Nexus: Alternative Distributed Agentic Architecture
Date: 2025-07-12
Version: 1.0
Series: Alternative Distributed Agent System - Part 1 (Foundation)
Executive Summary
This document presents Nexus, an alternative approach to building distributed agentic systems that learns from both the Phoenix distributed architecture and the agents.erl assimilation framework. Nexus combines the performance excellence and adaptive intelligence of agents.erl with the architectural clarity and BEAM-native patterns of Phoenix, while introducing novel concepts for pragmatic complexity management and testable emergence.
Key Innovation: Nexus implements “Progressive Intelligence” - a layered approach where simple, proven coordination mechanisms provide the foundation, with sophisticated adaptive behaviors built incrementally on top, ensuring system comprehensibility and debuggability at every level.
Table of Contents
- Design Philosophy
- Alternative Architectural Principles
- Core System Components
- Intelligence Layers
- Coordination Simplicity
- Performance-First Implementation
- Testable Emergence
- Production Readiness
Design Philosophy
Learning from Existing Approaches
Phoenix Strengths to Preserve:
- Clean BEAM/OTP patterns with proper supervision
- CRDT-based state management for consistency
- Comprehensive documentation and testability
- Distribution-first architectural thinking
agents.erl Strengths to Adopt:
- Microsecond-level performance optimization
- Advanced multi-agent coordination patterns
- Self-healing and adaptive system behaviors
- Production-grade monitoring and security
Limitations to Address:
- Complexity management and debuggability
- Implementation difficulty of quantum-inspired patterns
- Testing challenges with emergent behaviors
- Operational predictability
The Nexus Approach: Pragmatic Excellence
# Nexus Philosophy: Start simple, grow intelligent
defmodule Nexus.Core do
@moduledoc """
Progressive Intelligence Architecture:
Layer 1: Proven Primitives (reliable foundation)
Layer 2: Performance Optimization (measured gains)
Layer 3: Adaptive Intelligence (controlled emergence)
Layer 4: Advanced Coordination (optional complexity)
Each layer is independently testable and debuggable.
"""
end
Core Principles
1. Progressive Intelligence 🧠
Principle: Build intelligence incrementally, with each layer providing measurable value.
# Layer 1: Simple coordination
Nexus.Agent.send_message(agent_id, message)
# Layer 2: Performance-optimized routing
Nexus.Agent.send_message(agent_id, message, routing: :optimized)
# Layer 3: Intelligent routing with adaptation
Nexus.Agent.send_message(agent_id, message, routing: :adaptive)
# Layer 4: Swarm-coordinated routing (optional)
Nexus.Agent.send_message(agent_id, message, routing: :swarm_optimized)
2. Testable Emergence 🔬
Principle: Emergent behaviors must be reproducible, measurable, and debuggable.
defmodule Nexus.Emergence.Controller do
@moduledoc """
Controls and monitors emergent behaviors in distributed agent systems.
Features:
- Deterministic emergence for testing
- Behavior recording and replay
- Emergence metrics and boundaries
- Fail-safe fallback to simple coordination
"""
def enable_emergent_behavior(agents, behavior_type, constraints) do
# Enable with strict monitoring and fallback
end
def monitor_emergence(behavior_id) do
# Real-time emergence monitoring with safety bounds
end
def replay_emergence(behavior_id, scenario) do
# Deterministic replay for debugging
end
end
3. Performance Without Complexity ⚡
Principle: Achieve microsecond performance through proven patterns, not exotic algorithms.
defmodule Nexus.Performance do
@moduledoc """
High-performance coordination using established patterns:
- ETS-based message routing: <1μs local operations
- Pooled connection management: 50k+ concurrent connections
- Lock-free message queues: 10M+ ops/sec throughput
- NUMA-aware process placement: Hardware optimization
"""
def high_performance_send(target, message) do
# Optimized send using ETS routing table and connection pools
route_table = :persistent_term.get(:nexus_routes)
connection_pool = :persistent_term.get(:nexus_connections)
case :ets.lookup(route_table, target) do
[{^target, :local, pid}] ->
GenServer.cast(pid, message) # <1μs for local
[{^target, :remote, node, pid}] ->
pooled_remote_cast(connection_pool, node, pid, message) # <100μs
end
end
end
4. Operational Transparency 🔍
Principle: Every component must be observable, debuggable, and operationally predictable.
defmodule Nexus.Observability do
@moduledoc """
Comprehensive observability without complexity overhead.
- Structured telemetry with minimal performance impact
- Real-time system behavior visualization
- Predictive alerting based on pattern recognition
- Chaos engineering integration for resilience testing
"""
def instrument_operation(operation_name, fun) do
start_time = :erlang.monotonic_time(:microsecond)
try do
result = fun.()
duration = :erlang.monotonic_time(:microsecond) - start_time
:telemetry.execute(
[:nexus, :operation, :completed],
%{duration: duration},
%{operation: operation_name, result: :success}
)
result
rescue
error ->
duration = :erlang.monotonic_time(:microsecond) - start_time
:telemetry.execute(
[:nexus, :operation, :failed],
%{duration: duration},
%{operation: operation_name, error: error}
)
reraise error, __STACKTRACE__
end
end
end
Alternative Architectural Principles
1. Simplicity-First Coordination
Unlike agents.erl’s quantum-inspired patterns, Nexus starts with proven coordination mechanisms:
defmodule Nexus.Coordination.Simple do
@moduledoc """
Proven coordination patterns that form the foundation.
- Vector clocks for causality (well-understood)
- Gossip protocols for state sync (proven at scale)
- Consistent hashing for placement (battle-tested)
- Circuit breakers for fault isolation (standard pattern)
"""
def coordinate_agents(agents, coordination_type) do
case coordination_type do
:causal -> use_vector_clocks(agents)
:eventual -> use_gossip_protocol(agents)
:consistent -> use_consensus_protocol(agents)
:performance -> use_optimized_routing(agents)
end
end
# Well-understood vector clock implementation
defp use_vector_clocks(agents) do
Enum.reduce(agents, %VectorClock{}, fn agent, clock ->
VectorClock.tick(clock, agent.node_id)
end)
end
end
2. Intelligence Graduation
Agents start simple and gain intelligence through measured progression:
defmodule Nexus.Agent.Intelligence do
@moduledoc """
Four levels of agent intelligence, each optional and measurable.
"""
@type intelligence_level ::
:reactive | # Simple request/response
:proactive | # Basic learning and prediction
:adaptive | # Dynamic behavior adjustment
:emergent # Multi-agent coordination behaviors
def create_agent(spec, intelligence_level \\ :reactive) do
base_agent = create_base_agent(spec)
case intelligence_level do
:reactive -> base_agent
:proactive -> add_learning_layer(base_agent)
:adaptive -> add_adaptation_layer(base_agent)
:emergent -> add_emergence_layer(base_agent)
end
end
defp add_learning_layer(agent) do
# Add simple ML-based prediction and optimization
%{agent |
capabilities: [:learning | agent.capabilities],
intelligence_modules: [Nexus.Learning.BasicML | agent.intelligence_modules]
}
end
defp add_adaptation_layer(agent) do
# Add dynamic behavior adjustment based on environment
%{agent |
capabilities: [:adaptation | agent.capabilities],
intelligence_modules: [Nexus.Adaptation.BehaviorAdjuster | agent.intelligence_modules]
}
end
defp add_emergence_layer(agent) do
# Add multi-agent coordination and swarm behaviors
%{agent |
capabilities: [:emergence | agent.capabilities],
intelligence_modules: [Nexus.Emergence.SwarmCoordinator | agent.intelligence_modules]
}
end
end
3. Performance Through Simplicity
Achieve agents.erl performance levels using well-understood optimizations:
defmodule Nexus.Performance.Optimizations do
@moduledoc """
Performance optimizations using proven techniques:
1. ETS-based routing: O(1) local message routing
2. Process pools: Minimize context switching overhead
3. Binary protocols: Efficient serialization
4. Connection pooling: Amortize connection costs
5. NUMA awareness: Hardware-optimized placement
"""
def setup_high_performance_routing() do
# Create ETS table for O(1) message routing
:ets.new(:nexus_routes, [
:named_table,
:public,
:set,
{:read_concurrency, true},
{:write_concurrency, true}
])
# Create connection pools for each remote node
nodes = Node.list()
Enum.each(nodes, &setup_connection_pool/1)
# Set up NUMA-aware process placement
setup_numa_placement()
end
defp setup_connection_pool(node) do
pool_config = [
size: 10,
max_overflow: 50,
strategy: :fifo
]
:poolboy.start_link(pool_config, {Nexus.Connection.Worker, node})
end
defp setup_numa_placement() do
# Place processes based on NUMA topology for optimal memory access
numa_nodes = get_numa_topology()
Enum.each(numa_nodes, fn numa_node ->
spawn_opt(
fn -> start_numa_aware_processes(numa_node) end,
[{:scheduler, numa_node.scheduler_id}]
)
end)
end
end
4. Controlled Emergence
Unlike agents.erl’s unpredictable emergence, Nexus provides controlled, testable emergence:
defmodule Nexus.Emergence.Controlled do
@moduledoc """
Controlled emergence with safety bounds and monitoring.
Features:
- Emergence boundaries: Define safe operating ranges
- Behavior recording: Capture emergent patterns for analysis
- Fallback mechanisms: Revert to simple coordination if needed
- Testing support: Deterministic emergence for testing
"""
defstruct [
:emergence_id,
:agents,
:behavior_constraints,
:safety_bounds,
:monitoring_metrics,
:fallback_strategy
]
def enable_emergence(agents, emergence_config) do
emergence = %__MODULE__{
emergence_id: UUID.uuid4(),
agents: agents,
behavior_constraints: emergence_config.constraints,
safety_bounds: emergence_config.safety_bounds,
monitoring_metrics: initialize_monitoring(),
fallback_strategy: emergence_config.fallback || :simple_coordination
}
# Start emergence with monitoring
start_emergence_monitoring(emergence)
enable_emergent_behaviors(emergence)
emergence
end
def monitor_emergence(emergence_id) do
case :ets.lookup(:nexus_emergence, emergence_id) do
[{^emergence_id, metrics}] ->
analyze_emergence_health(metrics)
[] ->
{:error, :emergence_not_found}
end
end
defp analyze_emergence_health(metrics) do
cond do
metrics.coherence < 0.5 -> {:warning, :low_coherence}
metrics.performance_delta < -0.2 -> {:warning, :performance_degradation}
metrics.error_rate > 0.1 -> {:critical, :high_error_rate}
true -> {:ok, :healthy}
end
end
def fallback_to_simple_coordination(emergence_id) do
Logger.warn("Emergence #{emergence_id} falling back to simple coordination")
# Disable emergent behaviors
disable_emergent_behaviors(emergence_id)
# Switch to proven coordination patterns
enable_simple_coordination(emergence_id)
:ok
end
end
Core System Components
1. Nexus.Foundation - Rock-Solid Base
defmodule Nexus.Foundation do
@moduledoc """
Foundation layer providing proven, reliable primitives.
Architecture:
- OTP supervision trees for fault tolerance
- ETS/DETS for high-performance storage
- Standard TCP/UDP for networking
- Proven consensus algorithms (Raft)
"""
use Application
def start(_type, _args) do
children = [
# Core infrastructure
{Nexus.Registry.Distributed, []},
{Nexus.Cluster.Coordinator, []},
{Nexus.Performance.Monitor, []},
# Agent supervision
{Nexus.Agent.Supervisor, []},
# Communication layer
{Nexus.Transport.Supervisor, []},
# Intelligence layers (optional)
{Nexus.Intelligence.Supervisor, intelligence_config()}
]
opts = [strategy: :one_for_one, name: Nexus.Supervisor]
Supervisor.start_link(children, opts)
end
defp intelligence_config() do
[
enable_learning: Application.get_env(:nexus, :enable_learning, false),
enable_adaptation: Application.get_env(:nexus, :enable_adaptation, false),
enable_emergence: Application.get_env(:nexus, :enable_emergence, false)
]
end
end
2. Nexus.Registry - Optimized Discovery
defmodule Nexus.Registry.Distributed do
@moduledoc """
High-performance distributed registry using ETS and consistent hashing.
Performance targets:
- Local lookup: <1μs
- Remote lookup: <100μs
- Registration: <10μs
- 1M+ agents per node
"""
use GenServer
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(_opts) do
# Create high-performance ETS tables
:ets.new(:nexus_local_registry, [
:named_table,
:public,
:set,
{:read_concurrency, true},
{:write_concurrency, true}
])
:ets.new(:nexus_remote_registry, [
:named_table,
:public,
:set,
{:read_concurrency, true}
])
# Initialize consistent hash ring
hash_ring = Nexus.HashRing.new()
{:ok, %{hash_ring: hash_ring}}
end
@doc """
Register agent with O(1) performance.
"""
def register_agent(agent_id, pid, metadata \\ %{}) do
# Determine optimal placement
target_node = Nexus.HashRing.get_node(agent_id)
if target_node == node() do
# Local registration - <1μs
:ets.insert(:nexus_local_registry, {agent_id, pid, metadata})
# Replicate to remote nodes - background
Task.start(fn -> replicate_registration(agent_id, pid, metadata) end)
{:ok, :local}
else
# Remote registration
case :rpc.call(target_node, __MODULE__, :register_agent, [agent_id, pid, metadata]) do
{:ok, :local} -> {:ok, {:remote, target_node}}
error -> error
end
end
end
@doc """
Find agent with O(1) performance.
"""
def find_agent(agent_id) do
# Try local first - <1μs
case :ets.lookup(:nexus_local_registry, agent_id) do
[{^agent_id, pid, metadata}] ->
{:ok, {:local, pid, metadata}}
[] ->
# Try remote cache - <10μs
case :ets.lookup(:nexus_remote_registry, agent_id) do
[{^agent_id, node, pid, metadata}] ->
{:ok, {:remote, node, pid, metadata}}
[] ->
# Remote lookup - <100μs
remote_lookup(agent_id)
end
end
end
defp remote_lookup(agent_id) do
target_node = Nexus.HashRing.get_node(agent_id)
case :rpc.call(target_node, __MODULE__, :local_lookup, [agent_id], 1000) do
{:ok, {pid, metadata}} ->
# Cache for future lookups
:ets.insert(:nexus_remote_registry, {agent_id, target_node, pid, metadata})
{:ok, {:remote, target_node, pid, metadata}}
error ->
error
end
end
def local_lookup(agent_id) do
case :ets.lookup(:nexus_local_registry, agent_id) do
[{^agent_id, pid, metadata}] -> {:ok, {pid, metadata}}
[] -> {:error, :not_found}
end
end
end
3. Nexus.Agent - Progressive Intelligence
defmodule Nexus.Agent do
@moduledoc """
Agent with progressive intelligence capabilities.
Intelligence Levels:
1. Reactive: Simple request/response (100% reliable)
2. Proactive: Learning and prediction (measured improvement)
3. Adaptive: Dynamic behavior adjustment (controlled adaptation)
4. Emergent: Multi-agent coordination (optional, monitored)
"""
use GenServer
defstruct [
:id,
:state,
:intelligence_level,
:capabilities,
:performance_metrics,
:learning_model,
:adaptation_parameters,
:emergence_participation
]
def start_link(agent_spec) do
GenServer.start_link(__MODULE__, agent_spec, name: via_tuple(agent_spec.id))
end
def init(agent_spec) do
# Register with distributed registry
{:ok, location} = Nexus.Registry.Distributed.register_agent(agent_spec.id, self())
state = %__MODULE__{
id: agent_spec.id,
state: agent_spec.initial_state || %{},
intelligence_level: agent_spec.intelligence_level || :reactive,
capabilities: initialize_capabilities(agent_spec),
performance_metrics: initialize_metrics(),
learning_model: initialize_learning(agent_spec),
adaptation_parameters: initialize_adaptation(agent_spec),
emergence_participation: %{}
}
# Enable intelligence layers based on configuration
enable_intelligence_layers(state)
{:ok, state}
end
# Reactive level - simple, reliable request/response
def handle_call({:reactive_request, request}, _from, state) do
result = process_reactive_request(request, state)
{:reply, result, state}
end
# Proactive level - learning-enhanced responses
def handle_call({:proactive_request, request}, _from, state) do
# Use learning model to optimize response
optimized_request = optimize_with_learning(request, state.learning_model)
result = process_reactive_request(optimized_request, state)
# Update learning model
new_learning_model = update_learning_model(state.learning_model, request, result)
new_state = %{state | learning_model: new_learning_model}
{:reply, result, new_state}
end
# Adaptive level - dynamic behavior adjustment
def handle_call({:adaptive_request, request}, _from, state) do
# Adjust behavior based on current environment
adjusted_behavior = adapt_behavior(request, state.adaptation_parameters)
result = execute_adapted_behavior(adjusted_behavior, state)
# Update adaptation parameters
new_adaptation = update_adaptation_parameters(
state.adaptation_parameters,
request,
result
)
new_state = %{state | adaptation_parameters: new_adaptation}
{:reply, result, new_state}
end
# Emergent level - multi-agent coordination
def handle_call({:emergent_request, request}, _from, state) do
case state.emergence_participation do
%{enabled: true, coordinator: coordinator} ->
# Coordinate with other agents
coordination_result = Nexus.Emergence.Controlled.coordinate_request(
coordinator,
state.id,
request
)
result = execute_coordinated_behavior(coordination_result, state)
{:reply, result, state}
_ ->
# Fall back to adaptive behavior
handle_call({:adaptive_request, request}, _from, state)
end
end
defp via_tuple(agent_id) do
{:via, Registry, {Nexus.LocalRegistry, agent_id}}
end
end
Intelligence Layers
Layer 1: Reactive Intelligence (Foundation)
defmodule Nexus.Intelligence.Reactive do
@moduledoc """
Foundation layer: Simple, reliable request/response patterns.
Characteristics:
- 100% predictable behavior
- <1ms response time for local operations
- Zero learning or adaptation overhead
- Perfect for production-critical operations
"""
def process_request(request, agent_state) do
case request.type do
:query -> handle_query(request.data, agent_state)
:update -> handle_update(request.data, agent_state)
:action -> handle_action(request.data, agent_state)
end
end
defp handle_query(query, agent_state) do
# Simple, deterministic query processing
Map.get(agent_state, query.key, query.default)
end
defp handle_update(update, agent_state) do
# Simple state update with validation
case validate_update(update, agent_state) do
:ok -> Map.put(agent_state, update.key, update.value)
{:error, reason} -> {:error, reason}
end
end
defp handle_action(action, agent_state) do
# Execute deterministic action
execute_action(action, agent_state)
end
end
Layer 2: Proactive Intelligence (Learning)
defmodule Nexus.Intelligence.Proactive do
@moduledoc """
Learning layer: Basic prediction and optimization.
Characteristics:
- Simple ML models (linear regression, decision trees)
- Measured performance improvements
- Fallback to reactive behavior on errors
- Transparent learning process
"""
defstruct [
:prediction_model,
:optimization_history,
:performance_baseline,
:learning_enabled
]
def new() do
%__MODULE__{
prediction_model: Nexus.ML.LinearRegression.new(),
optimization_history: [],
performance_baseline: nil,
learning_enabled: true
}
end
def optimize_request(request, learning_state) do
if learning_state.learning_enabled do
# Use simple ML to optimize request
predicted_optimal = Nexus.ML.LinearRegression.predict(
learning_state.prediction_model,
extract_features(request)
)
apply_optimization(request, predicted_optimal)
else
# Fall back to reactive processing
request
end
end
def update_learning(learning_state, request, result, performance_metrics) do
# Update model with new data point
features = extract_features(request)
performance = calculate_performance_score(result, performance_metrics)
new_model = Nexus.ML.LinearRegression.update(
learning_state.prediction_model,
features,
performance
)
new_history = [
{request, result, performance_metrics} |
Enum.take(learning_state.optimization_history, 999)
]
%{learning_state |
prediction_model: new_model,
optimization_history: new_history
}
end
defp extract_features(request) do
# Extract numerical features for ML model
[
request.complexity || 1.0,
request.priority || 0.5,
request.resource_requirements || 1.0,
:os.timestamp() |> elem(2) |> rem(1000) / 1000.0 # Time of day
]
end
end
Layer 3: Adaptive Intelligence (Environment Response)
defmodule Nexus.Intelligence.Adaptive do
@moduledoc """
Adaptation layer: Dynamic behavior adjustment based on environment.
Characteristics:
- Responds to changing conditions
- Maintains safety bounds
- Gradual adaptation with monitoring
- Rollback capability for poor adaptations
"""
defstruct [
:adaptation_rules,
:environment_sensors,
:adaptation_history,
:safety_bounds,
:rollback_capability
]
def new() do
%__MODULE__{
adaptation_rules: initialize_adaptation_rules(),
environment_sensors: initialize_sensors(),
adaptation_history: :queue.new(),
safety_bounds: default_safety_bounds(),
rollback_capability: true
}
end
def adapt_behavior(request, adaptation_state) do
# Sense current environment
environment = sense_environment(adaptation_state.environment_sensors)
# Determine if adaptation is needed
case needs_adaptation?(environment, adaptation_state.adaptation_rules) do
{true, adaptation_type} ->
# Apply adaptation within safety bounds
adapted_behavior = apply_adaptation(
request,
adaptation_type,
adaptation_state.safety_bounds
)
# Record adaptation for monitoring
record_adaptation(adaptation_state, adaptation_type, adapted_behavior)
adapted_behavior
false ->
# No adaptation needed
request
end
end
defp sense_environment(sensors) do
%{
cpu_load: get_cpu_load(),
memory_usage: get_memory_usage(),
network_latency: get_network_latency(),
error_rate: get_error_rate(),
throughput: get_throughput()
}
end
defp needs_adaptation?(environment, rules) do
Enum.find_value(rules, false, fn rule ->
if rule.condition_fn.(environment) do
{true, rule.adaptation_type}
end
end)
end
defp apply_adaptation(request, adaptation_type, safety_bounds) do
case adaptation_type do
:reduce_complexity ->
# Simplify request to reduce load
simplify_request(request, safety_bounds.complexity_reduction)
:increase_timeout ->
# Increase timeout for high latency environments
adjust_timeout(request, safety_bounds.max_timeout)
:enable_caching ->
# Enable caching for repeated requests
enable_request_caching(request)
:prioritize_quality ->
# Prioritize quality over speed
adjust_quality_speed_tradeoff(request, :quality)
end
end
def rollback_adaptation(adaptation_state, adaptation_id) do
case find_adaptation(adaptation_state.adaptation_history, adaptation_id) do
{:ok, adaptation} ->
# Rollback to previous behavior
revert_adaptation(adaptation)
# Remove from history
new_history = remove_adaptation(adaptation_state.adaptation_history, adaptation_id)
%{adaptation_state | adaptation_history: new_history}
{:error, :not_found} ->
{:error, :adaptation_not_found}
end
end
end
Layer 4: Emergent Intelligence (Multi-Agent Coordination)
defmodule Nexus.Intelligence.Emergent do
@moduledoc """
Emergence layer: Multi-agent coordination and swarm behaviors.
Characteristics:
- Optional and strictly monitored
- Safety bounds and fallback mechanisms
- Deterministic emergence for testing
- Performance monitoring and rollback
"""
defstruct [
:swarm_coordinator,
:emergence_patterns,
:coordination_rules,
:safety_monitor,
:fallback_strategy
]
def new() do
%__MODULE__{
swarm_coordinator: Nexus.Swarm.Coordinator.new(),
emergence_patterns: [],
coordination_rules: default_coordination_rules(),
safety_monitor: Nexus.Safety.Monitor.new(),
fallback_strategy: :immediate_fallback
}
end
def coordinate_agents(agents, coordination_goal, emergence_state) do
# Check safety bounds before enabling emergence
case Nexus.Safety.Monitor.check_safety(emergence_state.safety_monitor, agents) do
:safe ->
# Enable emergent coordination
enable_swarm_coordination(agents, coordination_goal, emergence_state)
{:unsafe, reason} ->
Logger.warn("Emergence disabled due to safety: #{inspect(reason)}")
# Fall back to simple coordination
simple_coordination(agents, coordination_goal)
end
end
defp enable_swarm_coordination(agents, coordination_goal, emergence_state) do
# Initialize swarm with safety monitoring
swarm = Nexus.Swarm.Coordinator.initialize_swarm(
emergence_state.swarm_coordinator,
agents,
coordination_goal
)
# Start emergence with monitoring
Task.async(fn ->
monitor_emergence(swarm, emergence_state.safety_monitor)
end)
# Execute coordinated behavior
execute_swarm_behavior(swarm, coordination_goal)
end
defp monitor_emergence(swarm, safety_monitor) do
Stream.interval(100) # Monitor every 100ms
|> Enum.reduce_while(swarm, fn _tick, current_swarm ->
case Nexus.Safety.Monitor.check_swarm_health(safety_monitor, current_swarm) do
:healthy ->
{:cont, current_swarm}
{:degraded, metrics} ->
Logger.warn("Swarm performance degraded: #{inspect(metrics)}")
{:cont, current_swarm}
{:critical, reason} ->
Logger.error("Swarm critical failure: #{inspect(reason)}")
emergency_fallback(current_swarm)
{:halt, :emergency_stopped}
end
end)
end
defp emergency_fallback(swarm) do
# Immediately disable emergent behaviors
Nexus.Swarm.Coordinator.emergency_stop(swarm)
# Revert all agents to adaptive intelligence level
Enum.each(swarm.agents, fn agent ->
Nexus.Agent.set_intelligence_level(agent.id, :adaptive)
end)
# Notify operators
Nexus.Alerts.emergency_alert("Swarm emergency fallback triggered")
end
end
Coordination Simplicity
Proven Patterns Over Exotic Algorithms
defmodule Nexus.Coordination.Proven do
@moduledoc """
Battle-tested coordination patterns with known characteristics.
Philosophy: Use well-understood algorithms with known performance
characteristics rather than exotic quantum-inspired patterns.
"""
# Vector clocks for causal consistency
def coordinate_with_causality(agents, operations) do
vector_clock = VectorClock.new()
Enum.reduce(operations, {[], vector_clock}, fn operation, {results, clock} ->
# Update clock for this operation
new_clock = VectorClock.tick(clock, node())
# Execute operation with causal ordering
result = execute_with_causality(operation, new_clock)
{[result | results], new_clock}
end)
end
# Gossip protocol for eventual consistency
def synchronize_state(nodes, state) do
# Use proven gossip algorithm with exponential convergence
gossip_rounds = :math.ceil(:math.log2(length(nodes))) + 3
Enum.reduce(1..gossip_rounds, state, fn _round, current_state ->
# Each node exchanges state with random subset
exchange_count = min(3, length(nodes) - 1) # Proven optimal
Enum.reduce(1..exchange_count, current_state, fn _exchange, acc_state ->
partner_node = Enum.random(nodes -- [node()])
exchange_state_with_node(acc_state, partner_node)
end)
end)
end
# Raft consensus for strong consistency
def coordinate_with_consensus(nodes, operation) do
case select_leader(nodes) do
{:ok, leader} when leader == node() ->
# We are leader, coordinate the operation
coordinate_as_leader(nodes, operation)
{:ok, leader} ->
# Forward to leader
:rpc.call(leader, __MODULE__, :coordinate_as_leader, [nodes, operation])
{:error, :no_leader} ->
# Trigger leader election
elect_leader(nodes)
coordinate_with_consensus(nodes, operation)
end
end
# Simple load balancing with proven algorithms
def balance_load(agents, requests) do
case get_balancing_strategy() do
:round_robin ->
round_robin_balance(agents, requests)
:least_connections ->
least_connections_balance(agents, requests)
:weighted_response_time ->
weighted_response_time_balance(agents, requests)
:resource_aware ->
resource_aware_balance(agents, requests)
end
end
defp round_robin_balance(agents, requests) do
# Simple, predictable round-robin
agent_count = length(agents)
requests
|> Enum.with_index()
|> Enum.map(fn {request, index} ->
agent = Enum.at(agents, rem(index, agent_count))
{agent, request}
end)
end
defp least_connections_balance(agents, requests) do
# Assign to agent with fewest active connections
Enum.map(requests, fn request ->
agent = Enum.min_by(agents, &get_connection_count/1)
{agent, request}
end)
end
end
Gradual Enhancement Strategy
defmodule Nexus.Coordination.Enhancement do
@moduledoc """
Gradual enhancement of coordination capabilities.
Start with simple patterns, add sophistication incrementally.
"""
@enhancement_levels [
:basic, # Round-robin, simple routing
:optimized, # Load-aware routing, connection pooling
:intelligent, # ML-based optimization, predictive routing
:adaptive, # Dynamic adaptation to changing conditions
:emergent # Multi-agent coordination (optional)
]
def coordinate(agents, goal, enhancement_level \\ :basic) do
case enhancement_level do
:basic ->
basic_coordination(agents, goal)
:optimized ->
optimized_coordination(agents, goal)
:intelligent ->
intelligent_coordination(agents, goal)
:adaptive ->
adaptive_coordination(agents, goal)
:emergent ->
emergent_coordination(agents, goal)
end
end
defp basic_coordination(agents, goal) do
# Simple, reliable coordination
case goal.type do
:distribute_work ->
Nexus.Coordination.Proven.round_robin_balance(agents, goal.work_items)
:synchronize_state ->
Nexus.Coordination.Proven.synchronize_state(agents, goal.state)
:leader_election ->
Nexus.Coordination.Proven.elect_leader(agents)
end
end
defp optimized_coordination(agents, goal) do
# Add performance optimizations
optimized_agents = optimize_agent_selection(agents, goal)
case goal.type do
:distribute_work ->
Nexus.Coordination.Proven.least_connections_balance(optimized_agents, goal.work_items)
:synchronize_state ->
# Use optimized gossip with network topology awareness
topology_aware_gossip(optimized_agents, goal.state)
:leader_election ->
# Use performance-aware leader election
performance_aware_election(optimized_agents)
end
end
defp intelligent_coordination(agents, goal) do
# Add machine learning for optimization
ml_model = get_coordination_model(goal.type)
case Nexus.ML.predict_optimal_coordination(ml_model, agents, goal) do
{:ok, coordination_plan} ->
execute_coordination_plan(coordination_plan)
{:error, :insufficient_data} ->
# Fall back to optimized coordination
optimized_coordination(agents, goal)
end
end
defp adaptive_coordination(agents, goal) do
# Add dynamic adaptation based on conditions
conditions = assess_coordination_conditions(agents, goal)
adaptation_strategy = select_adaptation_strategy(conditions)
case adaptation_strategy do
:simple -> basic_coordination(agents, goal)
:optimized -> optimized_coordination(agents, goal)
:intelligent -> intelligent_coordination(agents, goal)
:custom -> custom_adaptive_coordination(agents, goal, conditions)
end
end
defp emergent_coordination(agents, goal) do
# Optional emergent behaviors with safety monitoring
case Nexus.Intelligence.Emergent.coordinate_agents(agents, goal, get_emergence_state()) do
{:ok, result} -> result
{:fallback, reason} ->
Logger.warn("Emergent coordination fallback: #{inspect(reason)}")
adaptive_coordination(agents, goal)
end
end
end
Performance-First Implementation
Microsecond-Level Optimizations
defmodule Nexus.Performance.Microsecond do
@moduledoc """
Microsecond-level performance optimizations using proven techniques.
Target performance:
- Local message routing: <1μs
- Remote message routing: <100μs
- State lookup: <1μs
- Load balancing decision: <10μs
"""
@compile {:inline, [route_local: 2, lookup_route: 1]}
def setup_high_performance_infrastructure() do
# Pre-compile routing tables
compile_routing_tables()
# Set up connection pools
setup_connection_pools()
# Configure NUMA-aware placement
configure_numa_placement()
# Pre-warm critical paths
prewarm_critical_paths()
end
defp compile_routing_tables() do
# Use persistent_term for ultra-fast access
nodes = [node() | Node.list()]
routing_table = Enum.reduce(nodes, %{}, fn node, acc ->
Map.put(acc, node, setup_node_routes(node))
end)
:persistent_term.put({:nexus, :routing_table}, routing_table)
# Create ETS table for agent-to-node mapping
:ets.new(:nexus_agent_routes, [
:named_table,
:public,
:set,
{:read_concurrency, true},
{:write_concurrency, true}
])
end
def route_message_ultra_fast(agent_id, message) do
# <1μs for local, <100μs for remote
case lookup_route(agent_id) do
{:local, pid} ->
# Direct local send - <1μs
GenServer.cast(pid, message)
{:remote, node, pid} ->
# Pooled remote send - <100μs
pooled_remote_cast(node, pid, message)
:not_found ->
# Fallback to registry lookup
route_via_registry(agent_id, message)
end
end
defp lookup_route(agent_id) do
# ETS lookup - <1μs
case :ets.lookup(:nexus_agent_routes, agent_id) do
[{^agent_id, :local, pid}] -> {:local, pid}
[{^agent_id, :remote, node, pid}] -> {:remote, node, pid}
[] -> :not_found
end
end
defp pooled_remote_cast(node, pid, message) do
# Use pre-established connection pool
pool_name = :"nexus_pool_#{node}"
:poolboy.transaction(pool_name, fn worker ->
GenServer.cast({pid, node}, message)
end)
end
def ultra_fast_load_balance(agents, requests) do
# <10μs load balancing decision
agent_count = length(agents)
counter = :counters.get(:persistent_term.get(:nexus_lb_counter), 1)
Enum.map(requests, fn request ->
# Simple but fast round-robin
agent_index = rem(counter, agent_count)
agent = :lists.nth(agent_index + 1, agents) # 1-indexed
:counters.add(:persistent_term.get(:nexus_lb_counter), 1, 1)
{agent, request}
end)
end
end
Memory and CPU Optimization
defmodule Nexus.Performance.Optimization do
@moduledoc """
Memory and CPU optimizations for high-scale deployments.
Targets:
- <1KB memory per idle agent
- <1% CPU per 1000 active agents
- Linear scaling to 1M+ agents per node
"""
def optimize_memory_usage() do
# Use binary protocols for state storage
configure_binary_protocols()
# Implement memory pooling
setup_memory_pools()
# Configure garbage collection
optimize_garbage_collection()
# Use memory mapping for large state
setup_memory_mapping()
end
defp configure_binary_protocols() do
# Use efficient binary serialization
Application.put_env(:nexus, :serialization, :erlang_binary)
Application.put_env(:nexus, :compression, :lz4)
# Pre-compile serialization functions
compile_serialization_functions()
end
defp setup_memory_pools() do
# Pre-allocate memory pools for common data structures
:ets.new(:nexus_message_pool, [
:named_table,
:public,
:bag,
{:write_concurrency, true}
])
# Pre-populate with common message types
Enum.each(1..1000, fn _ ->
:ets.insert(:nexus_message_pool, {get_pooled_message()})
end)
end
defp optimize_garbage_collection() do
# Configure GC for high-throughput scenarios
:erlang.system_flag(:fullsweep_after, 0) # Disable full sweep
:erlang.system_flag(:min_heap_size, 8192) # Larger initial heap
:erlang.system_flag(:min_bin_vheap_size, 8192) # Larger binary heap
end
def optimize_cpu_usage() do
# Configure scheduler optimization
configure_scheduler_optimization()
# Set up CPU affinity
setup_cpu_affinity()
# Configure dirty schedulers
configure_dirty_schedulers()
end
defp configure_scheduler_optimization() do
# Balance CPU usage across schedulers
scheduler_count = :erlang.system_info(:logical_processors)
# Configure scheduler bind type
:erlang.system_flag(:scheduler_bind_type, :thread_spread)
# Set CPU topology
case detect_cpu_topology() do
{:ok, topology} ->
:erlang.system_flag(:cpu_topology, topology)
_ ->
:ok
end
end
def measure_and_optimize_performance() do
# Continuous performance measurement and optimization
spawn_link(fn -> performance_optimization_loop() end)
end
defp performance_optimization_loop() do
Process.sleep(5000) # Measure every 5 seconds
# Collect performance metrics
metrics = collect_performance_metrics()
# Optimize based on current performance
optimize_based_on_metrics(metrics)
performance_optimization_loop()
end
defp collect_performance_metrics() do
%{
memory_usage: :erlang.memory(),
scheduler_utilization: :scheduler.utilization(1000),
process_count: :erlang.system_info(:process_count),
message_queue_lengths: get_message_queue_lengths(),
gc_statistics: get_gc_statistics()
}
end
defp optimize_based_on_metrics(metrics) do
cond do
high_memory_usage?(metrics) ->
trigger_memory_optimization()
high_cpu_usage?(metrics) ->
trigger_cpu_optimization()
unbalanced_load?(metrics) ->
trigger_load_rebalancing()
true ->
:ok
end
end
end
Testable Emergence
Deterministic Emergence for Testing
defmodule Nexus.Testing.DeterministicEmergence do
@moduledoc """
Deterministic emergence patterns for comprehensive testing.
Features:
- Reproducible emergent behaviors
- Parameterized emergence scenarios
- Automated emergence verification
- Chaos testing integration
"""
defstruct [
:scenario_id,
:agent_configurations,
:interaction_rules,
:environment_parameters,
:expected_outcomes,
:verification_functions
]
def create_test_scenario(scenario_config) do
%__MODULE__{
scenario_id: scenario_config.id,
agent_configurations: scenario_config.agents,
interaction_rules: scenario_config.rules,
environment_parameters: scenario_config.environment,
expected_outcomes: scenario_config.expected,
verification_functions: scenario_config.verification
}
end
def run_deterministic_emergence(scenario) do
# Set up deterministic environment
test_env = setup_deterministic_environment(scenario)
# Create agents with fixed random seeds
agents = create_deterministic_agents(scenario.agent_configurations, test_env)
# Run emergence simulation
emergence_result = simulate_emergence(agents, scenario.interaction_rules, test_env)
# Verify outcomes
verification_result = verify_emergence_outcomes(emergence_result, scenario)
# Clean up test environment
cleanup_test_environment(test_env)
{emergence_result, verification_result}
end
defp setup_deterministic_environment(scenario) do
# Create isolated test environment with fixed parameters
test_cluster = start_test_cluster(scenario.environment_parameters.node_count)
# Set deterministic random seeds
Enum.each(test_cluster.nodes, fn node ->
:rpc.call(node, :rand, :seed, [{:exsss, scenario.environment_parameters.random_seed}])
end)
# Configure network conditions
configure_test_network(test_cluster, scenario.environment_parameters.network)
test_cluster
end
defp create_deterministic_agents(agent_configs, test_env) do
Enum.map(agent_configs, fn config ->
# Create agent with deterministic configuration
node = select_deterministic_node(test_env, config.placement_seed)
agent_spec = %{
id: config.id,
behavior: config.behavior,
initial_state: config.initial_state,
intelligence_level: config.intelligence_level,
deterministic_seed: config.random_seed
}
{:ok, agent} = :rpc.call(node, Nexus.Agent, :start_link, [agent_spec])
%{id: config.id, pid: agent, node: node, config: config}
end)
end
defp simulate_emergence(agents, interaction_rules, test_env) do
# Run deterministic emergence simulation
simulation_state = initialize_simulation_state(agents, interaction_rules)
# Execute simulation steps
final_state = Enum.reduce(1..test_env.simulation_steps, simulation_state, fn step, state ->
execute_simulation_step(state, step, interaction_rules)
end)
collect_emergence_data(final_state)
end
defp verify_emergence_outcomes(emergence_result, scenario) do
Enum.map(scenario.verification_functions, fn verification_fn ->
try do
case verification_fn.(emergence_result, scenario.expected_outcomes) do
:ok -> {:passed, verification_fn}
{:error, reason} -> {:failed, verification_fn, reason}
end
rescue
error -> {:error, verification_fn, error}
end
end)
end
end
Chaos Engineering Integration
defmodule Nexus.Testing.ChaosEngineering do
@moduledoc """
Chaos engineering for testing emergence under failure conditions.
Failure scenarios:
- Node failures and network partitions
- Message delays and corruption
- Resource exhaustion
- Byzantine agent behavior
"""
def chaos_test_emergence(scenario, chaos_config) do
# Start normal emergence scenario
{agents, test_env} = setup_emergence_test(scenario)
# Inject chaos according to configuration
chaos_injector = start_chaos_injection(chaos_config, test_env)
# Monitor emergence behavior under chaos
monitor_task = Task.async(fn ->
monitor_emergence_under_chaos(agents, scenario.expected_outcomes)
end)
# Run test with chaos
test_result = run_emergence_with_chaos(agents, scenario, chaos_injector)
# Collect monitoring results
monitoring_result = Task.await(monitor_task, 60_000)
# Stop chaos injection
stop_chaos_injection(chaos_injector)
{test_result, monitoring_result}
end
defp start_chaos_injection(chaos_config, test_env) do
# Schedule various failure injections
chaos_schedule = build_chaos_schedule(chaos_config)
spawn_link(fn ->
execute_chaos_schedule(chaos_schedule, test_env)
end)
end
defp execute_chaos_schedule(schedule, test_env) do
Enum.each(schedule, fn {delay, chaos_action} ->
Process.sleep(delay)
inject_chaos(chaos_action, test_env)
end)
end
defp inject_chaos(chaos_action, test_env) do
case chaos_action.type do
:kill_node ->
# Kill random node
target_node = Enum.random(test_env.nodes)
Logger.info("Chaos: Killing node #{target_node}")
kill_test_node(target_node)
:partition_network ->
# Create network partition
partition_spec = chaos_action.partition_spec
Logger.info("Chaos: Creating network partition #{inspect(partition_spec)}")
create_network_partition(test_env.nodes, partition_spec)
:delay_messages ->
# Inject message delays
delay_ms = chaos_action.delay_ms
Logger.info("Chaos: Injecting #{delay_ms}ms message delays")
inject_message_delays(test_env, delay_ms)
:corrupt_messages ->
# Corrupt random messages
corruption_rate = chaos_action.corruption_rate
Logger.info("Chaos: Corrupting messages at #{corruption_rate * 100}% rate")
inject_message_corruption(test_env, corruption_rate)
:exhaust_resources ->
# Cause resource exhaustion
resource_type = chaos_action.resource_type
Logger.info("Chaos: Exhausting #{resource_type} resources")
exhaust_resources(test_env, resource_type)
:byzantine_agent ->
# Make agent behave maliciously
target_agent = chaos_action.target_agent
behavior = chaos_action.byzantine_behavior
Logger.info("Chaos: Making agent #{target_agent} byzantine")
inject_byzantine_behavior(target_agent, behavior)
end
end
defp monitor_emergence_under_chaos(agents, expected_outcomes) do
# Monitor emergence metrics during chaos
monitoring_data = %{
coordination_success_rate: [],
response_times: [],
error_rates: [],
adaptation_responses: [],
fallback_activations: []
}
Stream.interval(1000) # Monitor every second
|> Enum.reduce_while(monitoring_data, fn _tick, data ->
current_metrics = collect_emergence_metrics(agents)
updated_data = %{
coordination_success_rate: [current_metrics.coordination_success | data.coordination_success_rate],
response_times: [current_metrics.avg_response_time | data.response_times],
error_rates: [current_metrics.error_rate | data.error_rates],
adaptation_responses: [current_metrics.adaptations | data.adaptation_responses],
fallback_activations: [current_metrics.fallbacks | data.fallback_activations]
}
# Check if test should continue
if should_continue_monitoring?(updated_data, expected_outcomes) do
{:cont, updated_data}
else
{:halt, updated_data}
end
end)
end
end
Production Readiness
Comprehensive Monitoring
defmodule Nexus.Production.Monitoring do
@moduledoc """
Production-grade monitoring and alerting for distributed agentic systems.
Features:
- Multi-dimensional metrics collection
- Predictive alerting
- Automatic performance regression detection
- Distributed tracing across agent interactions
"""
use GenServer
def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(_opts) do
# Set up comprehensive telemetry
setup_telemetry_handlers()
# Initialize metrics storage
setup_metrics_storage()
# Start monitoring loops
start_monitoring_loops()
{:ok, %{}}
end
defp setup_telemetry_handlers() do
# Attach handlers for all critical events
events = [
# Agent events
[:nexus, :agent, :started],
[:nexus, :agent, :stopped],
[:nexus, :agent, :message_processed],
[:nexus, :agent, :state_updated],
[:nexus, :agent, :intelligence_adapted],
# Coordination events
[:nexus, :coordination, :initiated],
[:nexus, :coordination, :completed],
[:nexus, :coordination, :failed],
[:nexus, :coordination, :fallback_triggered],
# Performance events
[:nexus, :performance, :latency_measured],
[:nexus, :performance, :throughput_calculated],
[:nexus, :performance, :resource_utilization],
# Emergence events
[:nexus, :emergence, :behavior_detected],
[:nexus, :emergence, :adaptation_successful],
[:nexus, :emergence, :safety_boundary_hit],
[:nexus, :emergence, :emergency_fallback]
]
Enum.each(events, fn event ->
:telemetry.attach(event, event, &handle_telemetry_event/4, %{})
end)
end
def handle_telemetry_event(event, measurements, metadata, _config) do
# Store metrics in time series database
store_metric(event, measurements, metadata)
# Check alerting rules
check_alerting_rules(event, measurements, metadata)
# Update real-time dashboards
update_dashboards(event, measurements, metadata)
# Feed data to ML models for prediction
update_prediction_models(event, measurements, metadata)
end
defp check_alerting_rules(event, measurements, metadata) do
# Check various alerting conditions
case event do
[:nexus, :performance, :latency_measured] ->
if measurements.latency > get_latency_threshold(metadata.operation) do
trigger_alert(:high_latency, measurements, metadata)
end
[:nexus, :coordination, :failed] ->
failure_rate = calculate_recent_failure_rate(metadata.coordination_type)
if failure_rate > 0.1 do # 10% failure rate threshold
trigger_alert(:high_failure_rate, %{failure_rate: failure_rate}, metadata)
end
[:nexus, :emergence, :safety_boundary_hit] ->
# Always alert on safety boundary hits
trigger_alert(:emergence_safety_boundary, measurements, metadata)
[:nexus, :emergence, :emergency_fallback] ->
# Critical alert for emergency fallbacks
trigger_critical_alert(:emergence_emergency_fallback, measurements, metadata)
end
end
defp trigger_alert(alert_type, measurements, metadata) do
alert = %{
type: alert_type,
severity: get_alert_severity(alert_type),
timestamp: DateTime.utc_now(),
measurements: measurements,
metadata: metadata,
cluster_state: get_cluster_state(),
recommended_actions: get_recommended_actions(alert_type)
}
# Send to alerting systems
send_to_alerting_systems(alert)
# Log structured alert
Logger.warn("Alert triggered", alert: alert)
end
defp update_prediction_models(event, measurements, metadata) do
# Feed data to ML models for predictive alerting
case event do
[:nexus, :performance, :latency_measured] ->
Nexus.ML.LatencyPredictor.update(measurements.latency, metadata)
[:nexus, :performance, :resource_utilization] ->
Nexus.ML.ResourcePredictor.update(measurements, metadata)
[:nexus, :coordination, :completed] ->
Nexus.ML.CoordinationPredictor.update(measurements.duration, metadata)
end
end
end
Operational Excellence
defmodule Nexus.Production.Operations do
@moduledoc """
Operational excellence features for production deployments.
Features:
- Zero-downtime deployments
- Automated capacity management
- Performance optimization
- Incident response automation
"""
def enable_zero_downtime_deployment() do
# Implement blue-green deployment for agent systems
current_version = get_current_version()
new_version = get_deployment_version()
Logger.info("Starting zero-downtime deployment: #{current_version} -> #{new_version}")
# Phase 1: Deploy new version alongside current
deploy_new_version_parallel(new_version)
# Phase 2: Gradually migrate agents to new version
migrate_agents_gradually(current_version, new_version)
# Phase 3: Verify new version health
case verify_deployment_health(new_version) do
:healthy ->
# Phase 4: Complete migration and cleanup old version
complete_migration(current_version, new_version)
Logger.info("Zero-downtime deployment completed successfully")
{:unhealthy, reason} ->
# Rollback to previous version
Logger.error("Deployment health check failed: #{inspect(reason)}")
rollback_deployment(current_version, new_version)
end
end
defp migrate_agents_gradually(old_version, new_version) do
# Get all active agents
agents = Nexus.Registry.Distributed.list_agents()
# Migrate in batches to minimize impact
batch_size = calculate_migration_batch_size(length(agents))
agents
|> Enum.chunk_every(batch_size)
|> Enum.each(fn batch ->
# Migrate batch of agents
Enum.each(batch, fn agent_id ->
migrate_agent_to_new_version(agent_id, new_version)
end)
# Wait between batches for system stabilization
Process.sleep(get_migration_delay())
# Verify batch migration success
verify_batch_migration(batch, new_version)
end)
end
def enable_automated_capacity_management() do
# Start capacity monitoring and management
spawn_link(fn -> capacity_management_loop() end)
end
defp capacity_management_loop() do
Process.sleep(30_000) # Check every 30 seconds
# Collect cluster metrics
cluster_metrics = collect_cluster_capacity_metrics()
# Determine if scaling is needed
scaling_decision = determine_scaling_need(cluster_metrics)
case scaling_decision do
{:scale_out, reason} ->
Logger.info("Auto-scaling out: #{inspect(reason)}")
auto_scale_out(reason, cluster_metrics)
{:scale_in, reason} ->
Logger.info("Auto-scaling in: #{inspect(reason)}")
auto_scale_in(reason, cluster_metrics)
:no_action ->
:ok
end
capacity_management_loop()
end
defp determine_scaling_need(metrics) do
cond do
metrics.cpu_utilization > 0.8 ->
{:scale_out, :high_cpu}
metrics.memory_utilization > 0.85 ->
{:scale_out, :high_memory}
metrics.agent_queue_depth > 1000 ->
{:scale_out, :high_queue_depth}
metrics.response_time_p95 > 500 ->
{:scale_out, :high_latency}
metrics.cpu_utilization < 0.3 and metrics.memory_utilization < 0.4 ->
{:scale_in, :low_utilization}
true ->
:no_action
end
end
def enable_automated_incident_response() do
# Set up automated incident response
incident_handlers = [
{Nexus.Incidents.HighLatencyHandler, []},
{Nexus.Incidents.NodeFailureHandler, []},
{Nexus.Incidents.MemoryLeakHandler, []},
{Nexus.Incidents.NetworkPartitionHandler, []}
]
Enum.each(incident_handlers, fn {handler_module, opts} ->
spawn_link(fn ->
handler_module.start_monitoring(opts)
end)
end)
end
end
<function_calls>