Nexus: Coordination Simplicity and Proven Patterns
Date: 2025-07-12
Version: 1.0
Series: Alternative Distributed Agent System - Part 2 (Coordination)
Executive Summary
This document details Nexus coordination simplicity - a pragmatic approach to multi-agent coordination that prioritizes proven patterns over exotic algorithms. Learning from the complexity challenges in agents.erl’s quantum-inspired patterns, Nexus builds coordination capabilities incrementally, starting with battle-tested algorithms and adding sophistication only when measurable benefits are demonstrated.
Key Innovation: “Graduated Coordination” - agents start with simple, reliable coordination mechanisms and graduate to more sophisticated patterns only when justified by performance requirements and proven through comprehensive testing.
Table of Contents
- Coordination Philosophy
- Foundation Layer: Proven Primitives
- Performance Layer: Optimized Patterns
- Intelligence Layer: ML-Enhanced Coordination
- Adaptive Layer: Dynamic Coordination
- Emergency Layer: Fallback Mechanisms
- Coordination Testing Framework
- Performance Benchmarks
Coordination Philosophy
The Problem with Exotic Coordination
agents.erl Approach: Quantum-inspired coordination, process entanglement, microsecond-level primitives
- Strengths: Theoretical performance benefits, innovative concepts
- Challenges: Implementation complexity, debugging difficulty, unpredictable behaviors
Nexus Alternative: Graduated complexity with proven foundations
- Start Simple: Well-understood algorithms with known characteristics
- Measure Everything: Quantify benefits before adding complexity
- Fallback Always: Every sophisticated pattern has a simple fallback
- Test Thoroughly: Comprehensive testing of coordination behaviors
Graduated Coordination Strategy
defmodule Nexus.Coordination.Strategy do
@moduledoc """
Five layers of coordination complexity, each building on the previous:
1. Foundation: Proven primitives (vector clocks, gossip, consensus)
2. Performance: Optimized implementations (ETS routing, connection pooling)
3. Intelligence: ML-enhanced decisions (predictive routing, adaptive load balancing)
4. Adaptive: Dynamic behavior adjustment (environmental adaptation)
5. Emergency: Fallback mechanisms (circuit breakers, graceful degradation)
Each layer is independently testable and can operate without higher layers.
"""
@coordination_layers [:foundation, :performance, :intelligence, :adaptive, :emergency]
def coordinate(agents, goal, max_layer \\ :adaptive) do
available_layers = available_coordination_layers()
effective_layer = min_layer(max_layer, available_layers)
case effective_layer do
:foundation -> foundation_coordinate(agents, goal)
:performance -> performance_coordinate(agents, goal)
:intelligence -> intelligence_coordinate(agents, goal)
:adaptive -> adaptive_coordinate(agents, goal)
:emergency -> emergency_coordinate(agents, goal)
end
rescue
error ->
Logger.warn("Coordination failed at #{effective_layer}, falling back")
fallback_coordinate(agents, goal, effective_layer)
end
defp fallback_coordinate(agents, goal, failed_layer) do
lower_layer = get_lower_layer(failed_layer)
if lower_layer do
coordinate(agents, goal, lower_layer)
else
# Ultimate fallback: simple round-robin
simple_round_robin_coordinate(agents, goal)
end
end
end
Foundation Layer: Proven Primitives
Vector Clocks for Causal Consistency
defmodule Nexus.Coordination.VectorClock do
@moduledoc """
Proven vector clock implementation for causal consistency.
Characteristics:
- Well-understood semantics
- Predictable performance: O(N) for N nodes
- Battle-tested in production systems
- Clear debugging and reasoning model
"""
defstruct clocks: %{}, node_id: nil
def new(node_id) do
%__MODULE__{
clocks: %{node_id => 0},
node_id: node_id
}
end
def tick(%__MODULE__{} = vc) do
current_time = Map.get(vc.clocks, vc.node_id, 0)
new_clocks = Map.put(vc.clocks, vc.node_id, current_time + 1)
%{vc | clocks: new_clocks}
end
def merge(%__MODULE__{} = vc1, %__MODULE__{} = vc2) do
all_nodes = MapSet.union(
MapSet.new(Map.keys(vc1.clocks)),
MapSet.new(Map.keys(vc2.clocks))
)
merged_clocks = Enum.reduce(all_nodes, %{}, fn node, acc ->
time1 = Map.get(vc1.clocks, node, 0)
time2 = Map.get(vc2.clocks, node, 0)
Map.put(acc, node, max(time1, time2))
end)
%{vc1 | clocks: merged_clocks}
end
def compare(%__MODULE__{} = vc1, %__MODULE__{} = vc2) do
all_nodes = MapSet.union(
MapSet.new(Map.keys(vc1.clocks)),
MapSet.new(Map.keys(vc2.clocks))
)
comparisons = Enum.map(all_nodes, fn node ->
time1 = Map.get(vc1.clocks, node, 0)
time2 = Map.get(vc2.clocks, node, 0)
cond do
time1 < time2 -> :less
time1 > time2 -> :greater
true -> :equal
end
end)
cond do
Enum.all?(comparisons, &(&1 == :less or &1 == :equal)) and
Enum.any?(comparisons, &(&1 == :less)) -> :before
Enum.all?(comparisons, &(&1 == :greater or &1 == :equal)) and
Enum.any?(comparisons, &(&1 == :greater)) -> :after
Enum.all?(comparisons, &(&1 == :equal)) -> :equal
true -> :concurrent
end
end
end
defmodule Nexus.Coordination.CausalConsistency do
@moduledoc """
Causal consistency using vector clocks for agent coordination.
"""
def coordinate_with_causality(agents, operations) do
# Initialize vector clock for coordination session
coordinator_clock = Nexus.Coordination.VectorClock.new(node())
# Execute operations with causal ordering
{results, _final_clock} = Enum.reduce(operations, {[], coordinator_clock},
fn operation, {acc_results, clock} ->
# Tick clock for this operation
new_clock = Nexus.Coordination.VectorClock.tick(clock)
# Execute operation with causal timestamp
result = execute_causal_operation(operation, new_clock, agents)
{[result | acc_results], new_clock}
end)
Enum.reverse(results)
end
defp execute_causal_operation(operation, vector_clock, agents) do
# Add vector clock to operation metadata
causal_operation = %{operation |
metadata: Map.put(operation.metadata || %{}, :vector_clock, vector_clock)
}
# Send to target agents with causal information
case operation.type do
:broadcast ->
broadcast_causal_operation(agents, causal_operation)
:targeted ->
send_causal_operation(operation.target_agents, causal_operation)
:coordinated ->
coordinate_causal_operation(operation.coordinator, agents, causal_operation)
end
end
defp broadcast_causal_operation(agents, operation) do
# Broadcast to all agents with causal ordering guarantee
Enum.map(agents, fn agent ->
Nexus.Agent.send_causal_message(agent.id, operation)
end)
end
end
Gossip Protocol for Eventual Consistency
defmodule Nexus.Coordination.Gossip do
@moduledoc """
Proven gossip protocol for eventual consistency.
Characteristics:
- O(log N) convergence time
- Fault-tolerant by design
- Well-understood failure modes
- Configurable convergence vs. bandwidth tradeoffs
"""
use GenServer
defstruct [
:node_id,
:cluster_nodes,
:state,
:version,
:gossip_interval,
:convergence_detector
]
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(opts) do
node_id = Keyword.get(opts, :node_id, node())
gossip_interval = Keyword.get(opts, :gossip_interval, 1000)
state = %__MODULE__{
node_id: node_id,
cluster_nodes: [node_id],
state: %{},
version: 0,
gossip_interval: gossip_interval,
convergence_detector: Nexus.Convergence.Detector.new()
}
# Schedule first gossip round
schedule_gossip_round(gossip_interval)
{:ok, state}
end
def gossip_state(state_update) do
GenServer.cast(__MODULE__, {:gossip_state, state_update})
end
def get_converged_state() do
GenServer.call(__MODULE__, :get_converged_state)
end
def handle_cast({:gossip_state, state_update}, state) do
# Update local state
new_local_state = merge_state_update(state.state, state_update)
new_version = state.version + 1
# Prepare gossip message
gossip_message = %{
source_node: state.node_id,
state: new_local_state,
version: new_version,
timestamp: :erlang.system_time(:microsecond)
}
# Trigger immediate gossip for important updates
if important_update?(state_update) do
initiate_gossip_round(gossip_message, state.cluster_nodes)
end
new_state = %{state |
state: new_local_state,
version: new_version
}
{:noreply, new_state}
end
def handle_cast({:gossip_message, message}, state) do
# Receive gossip message from another node
case should_accept_gossip?(message, state) do
true ->
# Merge received state
merged_state = merge_gossip_state(state.state, message.state)
# Update convergence detector
new_detector = Nexus.Convergence.Detector.update(
state.convergence_detector,
message.source_node,
message.version
)
new_state = %{state |
state: merged_state,
convergence_detector: new_detector
}
{:noreply, new_state}
false ->
# Ignore outdated or invalid gossip
{:noreply, state}
end
end
def handle_call(:get_converged_state, _from, state) do
case Nexus.Convergence.Detector.is_converged?(state.convergence_detector) do
true -> {:reply, {:ok, state.state}, state}
false -> {:reply, {:not_converged, state.state}, state}
end
end
def handle_info(:gossip_round, state) do
# Execute gossip round
execute_gossip_round(state)
# Schedule next round
schedule_gossip_round(state.gossip_interval)
{:noreply, state}
end
defp execute_gossip_round(state) do
# Select random subset of nodes for gossip
gossip_fanout = calculate_optimal_fanout(length(state.cluster_nodes))
gossip_targets = select_gossip_targets(state.cluster_nodes, gossip_fanout)
# Prepare gossip message
gossip_message = %{
source_node: state.node_id,
state: state.state,
version: state.version,
timestamp: :erlang.system_time(:microsecond)
}
# Send gossip to selected nodes
Enum.each(gossip_targets, fn target_node ->
send_gossip_message(target_node, gossip_message)
end)
end
defp calculate_optimal_fanout(cluster_size) do
# Optimal fanout for O(log N) convergence
max(1, :math.ceil(:math.log2(cluster_size)))
end
defp select_gossip_targets(nodes, fanout) do
# Randomly select targets (excluding self)
other_nodes = nodes -- [node()]
if length(other_nodes) <= fanout do
other_nodes
else
Enum.take_random(other_nodes, fanout)
end
end
defp send_gossip_message(target_node, message) do
# Send gossip message with fault tolerance
case :rpc.call(target_node, GenServer, :cast, [__MODULE__, {:gossip_message, message}], 1000) do
{:badrpc, _reason} ->
# Node unreachable, will try again next round
:ok
_ ->
:ok
end
end
end
Raft Consensus for Strong Consistency
defmodule Nexus.Coordination.Consensus do
@moduledoc """
Raft consensus implementation for critical coordination decisions.
Use cases:
- Leader election for coordination
- Critical configuration changes
- Resource allocation decisions
- Conflict resolution
"""
use GenServer
defstruct [
:node_id,
:state, # :follower | :candidate | :leader
:current_term,
:voted_for,
:log,
:commit_index,
:last_applied,
:cluster_members,
:election_timeout,
:heartbeat_interval
]
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(opts) do
node_id = Keyword.get(opts, :node_id, node())
cluster_members = Keyword.get(opts, :cluster_members, [node_id])
state = %__MODULE__{
node_id: node_id,
state: :follower,
current_term: 0,
voted_for: nil,
log: [],
commit_index: 0,
last_applied: 0,
cluster_members: cluster_members,
election_timeout: random_election_timeout(),
heartbeat_interval: 50 # 50ms heartbeat
}
# Start election timeout
schedule_election_timeout(state.election_timeout)
{:ok, state}
end
@doc """
Propose a consensus decision to the cluster.
"""
def propose_decision(decision) do
GenServer.call(__MODULE__, {:propose_decision, decision}, 10_000)
end
@doc """
Get current consensus state.
"""
def get_consensus_state() do
GenServer.call(__MODULE__, :get_consensus_state)
end
def handle_call({:propose_decision, decision}, from, %{state: :leader} = state) do
# Leader handles proposal
log_entry = %{
term: state.current_term,
decision: decision,
client: from,
index: length(state.log) + 1
}
new_log = state.log ++ [log_entry]
new_state = %{state | log: new_log}
# Replicate to followers
replicate_to_followers(log_entry, new_state)
# Don't reply immediately - will reply when committed
{:noreply, new_state}
end
def handle_call({:propose_decision, _decision}, _from, state) do
# Not leader - redirect to leader
case find_current_leader(state.cluster_members) do
{:ok, leader} -> {:reply, {:redirect, leader}, state}
:no_leader -> {:reply, {:error, :no_leader}, state}
end
end
def handle_call(:get_consensus_state, _from, state) do
consensus_state = %{
node_state: state.state,
current_term: state.current_term,
commit_index: state.commit_index,
cluster_members: state.cluster_members,
leader: (if state.state == :leader, do: state.node_id, else: find_current_leader(state.cluster_members))
}
{:reply, consensus_state, state}
end
# Follower receives append entries (heartbeat or log replication)
def handle_cast({:append_entries, leader_term, leader_id, prev_log_index, prev_log_term, entries, leader_commit}, state) do
cond do
leader_term < state.current_term ->
# Reject - leader is outdated
send_append_entries_response(leader_id, false, state.current_term)
{:noreply, state}
leader_term > state.current_term ->
# Update term and become follower
new_state = %{state |
current_term: leader_term,
voted_for: nil,
state: :follower
}
process_append_entries(leader_id, prev_log_index, prev_log_term, entries, leader_commit, new_state)
true ->
# Same term - process normally
process_append_entries(leader_id, prev_log_index, prev_log_term, entries, leader_commit, state)
end
end
def handle_info(:election_timeout, %{state: :follower} = state) do
# Start election
Logger.info("Starting leader election for term #{state.current_term + 1}")
start_election(state)
end
def handle_info(:election_timeout, %{state: :candidate} = state) do
# Election timeout as candidate - start new election
Logger.info("Election timeout, starting new election")
start_election(state)
end
def handle_info(:election_timeout, %{state: :leader} = state) do
# Leaders don't timeout
{:noreply, state}
end
def handle_info(:heartbeat, %{state: :leader} = state) do
# Send heartbeat to all followers
send_heartbeat_to_followers(state)
# Schedule next heartbeat
Process.send_after(self(), :heartbeat, state.heartbeat_interval)
{:noreply, state}
end
defp start_election(state) do
# Become candidate
new_term = state.current_term + 1
candidate_state = %{state |
state: :candidate,
current_term: new_term,
voted_for: state.node_id
}
# Vote for self
votes = 1
# Request votes from other nodes
vote_responses = request_votes_from_cluster(candidate_state)
# Count votes
total_votes = votes + count_positive_votes(vote_responses)
majority = div(length(state.cluster_members), 2) + 1
if total_votes >= majority do
# Won election - become leader
become_leader(candidate_state)
else
# Lost election - become follower
become_follower(candidate_state)
end
end
defp become_leader(state) do
Logger.info("Became leader for term #{state.current_term}")
leader_state = %{state | state: :leader}
# Send initial heartbeat
send_heartbeat_to_followers(leader_state)
Process.send_after(self(), :heartbeat, state.heartbeat_interval)
{:noreply, leader_state}
end
defp become_follower(state) do
follower_state = %{state | state: :follower}
schedule_election_timeout(random_election_timeout())
{:noreply, follower_state}
end
defp random_election_timeout() do
# Random timeout between 150-300ms
150 + :rand.uniform(150)
end
end
Performance Layer: Optimized Patterns
High-Performance Message Routing
defmodule Nexus.Coordination.HighPerformance do
@moduledoc """
Performance-optimized coordination patterns.
Optimizations:
- ETS-based routing tables for O(1) lookups
- Connection pooling for remote operations
- Binary protocols for serialization
- NUMA-aware process placement
"""
def setup_high_performance_coordination() do
# Create high-performance routing infrastructure
setup_routing_tables()
setup_connection_pools()
setup_binary_protocols()
setup_numa_placement()
end
defp setup_routing_tables() do
# Main routing table
:ets.new(:nexus_routes, [
:named_table,
:public,
:set,
{:read_concurrency, true},
{:write_concurrency, true}
])
# Agent coordination groups
:ets.new(:nexus_coordination_groups, [
:named_table,
:public,
:bag,
{:read_concurrency, true},
{:write_concurrency, true}
])
# Performance metrics
:ets.new(:nexus_coordination_metrics, [
:named_table,
:public,
:set,
{:read_concurrency, true},
{:write_concurrency, true}
])
end
def coordinate_high_performance(agents, coordination_type, goal) do
start_time = :erlang.monotonic_time(:microsecond)
result = case coordination_type do
:broadcast -> high_performance_broadcast(agents, goal)
:gathering -> high_performance_gathering(agents, goal)
:consensus -> high_performance_consensus(agents, goal)
:load_balance -> high_performance_load_balance(agents, goal)
end
end_time = :erlang.monotonic_time(:microsecond)
record_coordination_metrics(coordination_type, end_time - start_time, length(agents))
result
end
defp high_performance_broadcast(agents, goal) do
# Use ETS for fast agent lookup
agent_pids = Enum.map(agents, fn agent ->
case :ets.lookup(:nexus_routes, agent.id) do
[{_, :local, pid}] -> {:local, pid}
[{_, :remote, node, pid}] -> {:remote, node, pid}
[] -> {:error, :not_found}
end
end)
# Group by node for efficient remote calls
{local_pids, remote_groups} = group_agents_by_location(agent_pids)
# Broadcast to local agents immediately
local_results = Enum.map(local_pids, fn pid ->
GenServer.cast(pid, {:coordination_message, goal})
end)
# Batch remote calls by node
remote_results = Enum.map(remote_groups, fn {node, pids} ->
batch_remote_cast(node, pids, {:coordination_message, goal})
end)
local_results ++ remote_results
end
defp high_performance_gathering(agents, goal) do
# Parallel gathering with timeout
timeout = goal.timeout || 5000
# Start gathering tasks
gathering_tasks = Enum.map(agents, fn agent ->
Task.async(fn ->
case fast_agent_call(agent.id, {:gather_data, goal}) do
{:ok, data} -> {agent.id, data}
error -> {agent.id, error}
end
end)
end)
# Collect results with timeout
results = Task.yield_many(gathering_tasks, timeout)
# Process gathered data
successful_results = Enum.flat_map(results, fn
{_task, {:ok, result}} -> [result]
{_task, nil} -> [] # Timeout
{_task, {:exit, _reason}} -> [] # Error
end)
aggregate_gathered_data(successful_results, goal)
end
defp fast_agent_call(agent_id, message) do
case :ets.lookup(:nexus_routes, agent_id) do
[{_, :local, pid}] ->
GenServer.call(pid, message, 1000)
[{_, :remote, node, pid}] ->
# Use connection pool for remote call
pooled_remote_call(node, pid, message, 1000)
[] ->
{:error, :agent_not_found}
end
end
defp pooled_remote_call(node, pid, message, timeout) do
pool_name = :"nexus_pool_#{node}"
:poolboy.transaction(pool_name, fn _worker ->
:rpc.call(node, GenServer, :call, [pid, message, timeout])
end, timeout)
end
defp record_coordination_metrics(type, duration_us, agent_count) do
metrics = %{
coordination_type: type,
duration_microseconds: duration_us,
agent_count: agent_count,
throughput: agent_count / (duration_us / 1_000_000), # agents/second
timestamp: :erlang.system_time(:microsecond)
}
:ets.insert(:nexus_coordination_metrics, {type, metrics})
# Emit telemetry
:telemetry.execute(
[:nexus, :coordination, :performance],
%{duration: duration_us, throughput: metrics.throughput},
%{type: type, agent_count: agent_count}
)
end
end
Optimized Load Balancing
defmodule Nexus.Coordination.LoadBalancing do
@moduledoc """
High-performance load balancing with multiple strategies.
Strategies:
- Round-robin: O(1) with atomic counters
- Least-connections: O(N) with cached connection counts
- Weighted-response-time: O(N) with exponential moving averages
- Resource-aware: O(N) with real-time resource monitoring
"""
@strategies [:round_robin, :least_connections, :weighted_response_time, :resource_aware]
def setup_load_balancing() do
# Initialize strategy-specific data structures
setup_round_robin()
setup_connection_tracking()
setup_response_time_tracking()
setup_resource_monitoring()
end
defp setup_round_robin() do
# Use atomic counters for round-robin
:counters.new(1, [:atomics])
|> :persistent_term.put(:nexus_round_robin_counter)
end
defp setup_connection_tracking() do
# Track active connections per agent
:ets.new(:nexus_agent_connections, [
:named_table,
:public,
:set,
{:read_concurrency, true},
{:write_concurrency, true}
])
end
def balance_load(agents, requests, strategy \\ :round_robin) do
case strategy do
:round_robin ->
round_robin_balance(agents, requests)
:least_connections ->
least_connections_balance(agents, requests)
:weighted_response_time ->
weighted_response_time_balance(agents, requests)
:resource_aware ->
resource_aware_balance(agents, requests)
:adaptive ->
adaptive_balance(agents, requests)
end
end
defp round_robin_balance(agents, requests) do
# Ultra-fast round-robin using atomic counter
agent_count = length(agents)
counter = :persistent_term.get(:nexus_round_robin_counter)
Enum.map(requests, fn request ->
# Atomic increment and wrap
current = :counters.add(counter, 1, 1)
agent_index = rem(current - 1, agent_count)
agent = Enum.at(agents, agent_index)
{agent, request}
end)
end
defp least_connections_balance(agents, requests) do
# Select agent with fewest active connections
Enum.map(requests, fn request ->
agent = Enum.min_by(agents, fn agent ->
get_active_connections(agent.id)
end)
# Increment connection count
increment_connection_count(agent.id)
{agent, request}
end)
end
defp weighted_response_time_balance(agents, requests) do
# Select agents based on weighted response times
agent_weights = Enum.map(agents, fn agent ->
avg_response_time = get_average_response_time(agent.id)
weight = if avg_response_time > 0, do: 1.0 / avg_response_time, else: 1.0
{agent, weight}
end)
Enum.map(requests, fn request ->
agent = weighted_random_selection(agent_weights)
{agent, request}
end)
end
defp resource_aware_balance(agents, requests) do
# Consider CPU, memory, and queue depth
Enum.map(requests, fn request ->
agent = Enum.min_by(agents, fn agent ->
calculate_resource_score(agent)
end)
{agent, request}
end)
end
defp calculate_resource_score(agent) do
# Lower score = better choice
cpu_usage = get_agent_cpu_usage(agent.id)
memory_usage = get_agent_memory_usage(agent.id)
queue_depth = get_agent_queue_depth(agent.id)
# Weighted combination
cpu_usage * 0.4 + memory_usage * 0.3 + queue_depth * 0.3
end
defp adaptive_balance(agents, requests) do
# Use ML model to predict optimal assignment
case get_load_balancing_model() do
{:ok, model} ->
ml_enhanced_balance(agents, requests, model)
{:error, :no_model} ->
# Fall back to resource-aware balancing
resource_aware_balance(agents, requests)
end
end
def get_active_connections(agent_id) do
case :ets.lookup(:nexus_agent_connections, agent_id) do
[{_, count}] -> count
[] -> 0
end
end
def increment_connection_count(agent_id) do
:ets.update_counter(:nexus_agent_connections, agent_id, 1, {agent_id, 0})
end
def decrement_connection_count(agent_id) do
:ets.update_counter(:nexus_agent_connections, agent_id, -1, {agent_id, 0})
end
end
Intelligence Layer: ML-Enhanced Coordination
Predictive Coordination
defmodule Nexus.Coordination.Intelligence do
@moduledoc """
Machine learning enhanced coordination for predictive optimization.
Features:
- Predictive agent placement
- Adaptive coordination strategies
- Performance optimization through learning
- Anomaly detection and response
"""
use GenServer
defstruct [
:placement_model,
:coordination_model,
:performance_predictor,
:anomaly_detector,
:learning_history
]
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(_opts) do
state = %__MODULE__{
placement_model: initialize_placement_model(),
coordination_model: initialize_coordination_model(),
performance_predictor: initialize_performance_predictor(),
anomaly_detector: initialize_anomaly_detector(),
learning_history: :queue.new()
}
# Start learning loop
schedule_learning_update()
{:ok, state}
end
def predict_optimal_coordination(agents, goal) do
GenServer.call(__MODULE__, {:predict_coordination, agents, goal})
end
def learn_from_coordination(coordination_result) do
GenServer.cast(__MODULE__, {:learn_coordination, coordination_result})
end
def handle_call({:predict_coordination, agents, goal}, _from, state) do
# Extract features for ML prediction
features = extract_coordination_features(agents, goal)
# Predict optimal coordination strategy
strategy_prediction = Nexus.ML.predict(state.coordination_model, features)
# Predict performance
performance_prediction = Nexus.ML.predict(state.performance_predictor, features)
result = %{
recommended_strategy: strategy_prediction.class,
confidence: strategy_prediction.confidence,
predicted_performance: performance_prediction.value,
reasoning: strategy_prediction.reasoning
}
{:reply, {:ok, result}, state}
end
def handle_cast({:learn_coordination, result}, state) do
# Extract learning data
features = result.features
actual_strategy = result.strategy
actual_performance = result.performance
# Update coordination model
new_coordination_model = Nexus.ML.update(
state.coordination_model,
features,
actual_strategy
)
# Update performance predictor
new_performance_predictor = Nexus.ML.update(
state.performance_predictor,
features,
actual_performance
)
# Add to learning history
learning_entry = %{
timestamp: DateTime.utc_now(),
features: features,
strategy: actual_strategy,
performance: actual_performance
}
new_history = :queue.in(learning_entry, state.learning_history)
# Limit history size
trimmed_history = if :queue.len(new_history) > 10000 do
{_, trimmed} = :queue.out(new_history)
trimmed
else
new_history
end
new_state = %{state |
coordination_model: new_coordination_model,
performance_predictor: new_performance_predictor,
learning_history: trimmed_history
}
{:noreply, new_state}
end
def handle_info(:learning_update, state) do
# Periodic model improvement
improved_state = improve_models(state)
# Schedule next update
schedule_learning_update()
{:noreply, improved_state}
end
defp extract_coordination_features(agents, goal) do
# Extract numerical features for ML models
[
length(agents), # Agent count
calculate_agent_diversity(agents), # Agent type diversity
goal.complexity || 1.0, # Goal complexity
goal.deadline || 30.0, # Time constraint
calculate_network_latency(agents), # Network conditions
get_current_system_load(), # System load
count_active_coordinations(), # Coordination load
get_historical_success_rate(goal.type) # Historical success
]
end
defp improve_models(state) do
# Use accumulated learning history to improve models
recent_history = get_recent_learning_history(state.learning_history, 1000)
if length(recent_history) >= 100 do # Minimum data for improvement
# Retrain coordination model
improved_coordination_model = retrain_coordination_model(
state.coordination_model,
recent_history
)
# Retrain performance predictor
improved_performance_predictor = retrain_performance_predictor(
state.performance_predictor,
recent_history
)
%{state |
coordination_model: improved_coordination_model,
performance_predictor: improved_performance_predictor
}
else
state
end
end
end
defmodule Nexus.ML.SimpleModels do
@moduledoc """
Simple, interpretable ML models for coordination prediction.
Focus on simple models that are:
- Fast to train and predict
- Interpretable and debuggable
- Reliable in production
"""
def linear_regression_new() do
%{
type: :linear_regression,
weights: [],
bias: 0.0,
learning_rate: 0.01,
samples_seen: 0
}
end
def linear_regression_predict(model, features) do
if length(model.weights) == 0 do
# No training data yet, return default
%{value: 0.5, confidence: 0.0}
else
# Linear prediction: w·x + b
prediction = Enum.zip(model.weights, features)
|> Enum.map(fn {w, x} -> w * x end)
|> Enum.sum()
|> Kernel.+(model.bias)
# Simple confidence based on number of samples
confidence = min(1.0, model.samples_seen / 100.0)
%{value: prediction, confidence: confidence}
end
end
def linear_regression_update(model, features, target) do
if length(model.weights) == 0 do
# Initialize weights
weights = Enum.map(features, fn _ -> :rand.normal(0.0, 0.1) end)
%{model | weights: weights}
else
# Gradient descent update
prediction = linear_regression_predict(model, features).value
error = target - prediction
# Update weights: w = w + α * error * x
new_weights = Enum.zip(model.weights, features)
|> Enum.map(fn {w, x} -> w + model.learning_rate * error * x end)
# Update bias: b = b + α * error
new_bias = model.bias + model.learning_rate * error
%{model |
weights: new_weights,
bias: new_bias,
samples_seen: model.samples_seen + 1
}
end
end
def decision_tree_new() do
%{
type: :decision_tree,
tree: nil,
max_depth: 5,
min_samples_split: 10,
samples_seen: 0
}
end
def decision_tree_predict(model, features) do
case model.tree do
nil ->
%{class: :default, confidence: 0.0, reasoning: "No training data"}
tree ->
result = traverse_tree(tree, features)
%{
class: result.class,
confidence: result.confidence,
reasoning: result.path
}
end
end
defp traverse_tree(tree, features) do
traverse_tree(tree, features, [])
end
defp traverse_tree(%{type: :leaf, class: class, confidence: conf}, _features, path) do
%{class: class, confidence: conf, path: Enum.reverse(path)}
end
defp traverse_tree(%{type: :split, feature: feat_idx, threshold: thresh, left: left, right: right}, features, path) do
feature_value = Enum.at(features, feat_idx)
if feature_value <= thresh do
traverse_tree(left, features, ["#{feat_idx} <= #{thresh}" | path])
else
traverse_tree(right, features, ["#{feat_idx} > #{thresh}" | path])
end
end
end
Adaptive Layer: Dynamic Coordination
Environment-Responsive Coordination
defmodule Nexus.Coordination.Adaptive do
@moduledoc """
Adaptive coordination that responds to changing environmental conditions.
Adaptations:
- Network latency changes
- Resource availability fluctuations
- Agent failure patterns
- Load distribution changes
"""
use GenServer
defstruct [
:environment_monitor,
:adaptation_rules,
:current_strategy,
:adaptation_history,
:performance_baseline
]
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(_opts) do
state = %__MODULE__{
environment_monitor: start_environment_monitoring(),
adaptation_rules: load_adaptation_rules(),
current_strategy: :foundation,
adaptation_history: [],
performance_baseline: establish_performance_baseline()
}
# Start adaptation monitoring
schedule_adaptation_check()
{:ok, state}
end
def coordinate_adaptively(agents, goal) do
GenServer.call(__MODULE__, {:coordinate_adaptively, agents, goal})
end
def handle_call({:coordinate_adaptively, agents, goal}, _from, state) do
# Assess current environment
environment = assess_current_environment(state.environment_monitor)
# Determine optimal strategy for current conditions
optimal_strategy = determine_optimal_strategy(environment, agents, goal, state)
# Execute coordination with selected strategy
result = execute_adaptive_coordination(agents, goal, optimal_strategy)
# Record adaptation decision and result
adaptation_record = %{
timestamp: DateTime.utc_now(),
environment: environment,
strategy: optimal_strategy,
performance: result.performance,
agents_count: length(agents),
goal_type: goal.type
}
new_history = [adaptation_record | Enum.take(state.adaptation_history, 999)]
new_state = %{state | adaptation_history: new_history}
{:reply, result, new_state}
end
def handle_info(:adaptation_check, state) do
# Periodic adaptation assessment
environment = assess_current_environment(state.environment_monitor)
# Check if current strategy is still optimal
case should_adapt_strategy?(environment, state.current_strategy, state) do
{:adapt, new_strategy, reason} ->
Logger.info("Adapting coordination strategy to #{new_strategy}: #{reason}")
new_state = %{state | current_strategy: new_strategy}
{:noreply, new_state}
:no_adaptation ->
{:noreply, state}
end
end
defp assess_current_environment(monitor) do
%{
network_latency: get_average_network_latency(),
cpu_utilization: get_cluster_cpu_utilization(),
memory_utilization: get_cluster_memory_utilization(),
agent_failure_rate: get_recent_agent_failure_rate(),
coordination_load: get_active_coordination_count(),
time_of_day: get_time_of_day_factor(),
cluster_size: length(Node.list()) + 1
}
end
defp determine_optimal_strategy(environment, agents, goal, state) do
# Apply adaptation rules to determine best strategy
applicable_rules = Enum.filter(state.adaptation_rules, fn rule ->
rule.condition_fn.(environment, agents, goal)
end)
case applicable_rules do
[] ->
# No specific rule applies, use foundation strategy
:foundation
rules ->
# Select highest priority applicable rule
best_rule = Enum.max_by(rules, & &1.priority)
best_rule.strategy
end
end
defp load_adaptation_rules() do
[
# High latency environment
%{
name: :high_latency_adaptation,
priority: 8,
condition_fn: fn env, _agents, _goal ->
env.network_latency > 100 # >100ms average latency
end,
strategy: :async_coordination
},
# High resource utilization
%{
name: :resource_pressure_adaptation,
priority: 7,
condition_fn: fn env, _agents, _goal ->
env.cpu_utilization > 0.8 or env.memory_utilization > 0.9
end,
strategy: :lightweight_coordination
},
# Large cluster
%{
name: :large_cluster_adaptation,
priority: 6,
condition_fn: fn env, agents, _goal ->
env.cluster_size > 50 or length(agents) > 1000
end,
strategy: :hierarchical_coordination
},
# High failure rate
%{
name: :high_failure_adaptation,
priority: 9,
condition_fn: fn env, _agents, _goal ->
env.agent_failure_rate > 0.05 # >5% failure rate
end,
strategy: :fault_tolerant_coordination
},
# Performance degradation
%{
name: :performance_degradation,
priority: 5,
condition_fn: fn env, _agents, goal ->
current_perf = get_current_performance(goal.type)
baseline_perf = get_baseline_performance(goal.type)
current_perf < baseline_perf * 0.8 # 20% degradation
end,
strategy: :performance_optimized_coordination
}
]
end
defp execute_adaptive_coordination(agents, goal, strategy) do
start_time = :erlang.monotonic_time(:microsecond)
result = case strategy do
:foundation ->
Nexus.Coordination.Proven.coordinate_with_causality(agents, [goal])
:async_coordination ->
execute_async_coordination(agents, goal)
:lightweight_coordination ->
execute_lightweight_coordination(agents, goal)
:hierarchical_coordination ->
execute_hierarchical_coordination(agents, goal)
:fault_tolerant_coordination ->
execute_fault_tolerant_coordination(agents, goal)
:performance_optimized_coordination ->
Nexus.Coordination.HighPerformance.coordinate_high_performance(
agents,
goal.type,
goal
)
end
end_time = :erlang.monotonic_time(:microsecond)
duration = end_time - start_time
%{
result: result,
strategy: strategy,
performance: %{
duration_microseconds: duration,
throughput: length(agents) / (duration / 1_000_000)
}
}
end
defp execute_async_coordination(agents, goal) do
# Asynchronous coordination for high-latency environments
coordination_tasks = Enum.map(agents, fn agent ->
Task.async(fn ->
Nexus.Agent.send_async_coordination(agent.id, goal)
end)
end)
# Don't wait for all responses - accept partial results
timeout = goal.timeout || 5000
results = Task.yield_many(coordination_tasks, timeout)
successful_results = Enum.flat_map(results, fn
{_task, {:ok, result}} -> [result]
_ -> []
end)
%{type: :async_coordination, results: successful_results}
end
defp execute_lightweight_coordination(agents, goal) do
# Minimal coordination for resource-constrained environments
case goal.type do
:broadcast ->
# Simple fire-and-forget broadcast
Enum.each(agents, fn agent ->
spawn(fn -> Nexus.Agent.cast(agent.id, {:lightweight_message, goal}) end)
end)
%{type: :lightweight_broadcast, status: :sent}
:gather ->
# Sample subset of agents instead of all
sample_size = min(10, length(agents))
sampled_agents = Enum.take_random(agents, sample_size)
results = Enum.map(sampled_agents, fn agent ->
Nexus.Agent.call(agent.id, {:gather_data, goal})
end)
%{type: :lightweight_gather, results: results, sample_size: sample_size}
end
end
defp execute_hierarchical_coordination(agents, goal) do
# Hierarchical coordination for large clusters
hierarchy_depth = calculate_optimal_hierarchy_depth(length(agents))
# Group agents into hierarchy
hierarchy = build_coordination_hierarchy(agents, hierarchy_depth)
# Execute coordination through hierarchy
execute_through_hierarchy(hierarchy, goal)
end
defp execute_fault_tolerant_coordination(agents, goal) do
# Fault-tolerant coordination with redundancy
redundancy_factor = 3
# Create redundant coordination groups
coordination_groups = create_redundant_groups(agents, redundancy_factor)
# Execute coordination across groups with voting
group_results = Enum.map(coordination_groups, fn group ->
execute_group_coordination(group, goal)
end)
# Vote on results for fault tolerance
consensus_result = vote_on_group_results(group_results)
%{type: :fault_tolerant_coordination, result: consensus_result}
end
end
Now I’ll continue with the remaining documents in the series:
<function_calls>