Phoenix: Distributed Agent Architecture
Date: 2025-07-12
Version: 1.0
Series: Distributed Agent System - Part 1 (Foundation)
Executive Summary
This document presents Phoenix, a novel distributed-first agent architecture built from first principles for the BEAM ecosystem. Phoenix learns from AgentJido’s concepts while embracing distributed systems theory, modern CRDT research, and BEAM/OTP distribution capabilities to create a horizontally scalable, partition-tolerant agent platform.
Key Innovation: Phoenix treats agents as distributed computational entities rather than local processes, enabling seamless operation across cluster boundaries with strong consistency guarantees where needed and eventual consistency where performance matters.
Table of Contents
- Foundational Principles
- Core Architecture Overview
- Agent Model
- Distribution Primitives
- Communication Infrastructure
- State Management Strategy
- Fault Tolerance Design
- Performance and Scalability
Foundational Principles
1. Distribution-First Design 🌐
Principle: Every component is designed assuming distributed operation from day one.
# Traditional approach: local-first with distribution bolted on
agent = Agent.start_local(spec)
Agent.register_locally(agent)
# Later: add distribution layer
# Phoenix approach: distribution-native
agent = Phoenix.Agent.spawn(spec, placement: :optimal)
# ↑ Agent placement, registration, and operation are inherently distributed
Implications:
- No local/remote dichotomy in API design
- Network partitions and latency are first-class concerns
- All operations designed for async-first patterns
- CAP theorem tradeoffs made explicit at API level
2. Eventual Consistency by Default, Strong When Needed ⚖️
Principle: Optimize for availability and partition tolerance, with strong consistency as an opt-in choice.
# Default: eventual consistency for performance
Phoenix.Agent.update(agent_id, fn state -> new_state end)
# Explicit: strong consistency when required
Phoenix.Agent.update(agent_id, fn state -> new_state end,
consistency: :strong,
quorum: :majority
)
Rationale: Most agent operations (logging, metrics, state updates) can tolerate eventual consistency, while critical operations (financial transactions, safety-critical decisions) can opt into strong consistency with explicit performance costs.
3. CRDT-Native State Management 🔄
Principle: Leverage conflict-free replicated data types to eliminate coordination overhead where possible.
# Agent state composed of CRDT primitives
defmodule AgentState do
use Phoenix.CRDT.Composite
crdt_field :counters, Phoenix.CRDT.GCounter
crdt_field :flags, Phoenix.CRDT.GSet
crdt_field :config, Phoenix.CRDT.LWWMap
crdt_field :logs, Phoenix.CRDT.OpBasedList
end
Benefits:
- Automatic conflict resolution
- No coordination required for updates
- Natural replication across cluster
- Mathematical guarantees of convergence
4. Observable and Debuggable by Design 🔍
Principle: Distributed systems complexity requires comprehensive observability built into the architecture.
# Every operation produces structured telemetry
Phoenix.Agent.execute(agent_id, action, params)
# ↑ Automatically emits:
# - Distributed trace span
# - Performance metrics
# - State change events
# - Error correlation data
Features:
- Distributed tracing across agent interactions
- Causal consistency tracking
- Performance regression detection
- Automatic error correlation
5. Fault Isolation and Graceful Degradation 🛡️
Principle: Component failures should not cascade, and system should continue operating in degraded mode.
# Circuit breaker and bulkhead patterns built-in
Phoenix.Agent.call(agent_id, request,
timeout: 5000,
circuit_breaker: :default,
fallback: &fallback_handler/1
)
Mechanisms:
- Circuit breakers for cascading failure prevention
- Bulkhead isolation between agent groups
- Graceful degradation strategies
- Automatic recovery protocols
Core Architecture Overview
System Components
Phoenix Distributed Agent System
├── Control Plane
│ ├── Cluster Coordinator (consensus, topology)
│ ├── Agent Scheduler (placement, load balancing)
│ └── Health Monitor (failure detection, recovery)
├── Data Plane
│ ├── Agent Runtime (execution, lifecycle)
│ ├── Message Bus (communication, routing)
│ └── State Store (CRDT-based, replicated)
└── Observability Plane
├── Telemetry Collector (metrics, traces)
├── Event Store (audit, replay)
└── Debug Interface (introspection, profiling)
Distribution Architecture
# Phoenix cluster topology
defmodule Phoenix.Cluster do
@moduledoc """
Multi-layer cluster architecture:
Layer 1: Physical Nodes (BEAM VMs)
Layer 2: Logical Regions (availability zones, data centers)
Layer 3: Agent Placement Groups (resource pools, isolation boundaries)
Layer 4: Agent Instances (individual computational entities)
"""
defstruct [
:topology, # Network topology graph
:regions, # Logical groupings for placement
:placement_groups, # Resource and isolation boundaries
:health_status, # Overall cluster health
:consensus_state # Raft-based coordination state
]
end
Key Architectural Decisions
1. Hybrid Consensus Model
# Control plane: Strong consistency via Raft
Phoenix.Consensus.propose_agent_placement(agent_spec)
# Data plane: Eventual consistency via CRDTs
Phoenix.Agent.State.update_counter(agent_id, :requests, 1)
Rationale: Control plane operations (agent placement, cluster membership) require strong consistency, while data plane operations (state updates, metrics) can use eventual consistency for performance.
2. Three-Tier Agent Identity
@type agent_identity :: {
global_id :: binary(), # Globally unique identifier
placement_key :: term(), # For consistent hashing
instance_ref :: reference() # Local process reference
}
Benefits:
- Global uniqueness across cluster
- Deterministic placement via consistent hashing
- Local optimization when possible
3. Pluggable Transport Layer
defmodule Phoenix.Transport do
@moduledoc """
Pluggable transport supporting multiple protocols:
- Distributed Erlang (dev/test)
- Partisan (production clusters)
- HTTP/2 (cross-DC, hybrid clouds)
- QUIC (low-latency, mobile)
"""
@callback send_message(target, message, opts) :: :ok | {:error, term()}
@callback broadcast_message(targets, message, opts) :: :ok | {:error, term()}
end
Agent Model
Agent as Distributed Computational Entity
Unlike traditional single-process agents, Phoenix agents are distributed computational entities composed of multiple components across the cluster.
defmodule Phoenix.Agent do
@moduledoc """
Distributed agent implementation.
An agent consists of:
- Identity: Global unique identifier and placement metadata
- State: CRDT-based replicated state across nodes
- Behavior: Execution logic (actions, reactions, goals)
- Lifecycle: Distributed supervision and migration
- Communication: Message passing and coordination
"""
defstruct [
:identity, # Global agent identity
:state, # CRDT-based distributed state
:behavior_spec, # Behavior definition and capabilities
:placement, # Current placement in cluster
:health, # Health and performance metrics
:comm_channels # Communication endpoints
]
end
Agent Lifecycle States
defmodule Phoenix.Agent.Lifecycle do
@type state ::
:initializing | # Agent being created, state loading
:active | # Normal operation
:migrating | # Moving between nodes
:degraded | # Operating with reduced capabilities
:paused | # Temporarily suspended
:terminating | # Shutting down gracefully
:failed # Unrecoverable error state
end
Behavior Definition
defmodule Phoenix.Agent.Behavior do
@moduledoc """
Agent behavior specification combining:
- Actions: Capabilities the agent can execute
- Reactions: Responses to events and messages
- Goals: Long-term objectives and optimization targets
- Constraints: Resource limits and operational boundaries
"""
defstruct [
:actions, # Map of action_name -> action_module
:reactions, # Event pattern -> reaction function
:goals, # List of goal specifications
:constraints, # Resource and operational limits
:coordination # Inter-agent coordination protocols
]
defmacro __using__(opts) do
quote do
@behaviour Phoenix.Agent.Behavior
# Define agent capabilities
def actions, do: %{}
def reactions, do: %{}
def goals, do: []
def constraints, do: %{}
# Allow overriding
defoverridable [actions: 0, reactions: 0, goals: 0, constraints: 0]
end
end
end
Distribution Primitives
1. Distributed Registry
defmodule Phoenix.Registry do
@moduledoc """
Cluster-wide agent registry using consistent hashing and CRDT replication.
Features:
- O(1) agent lookup via consistent hashing
- Automatic replication for fault tolerance
- Dynamic rebalancing on topology changes
- Conflict-free concurrent registration
"""
use Phoenix.CRDT.Actor
@crdt_state Phoenix.CRDT.LWWMap.new()
def register_agent(agent_id, agent_spec) do
# Determine optimal placement
placement = Phoenix.Scheduler.determine_placement(agent_spec)
# Register in CRDT registry
registry_entry = %{
agent_id: agent_id,
placement: placement,
capabilities: agent_spec.capabilities,
registered_at: Phoenix.VectorClock.now(),
health_status: :initializing
}
Phoenix.CRDT.LWWMap.put(@crdt_state, agent_id, registry_entry)
end
def locate_agent(agent_id) do
case Phoenix.CRDT.LWWMap.get(@crdt_state, agent_id) do
{:ok, entry} ->
case entry.placement do
{:local, node} when node == node() ->
{:ok, :local, get_local_pid(agent_id)}
{:remote, node} ->
{:ok, :remote, node, get_remote_ref(node, agent_id)}
{:migrating, from_node, to_node} ->
{:ok, :migrating, from_node, to_node}
end
:error -> {:error, :not_found}
end
end
end
2. Consistent Hash Ring
defmodule Phoenix.HashRing do
@moduledoc """
Consistent hashing for deterministic agent placement.
Features:
- Configurable virtual nodes for load balancing
- Minimal reshuffling on topology changes
- Resource-aware placement (CPU, memory, network)
- Preference-based constraints (co-location, anti-affinity)
"""
defstruct [
:ring, # Ordered map of hash -> node
:virtual_nodes, # Virtual nodes per physical node
:node_weights, # Resource-based weighting
:constraints # Placement constraints
]
def place_agent(agent_spec, ring) do
# Hash agent ID with placement preferences
base_hash = :erlang.phash2(agent_spec.id)
preference_hash = hash_preferences(agent_spec.placement_preferences)
final_hash = combine_hashes(base_hash, preference_hash)
# Find suitable nodes considering constraints
candidate_nodes = find_candidate_nodes(ring, final_hash)
# Select best node based on current load and constraints
Phoenix.Scheduler.select_optimal_node(candidate_nodes, agent_spec)
end
end
3. Message Routing
defmodule Phoenix.MessageRouter do
@moduledoc """
Intelligent message routing with delivery guarantees.
Routing strategies:
- Direct: Point-to-point delivery
- Multicast: Efficient group communication
- Gossip: Eventually consistent broadcast
- Pipeline: Ordered processing chains
"""
def route_message(target, message, opts \\ []) do
strategy = Keyword.get(opts, :strategy, :direct)
case strategy do
:direct -> direct_route(target, message, opts)
:multicast -> multicast_route(target, message, opts)
:gossip -> gossip_route(target, message, opts)
:pipeline -> pipeline_route(target, message, opts)
end
end
defp direct_route(target_agent_id, message, opts) do
delivery_guarantee = Keyword.get(opts, :delivery, :at_most_once)
with {:ok, location} <- Phoenix.Registry.locate_agent(target_agent_id),
{:ok, route} <- determine_route(location, opts),
{:ok, envelope} <- create_envelope(message, delivery_guarantee) do
case delivery_guarantee do
:at_most_once -> fire_and_forget(route, envelope)
:at_least_once -> reliable_delivery(route, envelope, opts)
:exactly_once -> exactly_once_delivery(route, envelope, opts)
end
end
end
end
Communication Infrastructure
1. Multi-Protocol Transport
defmodule Phoenix.Transport.Manager do
@moduledoc """
Manages multiple transport protocols for different scenarios:
- Distributed Erlang: Development and single-DC clusters
- Partisan: Large-scale production clusters (>100 nodes)
- HTTP/2: Cross-datacenter and hybrid cloud
- QUIC: Low-latency and mobile connections
"""
def send_message(target, message, opts \\ []) do
transport = select_transport(target, opts)
case transport do
:distributed_erlang ->
DistributedErlang.send(target, message, opts)
:partisan ->
Partisan.send(target, message, opts)
:http2 ->
HTTP2Transport.send(target, message, opts)
:quic ->
QUICTransport.send(target, message, opts)
end
end
defp select_transport(target, opts) do
cond do
local_cluster?(target) -> :distributed_erlang
large_cluster?() -> :partisan
cross_dc?(target) -> :http2
mobile_client?(target) -> :quic
true -> Application.get_env(:phoenix, :default_transport)
end
end
end
2. Message Format and Serialization
defmodule Phoenix.Message do
@moduledoc """
Standard message format supporting multiple serialization protocols.
Based on CloudEvents v1.0.2 with Phoenix extensions for:
- Distributed tracing
- Causal consistency
- Delivery guarantees
- Routing metadata
"""
use TypedStruct
typedstruct do
# CloudEvents v1.0.2 fields
field :specversion, String.t(), default: "1.0.2"
field :id, String.t()
field :source, String.t()
field :type, String.t()
field :subject, String.t()
field :time, DateTime.t()
field :datacontenttype, String.t(), default: "application/x-erlang-term"
field :data, term()
# Phoenix extensions
field :phoenix_trace, Phoenix.Trace.Context.t()
field :phoenix_causality, Phoenix.VectorClock.t()
field :phoenix_delivery, Phoenix.Delivery.Guarantee.t()
field :phoenix_routing, Phoenix.Routing.Metadata.t()
end
def serialize(message, format \\ :erlang_term) do
case format do
:erlang_term -> :erlang.term_to_binary(message)
:json -> Jason.encode!(message)
:msgpack -> Msgpax.pack!(message)
:protobuf -> PhoenixProto.Message.encode(message)
end
end
end
3. Delivery Guarantees
defmodule Phoenix.Delivery do
@moduledoc """
Configurable delivery guarantees for different use cases.
Guarantees:
- at_most_once: Fire-and-forget (performance)
- at_least_once: Retry until success (reliability)
- exactly_once: Idempotent delivery (correctness)
- causal_order: Respects causal dependencies
"""
defmodule Guarantee do
use TypedStruct
typedstruct do
field :delivery_mode, atom()
field :timeout, pos_integer()
field :retry_strategy, atom()
field :ordering_requirement, atom()
field :acknowledgment_required, boolean()
end
end
def deliver_with_guarantee(target, message, guarantee) do
case guarantee.delivery_mode do
:at_most_once ->
fire_and_forget(target, message)
:at_least_once ->
retry_until_success(target, message, guarantee)
:exactly_once ->
idempotent_delivery(target, message, guarantee)
:causal_order ->
causal_delivery(target, message, guarantee)
end
end
end
State Management Strategy
1. CRDT-Based Distributed State
defmodule Phoenix.Agent.State do
@moduledoc """
Agent state management using conflict-free replicated data types.
State composition:
- Core State: Critical data requiring strong consistency
- Operational State: Metrics and logs with eventual consistency
- Cache State: Performance optimization with TTL
- Derived State: Computed from other state components
"""
use Phoenix.CRDT.Composite
# Core state with strong consistency requirements
crdt_field :identity, Phoenix.CRDT.LWWRegister
crdt_field :capabilities, Phoenix.CRDT.GSet
crdt_field :configuration, Phoenix.CRDT.LWWMap
# Operational state with eventual consistency
crdt_field :counters, Phoenix.CRDT.PNCounter
crdt_field :flags, Phoenix.CRDT.TwoPhaseSet
crdt_field :logs, Phoenix.CRDT.OpBasedList
# Cache state with TTL
crdt_field :cache, Phoenix.CRDT.TTLMap
def update_state(agent_id, update_fn, opts \\ []) do
consistency = Keyword.get(opts, :consistency, :eventual)
case consistency do
:eventual ->
# Local update + async replication
update_local_state(agent_id, update_fn)
async_replicate_to_cluster(agent_id)
:strong ->
# Coordinate with replicas before committing
coordinate_strong_update(agent_id, update_fn, opts)
:causal ->
# Ensure causal consistency
update_with_causal_order(agent_id, update_fn, opts)
end
end
end
2. Vector Clocks for Causal Consistency
defmodule Phoenix.VectorClock do
@moduledoc """
Vector clock implementation for tracking causal relationships.
Features:
- Efficient encoding for network transmission
- Automatic pruning of old entries
- Integration with CRDT operations
- Conflict detection and resolution
"""
defstruct [
:clocks, # Map of node_id -> logical_time
:node_id, # This node's identifier
:version # Schema version for compatibility
]
def new(node_id), do: %__MODULE__{
clocks: %{node_id => 0},
node_id: node_id,
version: 1
}
def tick(vector_clock) do
%{vector_clock |
clocks: Map.update!(vector_clock.clocks, vector_clock.node_id, &(&1 + 1))
}
end
def compare(clock_a, clock_b) do
all_nodes = MapSet.union(
MapSet.new(Map.keys(clock_a.clocks)),
MapSet.new(Map.keys(clock_b.clocks))
)
comparisons = Enum.map(all_nodes, fn node ->
time_a = Map.get(clock_a.clocks, node, 0)
time_b = Map.get(clock_b.clocks, node, 0)
cond do
time_a < time_b -> :less
time_a > time_b -> :greater
true -> :equal
end
end)
determine_relationship(comparisons)
end
end
3. Conflict Resolution Strategies
defmodule Phoenix.Conflict do
@moduledoc """
Conflict resolution strategies for distributed state management.
Strategies:
- Last Writer Wins: Simple, may lose data
- Vector Clock: Preserves causality
- Semantic Merge: Domain-specific resolution
- Manual Resolution: Human intervention required
"""
def resolve_conflict(conflicting_states, strategy, context \\ %{}) do
case strategy do
:last_writer_wins ->
Enum.max_by(conflicting_states, & &1.last_modified)
:vector_clock ->
resolve_with_vector_clocks(conflicting_states)
:semantic_merge ->
semantic_merge_states(conflicting_states, context)
:manual_resolution ->
queue_for_manual_resolution(conflicting_states, context)
custom_resolver when is_function(custom_resolver) ->
custom_resolver.(conflicting_states, context)
end
end
defp semantic_merge_states(states, context) do
case context.data_type do
:counter ->
# Sum all counter values
Enum.reduce(states, 0, fn state, acc ->
acc + get_counter_value(state)
end)
:set ->
# Union of all sets
Enum.reduce(states, MapSet.new(), fn state, acc ->
MapSet.union(acc, get_set_value(state))
end)
:map ->
# Merge maps with conflict resolution per key
merge_maps_with_resolution(states, context)
end
end
end
Fault Tolerance Design
1. Circuit Breaker Implementation
defmodule Phoenix.CircuitBreaker do
@moduledoc """
Circuit breaker implementation for preventing cascade failures.
States:
- Closed: Normal operation, requests pass through
- Open: Failures exceeded threshold, requests rejected
- Half-Open: Testing if service recovered
"""
use GenServer
defstruct [
:name,
:state, # :closed | :open | :half_open
:failure_count,
:failure_threshold,
:recovery_timeout,
:last_failure_time,
:request_count,
:success_count
]
def call(circuit_name, operation, opts \\ []) do
case get_circuit_state(circuit_name) do
:closed ->
execute_with_monitoring(circuit_name, operation)
:open ->
case should_attempt_recovery?(circuit_name) do
true -> transition_to_half_open(circuit_name, operation)
false -> {:error, :circuit_open}
end
:half_open ->
test_recovery(circuit_name, operation)
end
end
defp execute_with_monitoring(circuit_name, operation) do
start_time = System.monotonic_time()
try do
result = operation.()
execution_time = System.monotonic_time() - start_time
record_success(circuit_name, execution_time)
{:ok, result}
rescue
error ->
record_failure(circuit_name, error)
evaluate_circuit_state(circuit_name)
{:error, error}
end
end
end
2. Bulkhead Pattern for Isolation
defmodule Phoenix.Bulkhead do
@moduledoc """
Resource isolation using bulkhead pattern.
Isolates different types of operations to prevent
resource exhaustion in one area from affecting others.
"""
defstruct [
:pools, # Map of pool_name -> pool_config
:total_capacity,
:allocations # Current resource allocations
]
def execute_in_pool(pool_name, operation, opts \\ []) do
timeout = Keyword.get(opts, :timeout, 5000)
case checkout_resource(pool_name, timeout) do
{:ok, resource} ->
try do
operation.(resource)
after
checkin_resource(pool_name, resource)
end
{:error, :pool_exhausted} ->
handle_pool_exhaustion(pool_name, operation, opts)
{:error, :timeout} ->
{:error, :resource_timeout}
end
end
defp handle_pool_exhaustion(pool_name, operation, opts) do
strategy = get_exhaustion_strategy(pool_name)
case strategy do
:reject -> {:error, :resource_unavailable}
:queue -> queue_operation(pool_name, operation, opts)
:spillover -> find_spillover_pool(pool_name, operation, opts)
:adaptive -> adapt_pool_size(pool_name, operation, opts)
end
end
end
3. Distributed Supervision
defmodule Phoenix.Supervision do
@moduledoc """
Distributed supervision for agent processes.
Features:
- Cross-node supervision relationships
- Automatic failover and recovery
- Coordinated shutdown procedures
- Resource cleanup on failures
"""
def supervise_agent(agent_spec, supervision_opts \\ []) do
# Determine supervision strategy
strategy = Keyword.get(supervision_opts, :strategy, :one_for_one)
replicas = Keyword.get(supervision_opts, :replicas, 3)
# Select supervisor nodes
supervisor_nodes = select_supervisor_nodes(replicas)
# Start supervision on selected nodes
supervision_refs = Enum.map(supervisor_nodes, fn node ->
start_remote_supervisor(node, agent_spec, strategy)
end)
# Register supervision group
Phoenix.SupervisionRegistry.register_group(
agent_spec.id,
supervision_refs
)
end
def handle_agent_failure(agent_id, failure_reason) do
case get_supervision_strategy(agent_id) do
:restart ->
restart_agent_with_backoff(agent_id)
:migrate ->
migrate_agent_to_healthy_node(agent_id)
:replicate ->
activate_backup_replica(agent_id)
:fail_fast ->
propagate_failure_to_dependents(agent_id, failure_reason)
end
end
end
Performance and Scalability
1. Adaptive Load Balancing
defmodule Phoenix.LoadBalancer do
@moduledoc """
Adaptive load balancing considering multiple factors:
- Node resource utilization (CPU, memory, network)
- Agent-specific requirements and preferences
- Network topology and latency
- Historical performance data
"""
def select_placement_node(agent_spec, available_nodes) do
# Score each node based on multiple criteria
scored_nodes = Enum.map(available_nodes, fn node ->
score = calculate_placement_score(node, agent_spec)
{node, score}
end)
# Select best node with some randomization for load spreading
select_with_weighted_randomization(scored_nodes)
end
defp calculate_placement_score(node, agent_spec) do
resource_score = calculate_resource_score(node, agent_spec)
affinity_score = calculate_affinity_score(node, agent_spec)
latency_score = calculate_latency_score(node, agent_spec)
historical_score = calculate_historical_score(node, agent_spec)
# Weighted combination of factors
resource_score * 0.4 +
affinity_score * 0.3 +
latency_score * 0.2 +
historical_score * 0.1
end
end
2. Performance Monitoring and Optimization
defmodule Phoenix.Performance do
@moduledoc """
Real-time performance monitoring and automatic optimization.
Monitors:
- Message latency and throughput
- Agent execution times
- Resource utilization patterns
- Network congestion indicators
"""
def monitor_agent_performance(agent_id) do
# Collect performance metrics
metrics = %{
message_latency: measure_message_latency(agent_id),
execution_time: measure_execution_time(agent_id),
memory_usage: measure_memory_usage(agent_id),
cpu_utilization: measure_cpu_utilization(agent_id),
network_io: measure_network_io(agent_id)
}
# Detect performance anomalies
anomalies = detect_anomalies(agent_id, metrics)
# Trigger optimization if needed
if not Enum.empty?(anomalies) do
optimize_agent_performance(agent_id, anomalies, metrics)
end
# Record metrics for historical analysis
Phoenix.Metrics.record(agent_id, metrics)
end
defp optimize_agent_performance(agent_id, anomalies, metrics) do
Enum.each(anomalies, fn anomaly ->
case anomaly do
:high_latency ->
consider_agent_migration(agent_id, :latency_optimization)
:memory_pressure ->
trigger_garbage_collection(agent_id)
consider_state_compaction(agent_id)
:cpu_saturation ->
implement_request_throttling(agent_id)
consider_load_shedding(agent_id)
:network_congestion ->
enable_message_compression(agent_id)
batch_outgoing_messages(agent_id)
end
end)
end
end
3. Horizontal Scaling Strategies
defmodule Phoenix.Scaling do
@moduledoc """
Horizontal scaling strategies for the Phoenix cluster.
Scaling triggers:
- Resource utilization thresholds
- Performance degradation detection
- Predictive scaling based on patterns
- Manual scaling requests
"""
def evaluate_scaling_need() do
cluster_metrics = collect_cluster_metrics()
scaling_decision = cond do
cpu_utilization_high?(cluster_metrics) ->
{:scale_out, :cpu_pressure}
memory_utilization_high?(cluster_metrics) ->
{:scale_out, :memory_pressure}
message_queue_backlog?(cluster_metrics) ->
{:scale_out, :throughput_pressure}
underutilized_cluster?(cluster_metrics) ->
{:scale_in, :resource_optimization}
true ->
{:no_action, :stable}
end
execute_scaling_decision(scaling_decision)
end
defp execute_scaling_decision({action, reason}) do
case action do
:scale_out ->
new_nodes = provision_additional_nodes(reason)
integrate_nodes_into_cluster(new_nodes)
rebalance_agents_across_cluster()
:scale_in ->
candidate_nodes = select_nodes_for_removal()
drain_agents_from_nodes(candidate_nodes)
remove_nodes_from_cluster(candidate_nodes)
:no_action ->
:ok
end
end
end
Summary and Next Steps
Architecture Achievements
Phoenix represents a novel approach to distributed agent systems, combining:
- Theoretical Foundations: CRDT-based state management, CAP theorem awareness
- BEAM Ecosystem Integration: OTP supervision, Erlang distribution, modern libraries
- Production Readiness: Circuit breakers, bulkheads, comprehensive monitoring
- Performance Optimization: Adaptive load balancing, horizontal scaling
Key Innovations
- CRDT-Native Agent State: Eliminates coordination overhead for most operations
- Hybrid Consistency Model: Strong consistency where needed, eventual elsewhere
- Multi-Protocol Transport: Adapts to different network environments
- Distributed Supervision: Fault tolerance across cluster boundaries
Next Documents in Series
- Communication Protocols and Message Patterns - Detailed protocol specifications
- CRDT Integration and State Management - Deep dive into conflict-free state handling
- Fault Tolerance and Partition Handling - Comprehensive resilience strategies
- Performance Optimization and Scaling - Detailed performance engineering
- Implementation Roadmap and Technical Specifications - Concrete implementation plan
This foundation document establishes the architectural vision for Phoenix. The subsequent documents will provide detailed technical specifications for each subsystem.
Document Version: 1.0
Next Review: 2025-07-19
Implementation Priority: High
Dependencies: None (foundational document)