Jido Implementation Analysis: Understanding Our Misunderstandings
Executive Summary
After deep analysis of the actual Jido and Jido.Signal source code, I’ve identified several critical misunderstandings in our Foundation implementation that explain the compatibility issues and architectural misalignments we encountered.
Key Misunderstandings Identified
1. CRITICAL: Jido Agent Architecture Misunderstanding
What We Did Wrong:
# Our approach - using GenServer directly
defmodule Foundation.Variables.CognitiveVariable do
use GenServer # ❌ WRONG
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: name) # ❌ WRONG
end
end
What We Should Have Done:
# Correct Jido approach - using Jido.Agent
defmodule Foundation.Variables.CognitiveVariable do
use Jido.Agent, # ✅ CORRECT
name: "cognitive_variable",
description: "ML parameter as intelligent coordination primitive",
schema: [
current_value: [type: :float, required: true],
range: [type: :tuple, required: true],
coordination_scope: [type: :atom, default: :local]
],
actions: [
Foundation.Variables.Actions.ChangeValue,
Foundation.Variables.Actions.CoordinateAgents,
Foundation.Variables.Actions.AdaptBasedOnFeedback
]
end
2. CRITICAL: Signal Communication Misunderstanding
What We Did Wrong:
# We tried to use non-existent function
Jido.Signal.send(pid, message) # ❌ FUNCTION DOESN'T EXIST
What We Should Have Done:
# Correct approach using Jido.Agent.Server
Jido.Agent.Server.call(agent_pid, signal) # ✅ For synchronous
Jido.Agent.Server.cast(agent_pid, signal) # ✅ For asynchronous
# Or using proper signal creation
signal = Jido.Signal.new!(%{
type: "cognitive_variable.change_value",
data: %{new_value: 1.5, context: %{requester: self()}}
})
Jido.Agent.Server.cast(agent_pid, signal)
3. CRITICAL: Application Architecture Misunderstanding
What We Did Wrong:
# We tried to start Jido.Application directly
def start(_type, _args) do
children = [
{Jido.Application, []}, # ❌ WRONG - doesn't have child_spec/1
{Foundation.Supervisor, []}
]
Supervisor.start_link(children, opts)
end
What We Should Have Done:
# Correct approach - Jido.Application starts its own supervisor
# We should just ensure Jido is started as a dependency
def application do
[
extra_applications: [:logger, :jido], # ✅ CORRECT
mod: {Foundation.Application, []}
]
end
def start(_type, _args) do
children = [
{Foundation.Supervisor, []} # Just our own services
]
Supervisor.start_link(children, opts)
end
4. Agent Startup Misunderstanding
What We Did Wrong:
# We manually managed GenServer lifecycle
{:ok, variable_pid} = Foundation.Variables.CognitiveFloat.start_link(opts)
What We Should Have Done:
# Proper Jido agent startup via Server
{:ok, agent_pid} = Foundation.Variables.CognitiveFloat.start_link([
id: "unique_agent_id",
initial_state: %{current_value: 0.5, range: {0.0, 1.0}},
registry: Jido.Registry # Uses Jido's registry
])
# Or create agent struct first, then start server
agent = Foundation.Variables.CognitiveFloat.new("agent_id", initial_state)
{:ok, server_pid} = Jido.Agent.Server.start_link(agent: agent)
5. Actions and Instructions Misunderstanding
What We Did Wrong:
# We used GenServer.cast with raw messages
GenServer.cast(pid, {:change_value, new_value, context})
What We Should Have Done:
# Proper Jido approach using Actions and Instructions
defmodule Foundation.Variables.Actions.ChangeValue do
use Jido.Action,
name: "change_value",
description: "Changes the value of a cognitive variable"
def run(%{new_value: new_value, context: context}, agent) do
# Validate and apply the change
case validate_value(new_value, agent.state.range) do
{:ok, validated_value} ->
new_state = %{agent.state | current_value: validated_value}
{:ok, new_state}
{:error, reason} ->
{:error, reason}
end
end
end
# Then use via instruction
instruction = Jido.Instruction.new(Foundation.Variables.Actions.ChangeValue, %{
new_value: 1.5,
context: %{requester: self()}
})
{:ok, agent, directives} = CognitiveFloat.cmd(agent, instruction)
Architectural Implications
1. Our Current Architecture vs Proper Jido Architecture
Current (Incorrect):
Foundation.Application
├── Foundation.Supervisor
├── Variables.Supervisor
│ ├── CognitiveVariable (GenServer) # ❌ Raw GenServer
│ ├── CognitiveFloat (GenServer) # ❌ Raw GenServer
│ └── CognitiveChoice (GenServer) # ❌ Raw GenServer
└── Clustering.Supervisor
└── [Other GenServers...] # ❌ All wrong
Proper Jido Architecture:
Foundation.Application
├── Jido Services (auto-started via dependency)
│ ├── Jido.Registry
│ ├── Jido.Agent.Supervisor
│ └── Jido.TaskSupervisor
└── Foundation.Supervisor
├── Variables.Supervisor
│ ├── CognitiveVariable (Jido.Agent) # ✅ Proper Jido Agent
│ ├── CognitiveFloat (Jido.Agent) # ✅ Proper Jido Agent
│ └── CognitiveChoice (Jido.Agent) # ✅ Proper Jido Agent
└── Clustering.Supervisor
└── [Jido Agents...] # ✅ All Jido Agents
2. Communication Patterns
Our Approach (Incorrect):
# Direct GenServer communication
GenServer.call(pid, {:get_status})
GenServer.cast(pid, {:change_value, value, context})
Proper Jido Approach:
# Signal-based communication through Jido.Agent.Server
{:ok, state} = Jido.Agent.Server.state(agent_pid)
{:ok, result} = Jido.Agent.Server.call(agent_pid, signal)
{:ok, signal_id} = Jido.Agent.Server.cast(agent_pid, signal)
# Or using high-level agent interface
{:ok, agent, directives} = CognitiveFloat.cmd(agent, instruction)
Required Refactoring
1. Convert All Agents to Proper Jido.Agent Modules
defmodule Foundation.Variables.CognitiveFloat do
use Jido.Agent,
name: "cognitive_float",
description: "Intelligent continuous parameter with gradient optimization",
schema: [
current_value: [type: :float, required: true],
range: [type: :tuple, required: true],
learning_rate: [type: :float, default: 0.01],
momentum: [type: :float, default: 0.9],
coordination_scope: [type: :atom, default: :local]
],
actions: [
Foundation.Variables.Actions.ChangeValue,
Foundation.Variables.Actions.GradientFeedback,
Foundation.Variables.Actions.PerformanceFeedback,
Foundation.Variables.Actions.CoordinateAgents
]
# Lifecycle callbacks
def on_before_run(agent) do
# Pre-execution validation
{:ok, agent}
end
def on_after_run(agent, result, directives) do
# Post-execution coordination
notify_affected_agents(agent, result)
{:ok, agent}
end
end
2. Implement Actions Instead of GenServer Handlers
defmodule Foundation.Variables.Actions.ChangeValue do
use Jido.Action,
name: "change_value",
description: "Changes cognitive variable value with validation",
schema: [
new_value: [type: :float, required: true],
context: [type: :map, default: %{}]
]
def run(%{new_value: new_value, context: context}, agent) do
with {:ok, validated_value} <- validate_value(new_value, agent.state.range) do
# Update state
new_state = Map.put(agent.state, :current_value, validated_value)
# Create coordination directive
coordination_directive = %Jido.Agent.Directive{
type: :coordinate_agents,
params: %{
old_value: agent.state.current_value,
new_value: validated_value,
affected_agents: agent.state.affected_agents
}
}
{:ok, new_state, [coordination_directive]}
end
end
defp validate_value(value, {min, max}) when value >= min and value <= max do
{:ok, value}
end
defp validate_value(value, range) do
{:error, {:out_of_range, value, range}}
end
end
3. Update Test Infrastructure
defmodule Foundation.Variables.CognitiveVariableTest do
use ExUnit.Case
alias Foundation.Variables.CognitiveFloat
alias Foundation.Variables.Actions.ChangeValue
test "cognitive variable handles value changes properly" do
# Create agent properly
agent = CognitiveFloat.new("test_var", %{
current_value: 0.5,
range: {0.0, 1.0},
affected_agents: [self()]
})
# Start agent server
{:ok, server_pid} = Jido.Agent.Server.start_link(agent: agent)
# Use proper instruction-based communication
instruction = %{new_value: 0.8, context: %{requester: self()}}
# Execute command properly
{:ok, updated_agent, directives} = CognitiveFloat.cmd(agent, ChangeValue, instruction)
# Verify results
assert updated_agent.state.current_value == 0.8
assert length(directives) > 0
# Should receive coordination notification
receive do
{:variable_notification, notification} ->
assert notification.variable_name == "test_var"
assert notification.new_value == 0.8
after 1000 ->
flunk("Expected coordination notification")
end
end
end
Integration with Jido.Signal
Proper Signal Usage
# Create signals properly for complex coordination
signal = Jido.Signal.new!(%{
type: "cognitive_variable.coordination.value_changed",
source: "agent:cognitive_float_#{agent.id}",
subject: "jido://agent/cognitive_float/#{agent.id}",
data: %{
variable_name: agent.state.name,
old_value: old_value,
new_value: new_value,
coordination_scope: agent.state.coordination_scope
},
jido_dispatch: {:pubsub, topic: "cognitive_variables"}
})
# Dispatch via proper channels
Jido.Signal.Dispatch.dispatch(signal, [
{:pid, target: affected_agent_pid, delivery_mode: :async},
{:logger, level: :debug}
])
Performance and Architecture Benefits
Why Proper Jido Architecture is Better
- Unified Management: All agents managed through Jido.Registry
- Signal Routing: Proper event routing and pub/sub capabilities
- Action Composition: Reusable, composable action modules
- State Management: Built-in state validation and directive system
- Lifecycle Management: Proper mount/unmount/code_change handling
- Error Handling: Structured error recovery with agent context
Migration Strategy
Phase 1: Core Agent Conversion
- Convert CognitiveVariable to proper Jido.Agent
- Convert CognitiveFloat and CognitiveChoice
- Implement core Actions (ChangeValue, GradientFeedback)
Phase 2: Communication Refactoring
- Replace GenServer calls with Jido.Agent.Server calls
- Implement proper Signal-based coordination
- Update all test cases
Phase 3: Advanced Features
- Implement clustering agents as proper Jido.Agent modules
- Add signal routing for coordination
- Implement proper supervision and error handling
Conclusion
Our implementation suffered from a fundamental misunderstanding of how Jido is intended to be used. We treated it as a simple library to add to our GenServer-based system, when in fact Jido provides a complete agent architecture that should be the foundation of our system.
The correct approach is to:
- Use Jido.Agent for all intelligent components
- Use Actions instead of GenServer handlers
- Use Jido.Agent.Server for all agent communication
- Use proper Signal-based coordination for complex workflows
- Let Jido handle application lifecycle and registry management
This architectural shift will provide much better:
- Composability through action-based design
- Coordination through signal routing
- Reliability through proper supervision
- Scalability through registry-based process management
- Maintainability through structured agent lifecycle management
The compatibility issues we encountered were symptoms of this fundamental architectural mismatch, not problems with the libraries themselves.