Distributed Agentic Ideal Architecture
Date: 2025-07-12
Series: AgentJido Distribution Analysis - Part 3
Scope: Ground-up design for distributed agentic systems on BEAM
Executive Summary
This document explores the ideal architecture for distributed agentic systems built on the BEAM, designed from first principles without legacy constraints. This serves as the baseline for evaluating whether AgentJido’s architecture can be modified or if a complete rebuild is necessary.
Key Finding: An ideal distributed agentic architecture has fundamentally different design principles than AgentJido’s current single-node approach, suggesting that modification may be more complex than beneficial.
Table of Contents
- Design Principles for Distributed Agents
- Core Architecture Components
- Communication Patterns
- State Management Strategy
- Fault Tolerance and Resilience
- Performance and Scalability
- Reference Implementation
Design Principles for Distributed Agents
1. Location Transparency 🎯 Fundamental
Agents should work identically regardless of their physical location in the cluster.
# Ideal: Agent operations are location-agnostic
agent = Agent.get("worker-123")
result = Agent.execute(agent, action, params)
# ↑ Should work whether agent is local, remote, or migrating
Requirements:
- Unified agent addressing across cluster
- Transparent routing of operations
- Seamless agent migration between nodes
- No location-specific code in business logic
2. Async-First Operations ⚡ Critical
All inter-agent communication should be asynchronous by default to handle network latency.
# Ideal: Async by default, sync when explicitly needed
Agent.send_async(agent, message) # Fire and forget
Agent.request_async(agent, request) |> await() # Async request/response
Agent.call_sync(agent, request, timeout) # Explicit sync when needed
Requirements:
- Message-passing based communication
- Promise/Future patterns for async coordination
- Timeout and retry mechanisms built-in
- Circuit breakers for cascade failure prevention
3. Partition Tolerance 🛡️ Essential
System must continue operating during network partitions.
# Ideal: Graceful degradation during partitions
case Agent.execute(agent, action, params) do
{:ok, result} -> result
{:error, :partition} -> use_cached_or_degrade_gracefully()
{:error, :timeout} -> retry_with_backoff()
end
Requirements:
- CAP theorem aware design decisions
- Configurable consistency levels
- Conflict resolution strategies
- Partition detection and handling
4. Horizontal Scalability 📈 Core
Adding nodes should linearly increase system capacity.
# Ideal: Linear scaling with node additions
cluster_capacity = NodeCount * avg_node_capacity
agent_placement = consistent_hash(agent_id, available_nodes)
Requirements:
- Consistent hashing for agent placement
- Load balancing across nodes
- Resource-aware scheduling
- Automatic rebalancing on topology changes
5. Observable and Debuggable 🔍 Critical
Distributed systems must provide comprehensive observability.
# Ideal: Rich telemetry and tracing
:telemetry.span([:agent, :execute], metadata, fn ->
# Automatic distributed tracing
# Performance metrics collection
# Error tracking and correlation
end)
Requirements:
- Distributed tracing across agent interactions
- Centralized logging with correlation IDs
- Performance metrics and SLA monitoring
- Health checks and status reporting
Core Architecture Components
1. Distributed Agent Registry 🗂️
Purpose: Cluster-wide agent discovery and location tracking
defmodule DistributedAgents.Registry do
@moduledoc """
Cluster-aware agent registry using consistent hashing and replication.
Key features:
- Consistent hashing for agent placement
- Replication for fault tolerance
- Dynamic rebalancing on topology changes
- O(1) lookups with minimal network calls
"""
@type agent_id :: String.t()
@type location :: {:local, pid()} | {:remote, node(), pid()} | {:migrating, old_node(), new_node()}
@doc "Register agent with automatic placement"
@spec register_agent(agent_id(), agent_spec()) :: {:ok, location()} | {:error, term()}
def register_agent(agent_id, agent_spec) do
# Use consistent hashing to determine placement
target_node = determine_placement(agent_id, agent_spec)
case target_node do
^node() -> register_locally(agent_id, agent_spec)
remote_node -> register_remotely(remote_node, agent_id, agent_spec)
end
end
@doc "Find agent location with caching"
@spec locate_agent(agent_id()) :: {:ok, location()} | {:error, :not_found}
def locate_agent(agent_id) do
# Check local cache first
case Agent.LocationCache.get(agent_id) do
{:ok, location} -> verify_and_return(location)
:miss -> cluster_lookup(agent_id)
end
end
@doc "Migrate agent to new node"
@spec migrate_agent(agent_id(), target_node()) :: {:ok, location()} | {:error, term()}
def migrate_agent(agent_id, target_node) do
# Coordinate migration with zero downtime
with {:ok, current_location} <- locate_agent(agent_id),
{:ok, checkpoint} <- checkpoint_agent(agent_id),
{:ok, new_pid} <- start_agent_on_node(target_node, checkpoint),
:ok <- transition_traffic(agent_id, current_location, new_pid),
:ok <- cleanup_old_agent(current_location) do
{:ok, {:local, new_pid}}
end
end
# Implementation uses consistent hashing ring with configurable replication
defp determine_placement(agent_id, agent_spec) do
ring = ClusterTopology.get_hash_ring()
hash = :erlang.phash2(agent_id)
# Consider resource requirements for placement
candidates = HashRing.find_nodes(ring, hash, replication_factor())
ResourceScheduler.select_best_node(candidates, agent_spec.resources)
end
end
Key Design Decisions:
- Consistent Hashing: Ensures stable agent placement and minimal reshuffling
- Replication Factor: Configurable replicas for fault tolerance
- Location Caching: Reduce network calls for frequently accessed agents
- Migration Support: Zero-downtime agent movement between nodes
2. Message-Passing Communication Layer 📨
Purpose: Efficient, reliable inter-agent communication
defmodule DistributedAgents.Messaging do
@moduledoc """
High-performance message passing with delivery guarantees.
Features:
- Multiple delivery semantics (at-most-once, at-least-once, exactly-once)
- Message ordering guarantees where needed
- Automatic retry with exponential backoff
- Circuit breakers for failing destinations
- Message compression and batching
"""
@type delivery_guarantee :: :at_most_once | :at_least_once | :exactly_once
@type message_options :: [
delivery: delivery_guarantee(),
timeout: timeout(),
priority: :low | :normal | :high,
ordering: boolean(),
compression: boolean()
]
@doc "Send message with delivery guarantees"
@spec send_message(agent_id(), message(), message_options()) ::
:ok | {:ok, message_id()} | {:error, term()}
def send_message(agent_id, message, opts \\ []) do
delivery = Keyword.get(opts, :delivery, :at_most_once)
with {:ok, location} <- DistributedAgents.Registry.locate_agent(agent_id),
{:ok, route} <- determine_route(location, opts),
{:ok, envelope} <- create_envelope(message, opts) do
case delivery do
:at_most_once -> fire_and_forget(route, envelope)
:at_least_once -> reliable_send(route, envelope, opts)
:exactly_once -> exactly_once_send(route, envelope, opts)
end
end
end
@doc "Request-response pattern with timeout"
@spec request(agent_id(), request(), timeout()) :: {:ok, response()} | {:error, term()}
def request(agent_id, request, timeout \\ 5000) do
correlation_id = generate_correlation_id()
with :ok <- send_message(agent_id, {:request, correlation_id, request},
delivery: :at_least_once, timeout: timeout),
{:ok, response} <- await_response(correlation_id, timeout) do
{:ok, response}
end
end
@doc "Async request returning a future"
@spec request_async(agent_id(), request()) :: Future.t()
def request_async(agent_id, request) do
Future.new(fn -> request(agent_id, request) end)
end
# Message routing optimizations
defp determine_route({:local, pid}, _opts) do
{:ok, {:local_send, pid}}
end
defp determine_route({:remote, node, pid}, opts) do
case NetworkTopology.latency(node) do
latency when latency < 5 -> {:ok, {:direct_send, node, pid}}
_high_latency -> {:ok, {:batched_send, node, pid}}
end
end
# Exactly-once delivery using distributed coordination
defp exactly_once_send(route, envelope, opts) do
message_id = envelope.id
case MessageDeduplication.check_and_mark(message_id) do
:already_delivered -> {:ok, message_id}
:new_message ->
with :ok <- reliable_send(route, envelope, opts),
:ok <- MessageDeduplication.mark_delivered(message_id) do
{:ok, message_id}
end
end
end
end
Key Design Decisions:
- Multiple Delivery Semantics: Choose appropriate guarantees per use case
- Circuit Breakers: Prevent cascade failures in distributed environment
- Message Batching: Optimize for high-latency network connections
- Correlation IDs: Essential for distributed tracing and debugging
3. Distributed State Management 💾
Purpose: Consistent, scalable state across cluster
defmodule DistributedAgents.State do
@moduledoc """
Distributed state management with configurable consistency guarantees.
Supports:
- Strong consistency (CP in CAP theorem)
- Eventual consistency (AP in CAP theorem)
- Session consistency (bounded staleness)
- Conflict-free replicated data types (CRDTs)
"""
@type consistency_level :: :strong | :eventual | :session | :crdt
@type state_options :: [
consistency: consistency_level(),
replication_factor: pos_integer(),
partition_strategy: :pause | :continue | :degraded
]
defstruct [
:agent_id,
:version, # Vector clock for ordering
:data, # Actual state data
:replicas, # Where replicas are stored
:consistency_level, # Consistency guarantees
:last_modified, # Timestamp for conflict resolution
:conflict_resolution # Strategy for handling conflicts
]
@doc "Update state with chosen consistency level"
@spec update_state(agent_id(), update_function(), state_options()) ::
{:ok, new_state()} | {:error, term()}
def update_state(agent_id, update_fn, opts \\ []) do
consistency = Keyword.get(opts, :consistency, :eventual)
case consistency do
:strong -> strong_consistency_update(agent_id, update_fn, opts)
:eventual -> eventual_consistency_update(agent_id, update_fn, opts)
:session -> session_consistency_update(agent_id, update_fn, opts)
:crdt -> crdt_update(agent_id, update_fn, opts)
end
end
# Strong consistency: coordinate with all replicas before committing
defp strong_consistency_update(agent_id, update_fn, opts) do
replication_factor = Keyword.get(opts, :replication_factor, 3)
replicas = StateLocator.get_replicas(agent_id, replication_factor)
# Two-phase commit across replicas
case TwoPhaseCommit.coordinate(replicas, agent_id, update_fn) do
{:ok, new_state} ->
StateCache.invalidate(agent_id)
{:ok, new_state}
{:error, :conflict} ->
resolve_conflict_and_retry(agent_id, update_fn, replicas)
error -> error
end
end
# Eventual consistency: update locally and propagate asynchronously
defp eventual_consistency_update(agent_id, update_fn, opts) do
with {:ok, current_state} <- get_local_state(agent_id),
{:ok, new_state} <- apply_update(current_state, update_fn),
:ok <- store_local_state(agent_id, new_state),
:ok <- async_propagate_to_replicas(agent_id, new_state, opts) do
{:ok, new_state}
end
end
# CRDT-based updates: conflict-free by design
defp crdt_update(agent_id, update_fn, opts) do
crdt_type = determine_crdt_type(opts)
with {:ok, current_crdt} <- get_crdt_state(agent_id, crdt_type),
{:ok, updated_crdt} <- CRDT.update(current_crdt, update_fn),
:ok <- replicate_crdt_update(agent_id, updated_crdt, opts) do
{:ok, CRDT.value(updated_crdt)}
end
end
@doc "Resolve conflicts using configured strategy"
def resolve_conflict(agent_id, conflicting_states, strategy \\ :last_write_wins) do
case strategy do
:last_write_wins ->
Enum.max_by(conflicting_states, & &1.last_modified)
:vector_clock ->
VectorClock.resolve_conflicts(conflicting_states)
:merge_semantic ->
SemanticMerge.merge_states(conflicting_states)
custom_resolver when is_function(custom_resolver) ->
custom_resolver.(conflicting_states)
end
end
end
Key Design Decisions:
- Configurable Consistency: Choose CAP theorem tradeoffs per use case
- CRDT Support: Conflict-free updates for high availability scenarios
- Vector Clocks: Proper ordering in distributed environment
- Conflict Resolution: Multiple strategies for different data types
4. Agent Lifecycle Management 🔄
Purpose: Robust agent spawning, monitoring, and cleanup
defmodule DistributedAgents.Lifecycle do
@moduledoc """
Manages agent lifecycles across the cluster with supervision and migration.
Features:
- Automatic agent placement and load balancing
- Health monitoring and automatic restart
- Zero-downtime migration between nodes
- Resource quota management
- Graceful shutdown coordination
"""
@type agent_spec :: %{
id: String.t(),
module: module(),
args: term(),
resources: resource_requirements(),
placement_hints: placement_hints(),
supervision_strategy: supervision_strategy()
}
@doc "Spawn agent with automatic placement"
@spec spawn_agent(agent_spec()) :: {:ok, agent_ref()} | {:error, term()}
def spawn_agent(agent_spec) do
with {:ok, target_node} <- select_placement_node(agent_spec),
{:ok, resources} <- reserve_resources(target_node, agent_spec.resources),
{:ok, agent_ref} <- start_agent_on_node(target_node, agent_spec),
:ok <- register_for_monitoring(agent_ref),
:ok <- update_cluster_state(agent_ref, target_node) do
{:ok, agent_ref}
else
{:error, :no_capacity} -> {:error, :cluster_at_capacity}
{:error, :resource_unavailable} -> queue_for_later_placement(agent_spec)
error -> error
end
end
@doc "Migrate agent to different node"
@spec migrate_agent(agent_id(), target_node(), migration_options()) ::
{:ok, new_location()} | {:error, term()}
def migrate_agent(agent_id, target_node, opts \\ []) do
migration_strategy = Keyword.get(opts, :strategy, :checkpoint_restore)
case migration_strategy do
:checkpoint_restore -> checkpoint_migration(agent_id, target_node)
:state_transfer -> state_transfer_migration(agent_id, target_node)
:cold_start -> cold_start_migration(agent_id, target_node)
end
end
# Checkpoint-based migration with zero downtime
defp checkpoint_migration(agent_id, target_node) do
with {:ok, current_location} <- DistributedAgents.Registry.locate_agent(agent_id),
{:ok, checkpoint} <- create_checkpoint(agent_id),
{:ok, new_agent} <- restore_from_checkpoint(target_node, checkpoint),
:ok <- coordinate_traffic_switch(agent_id, current_location, new_agent),
:ok <- cleanup_old_agent(current_location) do
{:ok, new_agent}
end
end
@doc "Monitor agent health and trigger actions"
def monitor_agent_health(agent_id) do
# Continuous health monitoring
spawn_monitor(fn ->
health_check_loop(agent_id)
end)
end
defp health_check_loop(agent_id) do
case perform_health_check(agent_id) do
:healthy ->
:timer.sleep(health_check_interval())
health_check_loop(agent_id)
{:unhealthy, reason} ->
handle_unhealthy_agent(agent_id, reason)
{:unreachable, reason} ->
handle_unreachable_agent(agent_id, reason)
end
end
defp handle_unhealthy_agent(agent_id, reason) do
case reason do
:high_memory -> attempt_memory_cleanup(agent_id)
:high_cpu -> throttle_agent_requests(agent_id)
:unresponsive -> restart_agent(agent_id)
:corrupted_state -> restore_from_backup(agent_id)
end
end
end
Key Design Decisions:
- Automatic Placement: Intelligent node selection based on resources and topology
- Health Monitoring: Proactive detection and resolution of issues
- Migration Strategies: Multiple approaches for different availability requirements
- Resource Management: Prevent resource exhaustion and ensure fair allocation
Communication Patterns
1. Async Message Passing (Primary Pattern)
# Fire-and-forget messaging
Agent.send(target_agent, {:task, task_data})
# Request-response with futures
future = Agent.request_async(target_agent, {:compute, params})
result = Future.await(future, timeout: 10_000)
# Pub-sub for event distribution
EventBus.subscribe("agent.lifecycle.*")
EventBus.publish("agent.lifecycle.started", %{agent_id: "worker-123"})
2. Work Distribution Patterns
# Work stealing for load balancing
defmodule WorkStealer do
def request_work(requesting_agent) do
overloaded_agents = find_overloaded_agents()
Enum.find_value(overloaded_agents, fn agent ->
case Agent.request(agent, :steal_work, timeout: 1000) do
{:ok, work} -> work
_ -> nil
end
end)
end
end
# Pipeline patterns for data processing
defmodule Pipeline do
def start_pipeline(data, stages) do
stages
|> Enum.reduce(Future.resolved(data), fn stage, acc_future ->
Future.then(acc_future, &stage.process/1)
end)
end
end
3. Coordination Patterns
# Barrier synchronization
defmodule DistributedBarrier do
def wait_for_all(participants, timeout \\ 30_000) do
barrier_id = generate_barrier_id()
participants
|> Enum.map(&Agent.send_async(&1, {:barrier_wait, barrier_id}))
|> Future.all(timeout: timeout)
end
end
# Leader election for coordination
defmodule LeaderElection do
def elect_leader(candidates) do
# Use Raft or similar consensus algorithm
RaftConsensus.elect_leader(candidates)
end
end
State Management Strategy
1. Hierarchical State Architecture
# Agent state is composed of multiple layers
defmodule AgentState do
defstruct [
:local_state, # Fast, local-only state
:shared_state, # Replicated across cluster
:persistent_state, # Durable storage
:cached_state # Performance optimization
]
def update(state, update_type, data) do
case update_type do
:local -> update_local_state(state, data)
:shared -> update_shared_state(state, data)
:persistent -> update_persistent_state(state, data)
end
end
end
2. Event Sourcing for Auditability
defmodule EventStore do
def append_event(agent_id, event) do
# Store event with vector clock timestamp
event_with_metadata = %{
event: event,
agent_id: agent_id,
timestamp: VectorClock.now(),
node: node(),
correlation_id: get_correlation_id()
}
EventLog.append(agent_id, event_with_metadata)
end
def rebuild_state(agent_id, target_version \\ :latest) do
agent_id
|> EventLog.stream(until: target_version)
|> Enum.reduce(initial_state(), &apply_event/2)
end
end
3. CRDT Integration for Conflict-Free Updates
# Use CRDTs for naturally mergeable state
defmodule CRDTState do
def increment_counter(agent_id, amount) do
# G-Counter for increment-only counters
CRDT.GCounter.increment(agent_id, amount)
end
def add_to_set(agent_id, element) do
# G-Set for grow-only sets
CRDT.GSet.add(agent_id, element)
end
def update_map(agent_id, key, value) do
# OR-Map for last-writer-wins maps
CRDT.ORMap.put(agent_id, key, value)
end
end
Fault Tolerance and Resilience
1. Circuit Breaker Pattern
defmodule CircuitBreaker do
def call(circuit_name, operation, opts \\ []) do
case get_circuit_state(circuit_name) do
:closed ->
execute_with_monitoring(operation, circuit_name)
:open ->
{:error, :circuit_open}
:half_open ->
attempt_recovery(operation, circuit_name)
end
end
defp execute_with_monitoring(operation, circuit_name) do
start_time = System.monotonic_time()
case operation.() do
{:ok, result} ->
record_success(circuit_name, start_time)
{:ok, result}
{:error, reason} ->
record_failure(circuit_name, reason)
potentially_open_circuit(circuit_name)
{:error, reason}
end
end
end
2. Bulkhead Pattern for Isolation
defmodule ResourcePools do
def execute_in_pool(pool_name, operation) do
case Pool.checkout(pool_name) do
{:ok, resource} ->
try do
operation.(resource)
after
Pool.checkin(pool_name, resource)
end
{:error, :pool_exhausted} ->
{:error, :resource_unavailable}
end
end
end
3. Partition Tolerance
defmodule PartitionHandler do
def handle_partition(partition_event) do
case determine_partition_strategy(partition_event) do
:pause_minority ->
if in_minority_partition?() do
pause_non_critical_agents()
end
:continue_degraded ->
enable_degraded_mode()
use_cached_data_where_possible()
:split_brain_allowed ->
continue_normal_operation()
queue_for_later_reconciliation()
end
end
end
Performance and Scalability
1. Resource-Aware Scheduling
defmodule Scheduler do
def schedule_agent(agent_spec) do
available_nodes = get_available_nodes()
best_node = available_nodes
|> Enum.filter(&has_required_resources?(&1, agent_spec))
|> Enum.min_by(&calculate_load_score/1)
{:ok, best_node}
end
defp calculate_load_score(node) do
%{cpu: cpu, memory: memory, network: network} = get_node_metrics(node)
# Weighted score considering multiple factors
cpu * 0.4 + memory * 0.4 + network * 0.2
end
end
2. Adaptive Load Balancing
defmodule LoadBalancer do
def route_request(request, target_agents) do
# Use consistent hashing with bounded loads
primary = consistent_hash_select(request.id, target_agents)
case check_load(primary) do
:acceptable -> route_to(primary, request)
:overloaded -> route_to_least_loaded(target_agents, request)
end
end
end
3. Caching and Optimization
defmodule DistributedCache do
def get_or_compute(key, compute_fn, opts \\ []) do
case get_from_cache(key) do
{:ok, value} -> {:ok, value}
:miss ->
case compute_fn.() do
{:ok, value} ->
put_in_cache(key, value, opts)
{:ok, value}
error -> error
end
end
end
end
Reference Implementation
Application Structure
# Supervision tree for distributed agent system
defmodule DistributedAgents.Application do
use Application
def start(_type, _args) do
children = [
# Cluster membership and topology
{ClusterTopology, cluster_config()},
# Distributed registry
{DistributedAgents.Registry, registry_config()},
# Message passing infrastructure
{DistributedAgents.Messaging, messaging_config()},
# State management
{DistributedAgents.State, state_config()},
# Agent lifecycle management
{DistributedAgents.Lifecycle, lifecycle_config()},
# Performance monitoring
{DistributedAgents.Telemetry, telemetry_config()},
# Load balancing and scheduling
{DistributedAgents.Scheduler, scheduler_config()}
]
opts = [strategy: :one_for_one, name: DistributedAgents.Supervisor]
Supervisor.start_link(children, opts)
end
end
Agent Implementation
defmodule DistributedAgents.Agent do
@moduledoc """
Base agent implementation for distributed environment.
"""
use GenServer
require Logger
defstruct [
:id,
:spec,
:state,
:location,
:health_status,
:performance_metrics
]
def start_link(agent_spec) do
agent = %__MODULE__{
id: agent_spec.id,
spec: agent_spec,
state: agent_spec.initial_state,
location: {:local, node()},
health_status: :initializing
}
GenServer.start_link(__MODULE__, agent, name: via_tuple(agent_spec.id))
end
def init(agent) do
# Register with distributed registry
:ok = DistributedAgents.Registry.register_agent(agent.id, self())
# Start health monitoring
:ok = DistributedAgents.Lifecycle.monitor_agent_health(agent.id)
# Initialize telemetry
:telemetry.execute([:distributed_agents, :agent, :started], %{}, %{agent_id: agent.id})
{:ok, %{agent | health_status: :healthy}}
end
def handle_call({:execute, action, params}, from, state) do
# Async execution with telemetry
Task.start(fn ->
result = execute_action(action, params, state)
GenServer.reply(from, result)
end)
{:noreply, state}
end
def handle_cast({:message, message}, state) do
# Handle async messages
new_state = process_message(message, state)
{:noreply, new_state}
end
defp via_tuple(agent_id) do
{:via, DistributedAgents.Registry, agent_id}
end
end
Summary: Ideal Architecture Characteristics
Core Principles Validated ✅
- Location Transparency: Agents work identically regardless of node location
- Async-First Design: All communication patterns designed for network latency
- Partition Tolerance: System continues operating during network splits
- Horizontal Scalability: Linear capacity scaling with node additions
- Observable Operations: Comprehensive telemetry and distributed tracing
Key Architectural Differences from AgentJido
Aspect | AgentJido Current | Ideal Distributed |
---|---|---|
Registry | Local Registry only | Distributed consistent hashing |
Communication | Sync GenServer calls | Async message passing |
State | Local state only | Replicated with consistency levels |
Discovery | Local code scanning | Cluster-wide capability registry |
Fault Tolerance | Local supervision | Distributed coordination |
Scalability | Single node bound | Horizontally scalable |
Fundamental Architecture Incompatibilities 🔴
- Synchronous Core: AgentJido’s GenServer.call patterns assume local, fast operations
- Registry Centrality: Everything depends on local Registry for process resolution
- State Locality: No concepts of replication, consistency, or distributed coordination
- Single-Node Supervision: OTP supervision assumes local process trees
Conclusion: The ideal distributed architecture requires fundamentally different design patterns than AgentJido’s current approach, suggesting that modification may be more complex than a complete rebuild.
Document Version: 1.0
Analysis Date: 2025-07-12
Series: Part 3 of AgentJido Distribution Analysis
Next Document: Modify vs Rebuild Decision Matrix