  @moduledoc """
  Exports Foundation OS telemetry to Prometheus format.
  Provides integration with Prometheus/Grafana monitoring stack.
  """
  
  use GenServer
  
  def start_link(opts) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def init(opts) do
    # Setup Prometheus metrics
    setup_prometheus_metrics()
    
    # Attach to telemetry events
    :telemetry.attach_many("prometheus-exporter", telemetry_events(), &handle_telemetry_event/4, %{})
    
    {:ok, %{}}
  end
  
  defp setup_prometheus_metrics do
    # Foundation metrics
    :prometheus_counter.new([
      name: :foundation_process_registrations_total,
      help: "Total number of process registrations",
      labels: [:namespace, :process_type]
    ])
    
    :prometheus_histogram.new([
      name: :foundation_process_lookup_duration_seconds,
      help: "Process lookup duration",
      labels: [:namespace],
      buckets: [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0]
    ])
    
    # FoundationJido metrics
    :prometheus_gauge.new([
      name: :foundation_jido_active_agents,
      help: "Number of currently active agents",
      labels: [:agent_type]
    ])
    
    :prometheus_counter.new([
      name: :foundation_jido_coordinations_total,
      help: "Total number of agent coordinations",
      labels: [:coordination_type, :success]
    ])
    
    # DSPEx metrics
    :prometheus_histogram.new([
      name: :dspex_optimization_duration_seconds,
      help: "ML optimization duration",
      labels: [:strategy, :program_type],
      buckets: [1, 5, 10, 30, 60, 300, 600]  # seconds
    ])
    
    :prometheus_gauge.new([
      name: :dspex_optimization_performance_score,
      help: "Current optimization performance score",
      labels: [:program_id, :strategy]
    ])
  end
  
  def handle_telemetry_event([:foundation, :process_registry, :register], measurements, metadata, _config) do
    :prometheus_counter.inc(:foundation_process_registrations_total, [
      metadata[:namespace] || "default",
      metadata[:process_type] || "unknown"
    ])
    
    if measurements[:duration] do
      :prometheus_histogram.observe(:foundation_process_lookup_duration_seconds, [
        metadata[:namespace] || "default"
      ], measurements[:duration] / 1000)  # Convert to seconds
    end
  end
  
  def handle_telemetry_event([:foundation_jido, :coordination, :auction], measurements, metadata, _config) do
    success = if metadata[:success], do: "true", else: "false"
    
    :prometheus_counter.inc(:foundation_jido_coordinations_total, [
      metadata[:coordination_type] || "auction",
      success
    ])
  end
  
  def handle_telemetry_event([:dspex, :optimization, :iteration], measurements, metadata, _config) do
    if measurements[:duration] and metadata[:phase] == :complete do
      :prometheus_histogram.observe(:dspex_optimization_duration_seconds, [
        metadata[:strategy] || "unknown",
        metadata[:program_type] || "unknown"
      ], measurements[:duration] / 1000)
    end
    
    if measurements[:performance_score] do
      :prometheus_gauge.set(:dspex_optimization_performance_score, [
        metadata[:program_id] || "unknown",
        metadata[:strategy] || "unknown"
      ], measurements[:performance_score])
    end
  end
  
  # ... additional event handlers
end

Cloud Platform Integration

# lib/foundation/telemetry/cloud_integrations.ex
defmodule Foundation.Telemetry.CloudIntegrations do
  @moduledoc """
  Integrations with cloud monitoring platforms.
  Supports AWS CloudWatch, Google Cloud Monitoring, Azure Monitor.
  """
  
  def send_to_cloudwatch(metrics) do
    # AWS CloudWatch integration
    namespace = "FoundationOS"
    
    metric_data = Enum.map(metrics, fn {name, value, tags} ->
      %{
        "MetricName" => name,
        "Value" => value,
        "Unit" => determine_unit(name),
        "Dimensions" => format_dimensions(tags),
        "Timestamp" => DateTime.utc_now() |> DateTime.to_iso8601()
      }
    end)
    
    ExAws.CloudWatch.put_metric_data(namespace, metric_data)
    |> ExAws.request()
  end
  
  def send_to_datadog(metrics) do
    # Datadog integration
    datadog_metrics = Enum.map(metrics, fn {name, value, tags} ->
      %{
        metric: "foundationos.#{name}",
        points: [[System.system_time(:second), value]],
        tags: format_datadog_tags(tags),
        type: determine_datadog_type(name)
      }
    end)
    
    HTTPoison.post(
      "https://api.datadoghq.com/api/v1/series",
      Jason.encode!(%{series: datadog_metrics}),
      [
        {"Content-Type", "application/json"},
        {"DD-API-KEY", Application.get_env(:foundation, :datadog_api_key)}
      ]
    )
  end
  
  # ... additional cloud integrations
end

Conclusion

This comprehensive telemetry architecture provides:

  1. Unified Observability: Single telemetry system across all layers with automatic correlation
  2. Deep ML Insights: Specialized metrics for optimization progress and multi-agent coordination
  3. Intelligent Alerting: Proactive alerting based on performance baselines and error patterns
  4. Distributed Tracing: End-to-end request tracing across complex multi-agent workflows
  5. Adaptive Performance: Intelligent sampling and performance monitoring with automatic degradation detection
  6. External Integration: Seamless integration with Prometheus, CloudWatch, Datadog, and other monitoring platforms

Key Benefits:

  • Reduced MTTR: Faster issue identification and resolution through comprehensive tracing
  • Proactive Monitoring: Early detection of performance degradation and coordination issues
  • Business Insights: Visibility into ML optimization effectiveness and agent productivity
  • Operational Excellence: Data-driven capacity planning and performance optimization
  • Cost Optimization: Intelligent sampling reduces telemetry overhead while maintaining visibility

The telemetry architecture scales with the system and provides the observability foundation needed to operate a world-class multi-agent platform in production.