Foundation OS Telemetry Architecture
Version 1.0 - Comprehensive Observability Across All System Layers
Date: June 27, 2025
Executive Summary
This document defines the comprehensive telemetry and observability architecture for Foundation OS, establishing unified monitoring, metrics, tracing, and alerting across Foundation, FoundationJido, and DSPEx layers. The architecture provides deep insights into system performance, multi-agent coordination effectiveness, and ML optimization progress.
Design Philosophy: Observability as a first-class citizen with minimal performance overhead
Architecture: Layered telemetry with automatic correlation and intelligent aggregation
Integration: Seamless integration with existing monitoring tools and cloud platforms
Current Telemetry Assessment
Existing Telemetry Capabilities
Based on the Foundation codebase and integration requirements:
- Foundation.Telemetry: Basic telemetry infrastructure exists
- Process Registry Telemetry: Basic process lifecycle events
- Infrastructure Telemetry: Circuit breaker and rate limiter metrics
- Jido Library Telemetry: Independent telemetry in Jido libraries
- DSPEx Telemetry: ML-specific metrics for optimization and performance
Gaps in Current System
- No Cross-Layer Correlation: Cannot trace requests across Foundation → Jido → DSPEx
- Limited Agent Coordination Visibility: Cannot monitor multi-agent workflows effectively
- Inconsistent Metrics: Different metric formats and naming across layers
- No ML-Specific Observability: Limited visibility into optimization progress and model performance
- Missing Business Metrics: No tracking of coordination effectiveness or agent productivity
Unified Telemetry Architecture
Core Telemetry Infrastructure
defmodule Foundation.Telemetry do
@moduledoc """
Enhanced telemetry system for Foundation OS.
Provides unified observability across all system layers.
"""
@typedoc "Telemetry event name as hierarchical path"
@type event_name :: [atom()]
@typedoc "Numeric measurements"
@type measurements :: %{atom() => number()}
@typedoc "Event metadata and tags"
@type metadata :: %{
# Correlation IDs
trace_id: String.t() | nil,
span_id: String.t() | nil,
request_id: String.t() | nil,
# Entity identification
agent_id: String.t() | nil,
coordination_id: String.t() | nil,
program_id: String.t() | nil,
# Context information
layer: :foundation | :foundation_jido | :dspex,
node: atom(),
environment: String.t(),
# Custom metadata
tags: [atom()],
custom: map()
}
@doc """
Execute telemetry event with enhanced metadata.
"""
@spec execute(event_name(), measurements(), metadata()) :: :ok
def execute(event_name, measurements \\ %{}, metadata \\ %{}) do
enhanced_metadata = enrich_metadata(metadata)
:telemetry.execute(event_name, measurements, enhanced_metadata)
end
@doc """
Start a distributed trace span.
"""
@spec start_span(String.t(), metadata()) :: String.t()
def start_span(operation_name, metadata \\ %{}) do
span_id = generate_span_id()
trace_id = metadata[:trace_id] || generate_trace_id()
execute([:foundation, :span, :start], %{timestamp: System.monotonic_time()}, %{
span_id: span_id,
trace_id: trace_id,
operation: operation_name,
parent_span: metadata[:span_id]
})
Process.put(:current_span, span_id)
Process.put(:current_trace, trace_id)
span_id
end
@doc """
End current span and record duration.
"""
@spec end_span(map()) :: :ok
def end_span(additional_metadata \\ %{}) do
case {Process.get(:current_span), Process.get(:current_trace)} do
{span_id, trace_id} when not is_nil(span_id) ->
start_time = get_span_start_time(span_id)
duration = System.monotonic_time() - start_time
execute([:foundation, :span, :end], %{duration: duration}, Map.merge(%{
span_id: span_id,
trace_id: trace_id
}, additional_metadata))
Process.delete(:current_span)
:ok
_ ->
:ok
end
end
@doc """
Record metric with automatic aggregation.
"""
@spec record_metric(String.t(), number(), map()) :: :ok
def record_metric(metric_name, value, tags \\ %{}) do
execute([:foundation, :metric], %{value: value}, %{
metric: metric_name,
tags: tags,
timestamp: System.system_time(:millisecond)
})
end
# Internal functions
defp enrich_metadata(metadata) do
base_metadata = %{
node: Node.self(),
timestamp: System.system_time(:millisecond),
trace_id: Process.get(:current_trace),
span_id: Process.get(:current_span)
}
Map.merge(base_metadata, metadata)
end
defp generate_trace_id, do: Base.encode16(:crypto.strong_rand_bytes(16))
defp generate_span_id, do: Base.encode16(:crypto.strong_rand_bytes(8))
# ... additional helper functions
end
Telemetry Event Taxonomy
Hierarchical Event Naming Convention:
# Foundation Layer Events
[:foundation, :process_registry, :register, :start]
[:foundation, :process_registry, :register, :complete]
[:foundation, :process_registry, :lookup, :start]
[:foundation, :infrastructure, :circuit_breaker, :state_change]
[:foundation, :infrastructure, :rate_limiter, :throttled]
# FoundationJido Integration Events
[:foundation_jido, :agent, :registration, :start]
[:foundation_jido, :agent, :registration, :complete]
[:foundation_jido, :signal, :dispatch, :start]
[:foundation_jido, :signal, :dispatch, :complete]
[:foundation_jido, :coordination, :auction, :start]
[:foundation_jido, :coordination, :auction, :bid_received]
[:foundation_jido, :coordination, :auction, :complete]
# DSPEx ML Events
[:dspex, :program, :execution, :start]
[:dspex, :program, :execution, :complete]
[:dspex, :optimization, :iteration, :start]
[:dspex, :optimization, :iteration, :complete]
[:dspex, :coordination, :multi_agent, :start]
[:dspex, :coordination, :multi_agent, :agent_result]
[:dspex, :coordination, :multi_agent, :complete]
# Cross-Layer Events
[:foundation_os, :request, :start] # Full request lifecycle
[:foundation_os, :request, :complete]
[:foundation_os, :error, :occurred] # Unified error tracking
[:foundation_os, :performance, :degradation] # Performance issues
Layer-Specific Telemetry Implementation
Foundation Layer Telemetry
# lib/foundation/telemetry/foundation_collector.ex
defmodule Foundation.Telemetry.FoundationCollector do
@moduledoc """
Collects telemetry specific to Foundation layer services.
"""
use GenServer
alias Foundation.Telemetry
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(_opts) do
# Attach to Foundation-specific events
events = [
[:foundation, :process_registry, :register],
[:foundation, :process_registry, :lookup],
[:foundation, :infrastructure, :circuit_breaker],
[:foundation, :infrastructure, :rate_limiter]
]
:telemetry.attach_many("foundation-collector", events, &handle_event/4, %{})
{:ok, %{metrics: %{}, aggregations: %{}}}
end
def handle_event([:foundation, :process_registry, :register], measurements, metadata, _config) do
# Track process registration patterns
Telemetry.record_metric("foundation.process_registry.registrations", 1, %{
namespace: metadata[:namespace],
process_type: metadata[:process_type]
})
# Track registration latency
if measurements[:duration] do
Telemetry.record_metric("foundation.process_registry.registration_duration",
measurements[:duration], %{namespace: metadata[:namespace]})
end
end
def handle_event([:foundation, :infrastructure, :circuit_breaker], measurements, metadata, _config) do
case metadata[:state_change] do
{:closed, :open} ->
Telemetry.record_metric("foundation.circuit_breaker.opened", 1, %{
name: metadata[:circuit_breaker],
reason: metadata[:reason]
})
{:open, :closed} ->
Telemetry.record_metric("foundation.circuit_breaker.closed", 1, %{
name: metadata[:circuit_breaker]
})
_ -> :ok
end
end
# ... additional event handlers
end
FoundationJido Integration Telemetry
# lib/foundation_jido/telemetry/integration_collector.ex
defmodule FoundationJido.Telemetry.IntegrationCollector do
@moduledoc """
Collects telemetry for Jido integration layer.
Tracks agent coordination and multi-agent workflows.
"""
use GenServer
alias Foundation.Telemetry
def handle_event([:foundation_jido, :agent, :registration], measurements, metadata, _config) do
# Track agent registration success rate
Telemetry.record_metric("foundation_jido.agent.registrations", 1, %{
success: metadata[:success],
agent_type: metadata[:agent_type],
capabilities: length(metadata[:capabilities] || [])
})
# Track agent startup time
if measurements[:startup_duration] do
Telemetry.record_metric("foundation_jido.agent.startup_duration",
measurements[:startup_duration], %{
agent_type: metadata[:agent_type]
})
end
end
def handle_event([:foundation_jido, :coordination, :auction], measurements, metadata, _config) do
case metadata[:phase] do
:start ->
# Track auction initiation
Telemetry.record_metric("foundation_jido.auction.started", 1, %{
resource_type: metadata[:resource_type],
participant_count: metadata[:participant_count]
})
:bid_received ->
# Track bid patterns
Telemetry.record_metric("foundation_jido.auction.bids", 1, %{
auction_id: metadata[:auction_id],
bid_value: measurements[:bid_value]
})
:complete ->
# Track auction outcomes
Telemetry.record_metric("foundation_jido.auction.completed", 1, %{
success: metadata[:success],
winner_count: metadata[:winner_count],
total_duration: measurements[:duration]
})
end
end
def handle_event([:foundation_jido, :signal, :dispatch], measurements, metadata, _config) do
# Track signal dispatch patterns and performance
Telemetry.record_metric("foundation_jido.signal.dispatches", 1, %{
adapter: metadata[:adapter],
success: metadata[:success],
target_type: metadata[:target_type]
})
if measurements[:duration] do
Telemetry.record_metric("foundation_jido.signal.dispatch_duration",
measurements[:duration], %{
adapter: metadata[:adapter]
})
end
# Track dispatch failures for alerting
if not metadata[:success] do
Telemetry.record_metric("foundation_jido.signal.dispatch_failures", 1, %{
adapter: metadata[:adapter],
error_category: metadata[:error_category]
})
end
end
end
DSPEx ML Telemetry
# lib/dspex/telemetry/ml_collector.ex
defmodule DSPEx.Telemetry.MLCollector do
@moduledoc """
Collects ML-specific telemetry for DSPEx operations.
Tracks optimization progress, model performance, and coordination effectiveness.
"""
use GenServer
alias Foundation.Telemetry
def handle_event([:dspex, :program, :execution], measurements, metadata, _config) do
case metadata[:phase] do
:start ->
# Track program execution patterns
Telemetry.record_metric("dspex.program.executions", 1, %{
program_type: metadata[:program_type],
signature_complexity: metadata[:signature_complexity]
})
:complete ->
# Track execution performance
Telemetry.record_metric("dspex.program.execution_duration",
measurements[:duration], %{
program_type: metadata[:program_type],
success: metadata[:success]
})
# Track output quality metrics
if metadata[:output_quality] do
Telemetry.record_metric("dspex.program.output_quality",
metadata[:output_quality], %{
program_id: metadata[:program_id]
})
end
end
end
def handle_event([:dspex, :optimization, :iteration], measurements, metadata, _config) do
case metadata[:phase] do
:start ->
# Track optimization iteration start
Telemetry.record_metric("dspex.optimization.iterations", 1, %{
strategy: metadata[:strategy],
iteration: metadata[:iteration]
})
:complete ->
# Track optimization progress
Telemetry.record_metric("dspex.optimization.iteration_duration",
measurements[:duration], %{
strategy: metadata[:strategy]
})
# Track convergence metrics
if measurements[:performance_score] do
Telemetry.record_metric("dspex.optimization.performance_score",
measurements[:performance_score], %{
strategy: metadata[:strategy],
iteration: metadata[:iteration]
})
end
if measurements[:convergence_rate] do
Telemetry.record_metric("dspex.optimization.convergence_rate",
measurements[:convergence_rate], %{
strategy: metadata[:strategy]
})
end
end
end
def handle_event([:dspex, :coordination, :multi_agent], measurements, metadata, _config) do
case metadata[:phase] do
:start ->
# Track multi-agent coordination initiation
Telemetry.record_metric("dspex.coordination.multi_agent_start", 1, %{
agent_count: metadata[:agent_count],
coordination_type: metadata[:coordination_type]
})
:agent_result ->
# Track individual agent contributions
Telemetry.record_metric("dspex.coordination.agent_contributions", 1, %{
agent_id: metadata[:agent_id],
contribution_quality: measurements[:quality_score]
})
:complete ->
# Track overall coordination effectiveness
Telemetry.record_metric("dspex.coordination.multi_agent_complete", 1, %{
success: metadata[:success],
final_score: measurements[:final_performance],
coordination_duration: measurements[:duration]
})
# Track coordination efficiency
if measurements[:efficiency_score] do
Telemetry.record_metric("dspex.coordination.efficiency",
measurements[:efficiency_score], %{
agent_count: metadata[:agent_count],
coordination_type: metadata[:coordination_type]
})
end
end
end
end
Cross-Layer Request Tracing
Distributed Tracing Implementation
# lib/foundation/telemetry/distributed_tracer.ex
defmodule Foundation.Telemetry.DistributedTracer do
@moduledoc """
Implements distributed tracing across Foundation OS layers.
Provides end-to-end visibility for complex multi-agent workflows.
"""
alias Foundation.Telemetry
@doc """
Start a new distributed trace for a user request.
"""
def start_request_trace(operation, metadata \\ %{}) do
trace_id = Telemetry.generate_trace_id()
span_id = Telemetry.start_span("request.#{operation}", %{
trace_id: trace_id,
layer: :foundation_os,
operation_type: :user_request
})
Telemetry.execute([:foundation_os, :request, :start], %{
timestamp: System.system_time(:millisecond)
}, Map.merge(metadata, %{
trace_id: trace_id,
span_id: span_id,
operation: operation
}))
{trace_id, span_id}
end
@doc """
Create child span for layer-specific operations.
"""
def create_child_span(operation, layer, metadata \\ %{}) do
parent_trace = Process.get(:current_trace)
parent_span = Process.get(:current_span)
child_span = Telemetry.start_span("#{layer}.#{operation}", %{
trace_id: parent_trace,
parent_span: parent_span,
layer: layer
})
{parent_trace, child_span}
end
@doc """
Complete request trace with final metrics.
"""
def complete_request_trace(trace_id, final_metadata \\ %{}) do
Telemetry.execute([:foundation_os, :request, :complete], %{
timestamp: System.system_time(:millisecond)
}, Map.merge(final_metadata, %{
trace_id: trace_id
}))
Telemetry.end_span(final_metadata)
end
end
Request Tracing Usage Example
# Example: Multi-agent optimization request
defmodule DSPEx.OptimizationController do
alias Foundation.Telemetry.DistributedTracer
def optimize_with_coordination(program, training_data, opts) do
# Start request trace
{trace_id, _span} = DistributedTracer.start_request_trace("multi_agent_optimization", %{
program_id: program.id,
agent_count: opts[:agent_count]
})
try do
# Foundation layer: Agent discovery
{^trace_id, _} = DistributedTracer.create_child_span("agent_discovery", :foundation)
agents = FoundationJido.Agent.find_agents_by_capability(:ml_optimization)
Telemetry.end_span(%{agents_found: length(agents)})
# FoundationJido layer: Coordination setup
{^trace_id, _} = DistributedTracer.create_child_span("coordination_setup", :foundation_jido)
coordination_spec = build_coordination_spec(program, opts)
Telemetry.end_span(%{coordination_type: coordination_spec.type})
# DSPEx layer: Multi-agent optimization
{^trace_id, _} = DistributedTracer.create_child_span("multi_agent_optimization", :dspex)
result = DSPEx.Coordination.optimize_with_agents(agents, program, training_data, coordination_spec)
Telemetry.end_span(%{optimization_success: elem(result, 0) == :ok})
# Complete request trace
DistributedTracer.complete_request_trace(trace_id, %{
request_success: elem(result, 0) == :ok,
final_performance: get_performance_score(result)
})
result
rescue
exception ->
DistributedTracer.complete_request_trace(trace_id, %{
request_success: false,
error: Exception.message(exception)
})
reraise exception, __STACKTRACE__
end
end
end
Metrics and Monitoring
Key Performance Indicators (KPIs)
Foundation Layer KPIs:
# System Health Metrics
foundation.process_registry.registration_rate # Registrations per second
foundation.process_registry.lookup_latency # Average lookup time
foundation.infrastructure.circuit_breaker.health # % of circuit breakers healthy
foundation.infrastructure.error_rate # Errors per minute
# Resource Utilization
foundation.memory.usage # Memory utilization %
foundation.cpu.usage # CPU utilization %
foundation.connections.active # Active connections count
FoundationJido Layer KPIs:
# Agent Coordination Metrics
foundation_jido.agents.active_count # Currently active agents
foundation_jido.coordination.success_rate # % successful coordinations
foundation_jido.coordination.average_duration # Average coordination time
foundation_jido.signal.dispatch_success_rate # % successful signal dispatches
# Multi-Agent Efficiency
foundation_jido.auction.participation_rate # % agents participating in auctions
foundation_jido.auction.fairness_score # Distribution fairness metric
foundation_jido.coordination.resource_utilization # Efficiency of resource allocation
DSPEx Layer KPIs:
# ML Performance Metrics
dspex.optimization.convergence_rate # % optimizations that converge
dspex.optimization.performance_improvement # Average performance gain
dspex.program.execution_success_rate # % successful program executions
dspex.coordination.multi_agent_efficiency # Multi-agent vs single-agent performance
# Business Value Metrics
dspex.cost_per_optimization # Cost efficiency
dspex.time_to_convergence # Speed of optimization
dspex.model_accuracy_improvement # Quality improvements
Automated Alerting System
# lib/foundation/telemetry/alerting.ex
defmodule Foundation.Telemetry.Alerting do
@moduledoc """
Intelligent alerting system based on telemetry data.
Provides proactive alerting for system health and performance issues.
"""
use GenServer
alias Foundation.Telemetry
# Alert rules configuration
@alert_rules [
# Foundation layer alerts
%{
name: "High Error Rate",
metric: "foundation.error_rate",
threshold: 0.05, # 5% error rate
window: :minute,
severity: :warning
},
%{
name: "Circuit Breaker Open",
event: [:foundation, :infrastructure, :circuit_breaker],
condition: &circuit_breaker_opened?/1,
severity: :error
},
# FoundationJido layer alerts
%{
name: "Agent Coordination Failure",
metric: "foundation_jido.coordination.success_rate",
threshold: 0.8, # Below 80% success rate
window: :hour,
severity: :warning
},
%{
name: "Signal Dispatch Failures",
metric: "foundation_jido.signal.dispatch_success_rate",
threshold: 0.9, # Below 90% success rate
window: :minute,
severity: :error
},
# DSPEx layer alerts
%{
name: "Optimization Convergence Issues",
metric: "dspex.optimization.convergence_rate",
threshold: 0.7, # Below 70% convergence rate
window: :hour,
severity: :warning
},
%{
name: "Multi-Agent Coordination Inefficiency",
metric: "dspex.coordination.efficiency",
threshold: 0.6, # Below 60% efficiency
window: :hour,
severity: :warning
}
]
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(opts) do
# Setup metric collection for alerting
:timer.send_interval(30_000, self(), :check_alerts) # Check every 30 seconds
{:ok, %{
alert_rules: @alert_rules,
metric_buffer: %{},
active_alerts: %{}
}}
end
def handle_info(:check_alerts, state) do
new_state = Enum.reduce(state.alert_rules, state, fn rule, acc_state ->
check_alert_rule(rule, acc_state)
end)
{:noreply, new_state}
end
defp check_alert_rule(%{metric: metric, threshold: threshold} = rule, state) do
current_value = get_metric_value(metric, rule[:window])
cond do
current_value > threshold and not Map.has_key?(state.active_alerts, rule.name) ->
# Trigger new alert
trigger_alert(rule, current_value)
put_in(state, [:active_alerts, rule.name], %{
triggered_at: DateTime.utc_now(),
current_value: current_value
})
current_value <= threshold and Map.has_key?(state.active_alerts, rule.name) ->
# Resolve existing alert
resolve_alert(rule, current_value)
Map.update!(state, :active_alerts, &Map.delete(&1, rule.name))
true ->
state
end
end
defp trigger_alert(rule, current_value) do
alert_data = %{
name: rule.name,
severity: rule.severity,
metric: rule[:metric],
threshold: rule[:threshold],
current_value: current_value,
timestamp: DateTime.utc_now()
}
# Send to telemetry for external alert systems
Telemetry.execute([:foundation_os, :alert, :triggered], %{severity_level: severity_to_number(rule.severity)}, alert_data)
# Send notifications (email, Slack, PagerDuty, etc.)
send_alert_notification(alert_data)
end
defp resolve_alert(rule, current_value) do
Telemetry.execute([:foundation_os, :alert, :resolved], %{}, %{
name: rule.name,
resolved_at: DateTime.utc_now(),
final_value: current_value
})
end
# ... additional implementation
end
Performance Monitoring and Benchmarking
Performance Baseline Collection
# lib/foundation/telemetry/performance_monitor.ex
defmodule Foundation.Telemetry.PerformanceMonitor do
@moduledoc """
Continuous performance monitoring and baseline establishment.
Tracks performance trends and detects degradation automatically.
"""
use GenServer
alias Foundation.Telemetry
@performance_metrics [
# Foundation performance baselines
"foundation.process_registry.lookup_latency",
"foundation.infrastructure.circuit_breaker.latency",
# Integration layer performance
"foundation_jido.agent.startup_duration",
"foundation_jido.coordination.duration",
"foundation_jido.signal.dispatch_duration",
# ML performance baselines
"dspex.program.execution_duration",
"dspex.optimization.iteration_duration",
"dspex.coordination.multi_agent_duration"
]
def collect_performance_baseline(duration \\ :hour) do
baseline_data = Enum.map(@performance_metrics, fn metric ->
{metric, collect_metric_statistics(metric, duration)}
end)
|> Map.new()
# Store baseline for comparison
store_performance_baseline(baseline_data)
baseline_data
end
def detect_performance_degradation(current_metrics) do
baseline = get_current_baseline()
degradations = Enum.reduce(current_metrics, [], fn {metric, current_value}, acc ->
case Map.get(baseline, metric) do
nil -> acc # No baseline for this metric
baseline_stats ->
if performance_degraded?(current_value, baseline_stats) do
degradation = %{
metric: metric,
current: current_value,
baseline_mean: baseline_stats.mean,
baseline_p95: baseline_stats.p95,
degradation_factor: current_value / baseline_stats.mean
}
[degradation | acc]
else
acc
end
end
end)
if length(degradations) > 0 do
Telemetry.execute([:foundation_os, :performance, :degradation], %{
degraded_metrics_count: length(degradations)
}, %{
degradations: degradations
})
end
degradations
end
defp performance_degraded?(current_value, baseline_stats) do
# Consider performance degraded if current value is more than 2x the baseline mean
# or exceeds the 95th percentile by more than 50%
current_value > baseline_stats.mean * 2.0 or
current_value > baseline_stats.p95 * 1.5
end
# ... additional implementation
end
Intelligent Sampling and Aggregation
# lib/foundation/telemetry/adaptive_sampler.ex
defmodule Foundation.Telemetry.AdaptiveSampler do
@moduledoc """
Adaptive sampling to reduce telemetry overhead while maintaining observability.
Automatically adjusts sampling rates based on system load and error conditions.
"""
use GenServer
# Default sampling rates
@base_sampling_rates %{
# High frequency, low overhead events
"foundation.process_registry.lookup" => 0.1, # 10% sampling
"foundation_jido.signal.dispatch" => 0.2, # 20% sampling
# Medium frequency events
"foundation_jido.agent.registration" => 0.5, # 50% sampling
"dspex.program.execution" => 0.8, # 80% sampling
# Low frequency, high value events
"foundation_jido.coordination.auction" => 1.0, # 100% sampling
"dspex.optimization.iteration" => 1.0, # 100% sampling
"foundation_os.error.occurred" => 1.0 # Always sample errors
}
def should_sample?(event_name, metadata \\ %{}) do
base_rate = get_sampling_rate(event_name)
adjusted_rate = adjust_sampling_rate(base_rate, event_name, metadata)
:rand.uniform() <= adjusted_rate
end
defp adjust_sampling_rate(base_rate, event_name, metadata) do
adjustments = [
&error_boost/3, # Increase sampling during errors
&load_adjustment/3, # Decrease sampling under high load
&critical_path_boost/3 # Increase sampling for critical operations
]
Enum.reduce(adjustments, base_rate, fn adjustment_fn, rate ->
adjustment_fn.(rate, event_name, metadata)
end)
|> max(0.0)
|> min(1.0)
end
defp error_boost(rate, _event_name, metadata) do
# Increase sampling when errors are occurring
if metadata[:error_context] or metadata[:retry_attempt] do
min(rate * 2.0, 1.0)
else
rate
end
end
defp load_adjustment(rate, _event_name, _metadata) do
# Decrease sampling under high system load
system_load = get_system_load()
case system_load do
load when load > 0.8 -> rate * 0.5 # High load: reduce sampling
load when load > 0.6 -> rate * 0.7 # Medium load: slight reduction
_ -> rate # Normal load: no adjustment
end
end
defp critical_path_boost(rate, event_name, metadata) do
# Increase sampling for critical business operations
critical_patterns = [
"dspex.coordination.multi_agent",
"foundation_jido.coordination",
"foundation_os.request"
]
if Enum.any?(critical_patterns, &String.contains?(to_string(event_name), &1)) do
min(rate * 1.5, 1.0)
else
rate
end
end
# ... additional implementation
end
Integration with External Monitoring
Prometheus Metrics Export
# lib/foundation/telemetry/prometheus_exporter.ex
defmodule Foundation.Telemetry.PrometheusExporter do
@moduledoc """
Exports Foundation OS telemetry to Prometheus format.
Provides integration with Prometheus/Grafana monitoring stack.
"""
use GenServer
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(opts) do
# Setup Prometheus metrics
setup_prometheus_metrics()
# Attach to telemetry events
:telemetry.attach_many("prometheus-exporter", telemetry_events(), &handle_telemetry_event/4, %{})
{:ok, %{}}
end
defp setup_prometheus_metrics do
# Foundation metrics
:prometheus_counter.new([
name: :foundation_process_registrations_total,
help: "Total number of process registrations",
labels: [:namespace, :process_type]
])
:prometheus_histogram.new([
name: :foundation_process_lookup_duration_seconds,
help: "Process lookup duration",
labels: [:namespace],
buckets: [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0]
])
# FoundationJido metrics
:prometheus_gauge.new([
name: :foundation_jido_active_agents,
help: "Number of currently active agents",
labels: [:agent_type]
])
:prometheus_counter.new([
name: :foundation_jido_coordinations_total,
help: "Total number of agent coordinations",
labels: [:coordination_type, :success]
])
# DSPEx metrics
:prometheus_histogram.new([
name: :dspex_optimization_duration_seconds,
help: "ML optimization duration",
labels: [:strategy, :program_type],
buckets: [1, 5, 10, 30, 60, 300, 600] # seconds
])
:prometheus_gauge.new([
name: :dspex_optimization_performance_score,
help: "Current optimization performance score",
labels: [:program_id, :strategy]
])
end
def handle_telemetry_event([:foundation, :process_registry, :register], measurements, metadata, _config) do
:prometheus_counter.inc(:foundation_process_registrations_total, [
metadata[:namespace] || "default",
metadata[:process_type] || "unknown"
])
if measurements[:duration] do
:prometheus_histogram.observe(:foundation_process_lookup_duration_seconds, [
metadata[:namespace] || "default"
], measurements[:duration] / 1000) # Convert to seconds
end
end
def handle_telemetry_event([:foundation_jido, :coordination, :auction], measurements, metadata, _config) do
success = if metadata[:success], do: "true", else: "false"
:prometheus_counter.inc(:foundation_jido_coordinations_total, [
metadata[:coordination_type] || "auction",
success
])
end
def handle_telemetry_event([:dspex, :optimization, :iteration], measurements, metadata, _config) do
if measurements[:duration] and metadata[:phase] == :complete do
:prometheus_histogram.observe(:dspex_optimization_duration_seconds, [
metadata[:strategy] || "unknown",
metadata[:program_type] || "unknown"
], measurements[:duration] / 1000)
end
if measurements[:performance_score] do
:prometheus_gauge.set(:dspex_optimization_performance_score, [
metadata[:program_id] || "unknown",
metadata[:strategy] || "unknown"
], measurements[:performance_score])
end
end
# ... additional event handlers
end
Cloud Platform Integration
# lib/foundation/telemetry/cloud_integrations.ex
defmodule Foundation.Telemetry.CloudIntegrations do
@moduledoc """
Integrations with cloud monitoring platforms.
Supports AWS CloudWatch, Google Cloud Monitoring, Azure Monitor.
"""
def send_to_cloudwatch(metrics) do
# AWS CloudWatch integration
namespace = "FoundationOS"
metric_data = Enum.map(metrics, fn {name, value, tags} ->
%{
"MetricName" => name,
"Value" => value,
"Unit" => determine_unit(name),
"Dimensions" => format_dimensions(tags),
"Timestamp" => DateTime.utc_now() |> DateTime.to_iso8601()
}
end)
ExAws.CloudWatch.put_metric_data(namespace, metric_data)
|> ExAws.request()
end
def send_to_datadog(metrics) do
# Datadog integration
datadog_metrics = Enum.map(metrics, fn {name, value, tags} ->
%{
metric: "foundationos.#{name}",
points: [[System.system_time(:second), value]],
tags: format_datadog_tags(tags),
type: determine_datadog_type(name)
}
end)
HTTPoison.post(
"https://api.datadoghq.com/api/v1/series",
Jason.encode!(%{series: datadog_metrics}),
[
{"Content-Type", "application/json"},
{"DD-API-KEY", Application.get_env(:foundation, :datadog_api_key)}
]
)
end
# ... additional cloud integrations
end
Conclusion
This comprehensive telemetry architecture provides:
- Unified Observability: Single telemetry system across all layers with automatic correlation
- Deep ML Insights: Specialized metrics for optimization progress and multi-agent coordination
- Intelligent Alerting: Proactive alerting based on performance baselines and error patterns
- Distributed Tracing: End-to-end request tracing across complex multi-agent workflows
- Adaptive Performance: Intelligent sampling and performance monitoring with automatic degradation detection
- External Integration: Seamless integration with Prometheus, CloudWatch, Datadog, and other monitoring platforms
Key Benefits:
- Reduced MTTR: Faster issue identification and resolution through comprehensive tracing
- Proactive Monitoring: Early detection of performance degradation and coordination issues
- Business Insights: Visibility into ML optimization effectiveness and agent productivity
- Operational Excellence: Data-driven capacity planning and performance optimization
- Cost Optimization: Intelligent sampling reduces telemetry overhead while maintaining visibility
The telemetry architecture scales with the system and provides the observability foundation needed to operate a world-class multi-agent platform in production.