← Back to DocsRebuild20250712

PHOENIX PERFORMANCE OPTIMIZATION

Documentation for PHOENIX_PERFORMANCE_OPTIMIZATION from the Foundation repository.

Phoenix: Performance Optimization and Scaling

Date: 2025-07-12
Version: 1.0
Series: Distributed Agent System - Part 5 (Performance)

Executive Summary

This document provides comprehensive specifications for performance optimization and horizontal scaling in the Phoenix distributed agent system. Drawing from high-performance distributed systems research, BEAM performance engineering, and production scaling patterns, Phoenix implements adaptive performance optimization that automatically adjusts system behavior based on real-time performance metrics and workload characteristics.

Key Innovation: Phoenix employs predictive performance scaling where the system uses machine learning techniques to anticipate performance bottlenecks and proactively adjust resource allocation, load balancing, and system configuration.

Table of Contents

  1. Performance Architecture Overview
  2. Adaptive Load Balancing
  3. Resource-Aware Agent Placement
  4. Performance Monitoring and Metrics
  5. Horizontal Scaling Automation
  6. Memory and CPU Optimization
  7. Network Performance Optimization
  8. Predictive Performance Management

Performance Architecture Overview

Multi-Layered Performance System

defmodule Phoenix.Performance do
  @moduledoc """
  Central performance management system coordinating all optimization strategies.
  
  Performance Layers:
  1. **Real-time Monitoring**: Sub-second performance metrics collection
  2. **Adaptive Optimization**: Dynamic system tuning based on workload
  3. **Predictive Scaling**: ML-based capacity planning and resource allocation
  4. **Resource Management**: Intelligent resource scheduling and allocation
  5. **Network Optimization**: Transport and protocol optimization
  """
  
  use GenServer
  
  defstruct [
    :node_id,
    :performance_targets,
    :current_metrics,
    :optimization_strategies,
    :scaling_policies,
    :resource_allocations,
    :prediction_models
  ]
  
  @performance_targets %{
    agent_response_time_p95: 50,      # 50ms 95th percentile
    message_throughput: 10_000,       # 10k messages/second
    cluster_availability: 0.999,      # 99.9% availability
    resource_utilization: 0.75,       # 75% max resource utilization
    scaling_response_time: 30         # 30 seconds to scale
  }
  
  def start_link(opts \\ []) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def init(opts) do
    state = %__MODULE__{
      node_id: Keyword.get(opts, :node_id, node()),
      performance_targets: Map.merge(@performance_targets, Keyword.get(opts, :targets, %{})),
      current_metrics: %{},
      optimization_strategies: initialize_optimization_strategies(),
      scaling_policies: initialize_scaling_policies(),
      resource_allocations: %{},
      prediction_models: initialize_prediction_models()
    }
    
    # Start performance monitoring
    schedule_performance_collection()
    schedule_optimization_cycle()
    
    {:ok, state}
  end
  
  @doc """
  Get current performance status and recommendations.
  """
  def performance_status() do
    GenServer.call(__MODULE__, :performance_status)
  end
  
  @doc """
  Trigger immediate performance optimization.
  """
  def optimize_now() do
    GenServer.cast(__MODULE__, :optimize_now)
  end
  
  @doc """
  Update performance targets.
  """
  def update_targets(new_targets) do
    GenServer.call(__MODULE__, {:update_targets, new_targets})
  end
  
  def handle_call(:performance_status, _from, state) do
    status = %{
      current_metrics: state.current_metrics,
      target_compliance: calculate_target_compliance(state),
      active_optimizations: get_active_optimizations(state),
      scaling_recommendations: get_scaling_recommendations(state),
      performance_trend: get_performance_trend(state)
    }
    
    {:reply, status, state}
  end
  
  def handle_call({:update_targets, new_targets}, _from, state) do
    updated_targets = Map.merge(state.performance_targets, new_targets)
    {:reply, :ok, %{state | performance_targets: updated_targets}}
  end
  
  def handle_cast(:optimize_now, state) do
    new_state = execute_optimization_cycle(state)
    {:noreply, new_state}
  end
  
  def handle_info(:collect_metrics, state) do
    # Collect current performance metrics
    new_metrics = collect_performance_metrics()
    
    # Update prediction models with new data
    updated_models = update_prediction_models(state.prediction_models, new_metrics)
    
    new_state = %{state | 
      current_metrics: new_metrics,
      prediction_models: updated_models
    }
    
    schedule_performance_collection()
    {:noreply, new_state}
  end
  
  def handle_info(:optimization_cycle, state) do
    # Execute optimization cycle
    new_state = execute_optimization_cycle(state)
    
    schedule_optimization_cycle()
    {:noreply, new_state}
  end
  
  defp execute_optimization_cycle(state) do
    # Analyze current performance against targets
    performance_analysis = analyze_performance(state.current_metrics, state.performance_targets)
    
    # Generate optimization recommendations
    optimizations = generate_optimizations(performance_analysis, state)
    
    # Execute high-priority optimizations
    execute_optimizations(optimizations)
    
    # Update resource allocations
    new_allocations = update_resource_allocations(state.resource_allocations, optimizations)
    
    %{state | resource_allocations: new_allocations}
  end
  
  defp analyze_performance(current_metrics, targets) do
    Enum.map(targets, fn {metric, target_value} ->
      current_value = Map.get(current_metrics, metric, 0)
      compliance = calculate_compliance(current_value, target_value, metric)
      
      {metric, %{
        current: current_value,
        target: target_value,
        compliance: compliance,
        deviation: calculate_deviation(current_value, target_value, metric)
      }}
    end)
    |> Enum.into(%{})
  end
  
  defp generate_optimizations(analysis, state) do
    # Generate optimization strategies based on performance analysis
    optimizations = []
    
    # Check each metric for optimization opportunities
    optimizations = if analysis[:agent_response_time_p95].compliance < 0.9 do
      [generate_latency_optimization(analysis, state) | optimizations]
    else
      optimizations
    end
    
    optimizations = if analysis[:message_throughput].compliance < 0.8 do
      [generate_throughput_optimization(analysis, state) | optimizations]
    else
      optimizations
    end
    
    optimizations = if analysis[:resource_utilization].current > 0.8 do
      [generate_scaling_optimization(analysis, state) | optimizations]
    else
      optimizations
    end
    
    # Sort by priority and impact
    Enum.sort_by(optimizations, fn opt -> 
      {opt.priority, opt.estimated_impact} 
    end, :desc)
  end
  
  defp generate_latency_optimization(analysis, state) do
    %{
      type: :latency_optimization,
      priority: :high,
      estimated_impact: 0.8,
      actions: [
        {:enable_message_batching, %{batch_size: 10}},
        {:optimize_agent_placement, %{strategy: :latency_aware}},
        {:tune_network_buffers, %{buffer_size: 64_000}}
      ],
      target_metric: :agent_response_time_p95,
      expected_improvement: 0.3
    }
  end
  
  defp generate_throughput_optimization(analysis, state) do
    %{
      type: :throughput_optimization,
      priority: :high,
      estimated_impact: 0.9,
      actions: [
        {:increase_connection_pools, %{pool_size: 20}},
        {:enable_compression, %{algorithm: :lz4}},
        {:optimize_message_routing, %{strategy: :direct_routing}}
      ],
      target_metric: :message_throughput,
      expected_improvement: 0.4
    }
  end
  
  defp generate_scaling_optimization(analysis, state) do
    %{
      type: :scaling_optimization,
      priority: :medium,
      estimated_impact: 1.0,
      actions: [
        {:horizontal_scale_out, %{additional_nodes: 2}},
        {:rebalance_agents, %{strategy: :even_distribution}}
      ],
      target_metric: :resource_utilization,
      expected_improvement: 0.5
    }
  end
  
  defp execute_optimizations(optimizations) do
    Enum.each(optimizations, fn optimization ->
      case optimization.priority do
        :high -> execute_optimization_immediately(optimization)
        :medium -> schedule_optimization(optimization, delay: 5_000)
        :low -> schedule_optimization(optimization, delay: 30_000)
      end
    end)
  end
  
  defp execute_optimization_immediately(optimization) do
    Enum.each(optimization.actions, &execute_optimization_action/1)
  end
  
  defp execute_optimization_action({:enable_message_batching, config}) do
    Phoenix.MessageBatching.enable(config)
  end
  
  defp execute_optimization_action({:optimize_agent_placement, config}) do
    Phoenix.AgentPlacement.optimize(config)
  end
  
  defp execute_optimization_action({:tune_network_buffers, config}) do
    Phoenix.NetworkTuning.adjust_buffers(config)
  end
  
  defp execute_optimization_action({:increase_connection_pools, config}) do
    Phoenix.ConnectionPooling.resize_pools(config)
  end
  
  defp execute_optimization_action({:enable_compression, config}) do
    Phoenix.MessageCompression.enable(config)
  end
  
  defp execute_optimization_action({:horizontal_scale_out, config}) do
    Phoenix.AutoScaling.scale_out(config)
  end
  
  defp execute_optimization_action({:rebalance_agents, config}) do
    Phoenix.LoadBalancing.rebalance_agents(config)
  end
  
  # Helper functions and initialization
  defp collect_performance_metrics() do
    %{
      agent_response_time_p95: Phoenix.Metrics.get_percentile(:agent_response_time, 95),
      message_throughput: Phoenix.Metrics.get_rate(:message_throughput),
      cluster_availability: Phoenix.Metrics.get_availability(),
      resource_utilization: Phoenix.Metrics.get_resource_utilization(),
      scaling_response_time: Phoenix.Metrics.get_scaling_response_time()
    }
  end
  
  defp schedule_performance_collection() do
    Process.send_after(self(), :collect_metrics, 1_000)  # Every second
  end
  
  defp schedule_optimization_cycle() do
    Process.send_after(self(), :optimization_cycle, 10_000)  # Every 10 seconds
  end
  
  defp initialize_optimization_strategies() do
    %{
      latency: Phoenix.LatencyOptimization,
      throughput: Phoenix.ThroughputOptimization,
      resource: Phoenix.ResourceOptimization,
      network: Phoenix.NetworkOptimization
    }
  end
  
  defp initialize_scaling_policies() do
    %{
      cpu_threshold: 0.8,
      memory_threshold: 0.85,
      network_threshold: 0.9,
      scale_out_cooldown: 300,    # 5 minutes
      scale_in_cooldown: 600      # 10 minutes
    }
  end
  
  defp initialize_prediction_models() do
    %{
      workload_prediction: Phoenix.ML.WorkloadPredictor.new(),
      resource_prediction: Phoenix.ML.ResourcePredictor.new(),
      scaling_prediction: Phoenix.ML.ScalingPredictor.new()
    }
  end
  
  defp calculate_compliance(current, target, metric) do
    # Calculate how well current performance meets target
    case metric do
      metric when metric in [:agent_response_time_p95, :scaling_response_time] ->
        # Lower is better
        if current <= target, do: 1.0, else: target / current
        
      metric when metric in [:message_throughput, :cluster_availability] ->
        # Higher is better
        if current >= target, do: 1.0, else: current / target
        
      :resource_utilization ->
        # Target utilization (not too high, not too low)
        optimal = target
        if current <= optimal, do: current / optimal, else: (2 * optimal - current) / optimal
    end
  end
  
  defp calculate_deviation(current, target, metric) do
    case metric do
      metric when metric in [:agent_response_time_p95, :scaling_response_time] ->
        max(0, current - target) / target
        
      metric when metric in [:message_throughput, :cluster_availability] ->
        max(0, target - current) / target
        
      :resource_utilization ->
        abs(current - target) / target
    end
  end
  
  defp calculate_target_compliance(state) do
    analysis = analyze_performance(state.current_metrics, state.performance_targets)
    
    compliances = Enum.map(analysis, fn {_metric, data} -> data.compliance end)
    
    if Enum.empty?(compliances) do
      0.0
    else
      Enum.sum(compliances) / length(compliances)
    end
  end
  
  defp get_active_optimizations(_state) do
    # Return currently active optimizations
    []
  end
  
  defp get_scaling_recommendations(state) do
    # Generate scaling recommendations based on predictions
    predictions = predict_future_load(state.prediction_models)
    
    case predictions do
      {:scale_out, confidence} when confidence > 0.8 ->
        %{action: :scale_out, confidence: confidence, reason: :predicted_load_increase}
        
      {:scale_in, confidence} when confidence > 0.8 ->
        %{action: :scale_in, confidence: confidence, reason: :predicted_load_decrease}
        
      _ ->
        %{action: :no_action, confidence: 0.0, reason: :stable_load}
    end
  end
  
  defp get_performance_trend(state) do
    # Analyze performance trend over time
    recent_metrics = get_recent_metrics_history()
    
    if length(recent_metrics) >= 2 do
      latest = hd(recent_metrics)
      previous = Enum.at(recent_metrics, 1)
      
      trend = calculate_trend(latest, previous)
      %{direction: trend, confidence: 0.8}
    else
      %{direction: :stable, confidence: 0.0}
    end
  end
  
  defp predict_future_load(models) do
    # Use prediction models to forecast load
    {:no_action, 0.5}  # Simplified implementation
  end
  
  defp get_recent_metrics_history() do
    # Get recent metrics history for trend analysis
    []  # Simplified implementation
  end
  
  defp calculate_trend(latest, previous) do
    # Calculate trend direction
    :stable  # Simplified implementation
  end
  
  defp update_prediction_models(models, new_metrics) do
    # Update ML models with new performance data
    models  # Simplified implementation
  end
  
  defp update_resource_allocations(allocations, optimizations) do
    # Update resource allocations based on optimizations
    allocations  # Simplified implementation
  end
  
  defp schedule_optimization(optimization, opts) do
    delay = Keyword.get(opts, :delay, 0)
    
    Process.send_after(self(), {:execute_optimization, optimization}, delay)
  end
end

Adaptive Load Balancing

Intelligent Load Balancing Engine

defmodule Phoenix.LoadBalancing do
  @moduledoc """
  Adaptive load balancing system that dynamically adjusts routing strategies
  based on real-time performance metrics and workload characteristics.
  
  Balancing Strategies:
  1. **Round Robin**: Simple round-robin with health checks
  2. **Weighted Round Robin**: Weight-based distribution
  3. **Least Connections**: Route to least loaded node
  4. **Response Time**: Route to fastest responding node
  5. **Resource Aware**: Consider CPU, memory, network load
  6. **Predictive**: ML-based routing predictions
  """
  
  use GenServer
  
  defstruct [
    :strategy,
    :node_pool,
    :node_metrics,
    :routing_weights,
    :performance_history,
    :load_predictor
  ]
  
  @strategies [:round_robin, :weighted_round_robin, :least_connections, 
               :response_time, :resource_aware, :predictive]
  
  def start_link(opts \\ []) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def init(opts) do
    strategy = Keyword.get(opts, :strategy, :resource_aware)
    initial_nodes = Keyword.get(opts, :nodes, [node()])
    
    state = %__MODULE__{
      strategy: strategy,
      node_pool: initialize_node_pool(initial_nodes),
      node_metrics: %{},
      routing_weights: %{},
      performance_history: %{},
      load_predictor: Phoenix.ML.LoadPredictor.new()
    }
    
    # Start metrics collection
    schedule_metrics_collection()
    schedule_weight_adjustment()
    
    {:ok, state}
  end
  
  @doc """
  Route request to optimal node based on current strategy.
  """
  def route_request(request_spec) do
    GenServer.call(__MODULE__, {:route_request, request_spec})
  end
  
  @doc """
  Add node to load balancing pool.
  """
  def add_node(node, initial_weight \\ 1.0) do
    GenServer.call(__MODULE__, {:add_node, node, initial_weight})
  end
  
  @doc """
  Remove node from load balancing pool.
  """
  def remove_node(node) do
    GenServer.call(__MODULE__, {:remove_node, node})
  end
  
  @doc """
  Change load balancing strategy.
  """
  def set_strategy(new_strategy) when new_strategy in @strategies do
    GenServer.call(__MODULE__, {:set_strategy, new_strategy})
  end
  
  @doc """
  Get current load balancing statistics.
  """
  def get_stats() do
    GenServer.call(__MODULE__, :get_stats)
  end
  
  def handle_call({:route_request, request_spec}, _from, state) do
    # Select optimal node based on current strategy
    case select_node(request_spec, state) do
      {:ok, selected_node} ->
        # Update routing statistics
        new_state = update_routing_stats(state, selected_node, request_spec)
        {:reply, {:ok, selected_node}, new_state}
        
      {:error, reason} ->
        {:reply, {:error, reason}, state}
    end
  end
  
  def handle_call({:add_node, node, weight}, _from, state) do
    new_pool = Map.put(state.node_pool, node, %{
      status: :healthy,
      weight: weight,
      connections: 0,
      last_request: nil
    })
    
    new_weights = Map.put(state.routing_weights, node, weight)
    
    new_state = %{state | 
      node_pool: new_pool,
      routing_weights: new_weights
    }
    
    {:reply, :ok, new_state}
  end
  
  def handle_call({:remove_node, node}, _from, state) do
    new_pool = Map.delete(state.node_pool, node)
    new_weights = Map.delete(state.routing_weights, node)
    new_metrics = Map.delete(state.node_metrics, node)
    
    new_state = %{state | 
      node_pool: new_pool,
      routing_weights: new_weights,
      node_metrics: new_metrics
    }
    
    {:reply, :ok, new_state}
  end
  
  def handle_call({:set_strategy, new_strategy}, _from, state) do
    Logger.info("Load balancing strategy changed from #{state.strategy} to #{new_strategy}")
    
    {:reply, :ok, %{state | strategy: new_strategy}}
  end
  
  def handle_call(:get_stats, _from, state) do
    stats = %{
      strategy: state.strategy,
      active_nodes: map_size(state.node_pool),
      node_pool: state.node_pool,
      routing_weights: state.routing_weights,
      recent_metrics: get_recent_metrics(state.node_metrics)
    }
    
    {:reply, stats, state}
  end
  
  def handle_info(:collect_metrics, state) do
    # Collect performance metrics from all nodes
    new_metrics = collect_node_metrics(state.node_pool)
    
    # Update performance history
    new_history = update_performance_history(state.performance_history, new_metrics)
    
    new_state = %{state | 
      node_metrics: new_metrics,
      performance_history: new_history
    }
    
    schedule_metrics_collection()
    {:noreply, new_state}
  end
  
  def handle_info(:adjust_weights, state) do
    # Adjust routing weights based on performance
    new_weights = calculate_adaptive_weights(state)
    
    new_state = %{state | routing_weights: new_weights}
    
    schedule_weight_adjustment()
    {:noreply, new_state}
  end
  
  defp select_node(request_spec, state) do
    healthy_nodes = get_healthy_nodes(state.node_pool)
    
    if Enum.empty?(healthy_nodes) do
      {:error, :no_healthy_nodes}
    else
      selected = case state.strategy do
        :round_robin -> 
          round_robin_select(healthy_nodes, state)
        :weighted_round_robin -> 
          weighted_round_robin_select(healthy_nodes, state)
        :least_connections -> 
          least_connections_select(healthy_nodes, state)
        :response_time -> 
          response_time_select(healthy_nodes, state)
        :resource_aware -> 
          resource_aware_select(healthy_nodes, state)
        :predictive -> 
          predictive_select(healthy_nodes, request_spec, state)
      end
      
      {:ok, selected}
    end
  end
  
  defp round_robin_select(nodes, _state) do
    # Simple round-robin selection
    node_index = :persistent_term.get({__MODULE__, :round_robin_index}, 0)
    selected_node = Enum.at(nodes, rem(node_index, length(nodes)))
    
    :persistent_term.put({__MODULE__, :round_robin_index}, node_index + 1)
    selected_node
  end
  
  defp weighted_round_robin_select(nodes, state) do
    # Weighted round-robin based on routing weights
    total_weight = nodes
    |> Enum.map(fn node -> Map.get(state.routing_weights, node, 1.0) end)
    |> Enum.sum()
    
    random_value = :rand.uniform() * total_weight
    
    select_weighted_node(nodes, state.routing_weights, random_value, 0.0)
  end
  
  defp select_weighted_node([node | rest], weights, target, accumulator) do
    weight = Map.get(weights, node, 1.0)
    new_accumulator = accumulator + weight
    
    if target <= new_accumulator do
      node
    else
      select_weighted_node(rest, weights, target, new_accumulator)
    end
  end
  
  defp select_weighted_node([], _weights, _target, _accumulator) do
    # Fallback to first node if something goes wrong
    hd(Map.keys(%{}))
  end
  
  defp least_connections_select(nodes, state) do
    # Select node with least active connections
    nodes
    |> Enum.min_by(fn node ->
      node_info = Map.get(state.node_pool, node, %{})
      Map.get(node_info, :connections, 0)
    end)
  end
  
  defp response_time_select(nodes, state) do
    # Select node with best response time
    nodes
    |> Enum.min_by(fn node ->
      metrics = Map.get(state.node_metrics, node, %{})
      Map.get(metrics, :response_time_avg, 999_999)
    end)
  end
  
  defp resource_aware_select(nodes, state) do
    # Select node based on comprehensive resource utilization
    nodes
    |> Enum.min_by(fn node ->
      calculate_resource_score(node, state.node_metrics)
    end)
  end
  
  defp predictive_select(nodes, request_spec, state) do
    # Use ML model to predict best node for request
    predictions = Enum.map(nodes, fn node ->
      score = Phoenix.ML.LoadPredictor.predict_score(
        state.load_predictor, 
        node, 
        request_spec
      )
      {node, score}
    end)
    
    {best_node, _score} = Enum.max_by(predictions, fn {_node, score} -> score end)
    best_node
  end
  
  defp calculate_resource_score(node, metrics) do
    node_metrics = Map.get(metrics, node, %{})
    
    # Composite score considering multiple factors
    cpu_score = Map.get(node_metrics, :cpu_utilization, 0.0)
    memory_score = Map.get(node_metrics, :memory_utilization, 0.0)
    network_score = Map.get(node_metrics, :network_utilization, 0.0)
    response_time_score = normalize_response_time(Map.get(node_metrics, :response_time_avg, 0))
    
    # Lower score is better (represents load)
    cpu_score * 0.3 + memory_score * 0.3 + network_score * 0.2 + response_time_score * 0.2
  end
  
  defp normalize_response_time(response_time) do
    # Normalize response time to 0-1 scale (lower is better)
    max_acceptable_time = 1000  # 1 second
    min(response_time / max_acceptable_time, 1.0)
  end
  
  defp calculate_adaptive_weights(state) do
    # Calculate new weights based on recent performance
    Map.keys(state.node_pool)
    |> Enum.map(fn node ->
      performance_score = calculate_performance_score(node, state)
      weight = performance_to_weight(performance_score)
      {node, weight}
    end)
    |> Enum.into(%{})
  end
  
  defp calculate_performance_score(node, state) do
    # Calculate performance score (higher is better)
    node_metrics = Map.get(state.node_metrics, node, %{})
    
    # Factors contributing to performance score
    availability = Map.get(node_metrics, :availability, 0.0)
    response_time = Map.get(node_metrics, :response_time_avg, 999_999)
    error_rate = Map.get(node_metrics, :error_rate, 1.0)
    throughput = Map.get(node_metrics, :throughput, 0.0)
    
    # Combine factors (higher score = better performance)
    availability_score = availability
    response_time_score = 1000 / max(response_time, 1)  # Inverse of response time
    error_rate_score = 1.0 - error_rate
    throughput_score = min(throughput / 1000, 1.0)  # Normalize throughput
    
    (availability_score + response_time_score + error_rate_score + throughput_score) / 4
  end
  
  defp performance_to_weight(performance_score) do
    # Convert performance score to routing weight
    # Performance score should be 0-1, weight should be 0.1-2.0
    max(0.1, min(2.0, performance_score * 2.0))
  end
  
  defp get_healthy_nodes(node_pool) do
    node_pool
    |> Enum.filter(fn {_node, info} -> info.status == :healthy end)
    |> Enum.map(fn {node, _info} -> node end)
  end
  
  defp collect_node_metrics(node_pool) do
    # Collect metrics from all nodes in parallel
    collection_tasks = Map.keys(node_pool)
    |> Enum.map(fn node ->
      Task.async(fn ->
        case collect_single_node_metrics(node) do
          {:ok, metrics} -> {node, metrics}
          {:error, _reason} -> {node, %{status: :unhealthy}}
        end
      end)
    end)
    
    # Wait for all collections with timeout
    Task.await_many(collection_tasks, 5_000)
    |> Enum.into(%{})
  end
  
  defp collect_single_node_metrics(node) do
    # Collect metrics from a single node
    try do
      metrics = case :rpc.call(node, Phoenix.Metrics, :get_node_metrics, [], 3_000) do
        {:badrpc, _reason} ->
          %{status: :unhealthy}
        node_metrics ->
          Map.put(node_metrics, :status, :healthy)
      end
      
      {:ok, metrics}
    catch
      _, _ -> {:error, :collection_failed}
    end
  end
  
  defp update_routing_stats(state, selected_node, _request_spec) do
    # Update connection count for selected node
    current_info = Map.get(state.node_pool, selected_node, %{})
    updated_info = %{current_info | 
      connections: Map.get(current_info, :connections, 0) + 1,
      last_request: DateTime.utc_now()
    }
    
    new_pool = Map.put(state.node_pool, selected_node, updated_info)
    
    %{state | node_pool: new_pool}
  end
  
  defp initialize_node_pool(nodes) do
    Enum.map(nodes, fn node ->
      {node, %{
        status: :healthy,
        weight: 1.0,
        connections: 0,
        last_request: nil
      }}
    end)
    |> Enum.into(%{})
  end
  
  defp schedule_metrics_collection() do
    Process.send_after(self(), :collect_metrics, 5_000)  # Every 5 seconds
  end
  
  defp schedule_weight_adjustment() do
    Process.send_after(self(), :adjust_weights, 30_000)  # Every 30 seconds
  end
  
  defp get_recent_metrics(node_metrics) do
    # Return recent metrics summary
    Map.new(node_metrics, fn {node, metrics} ->
      {node, %{
        cpu: Map.get(metrics, :cpu_utilization, 0.0),
        memory: Map.get(metrics, :memory_utilization, 0.0),
        response_time: Map.get(metrics, :response_time_avg, 0.0)
      }}
    end)
  end
  
  defp update_performance_history(history, new_metrics) do
    # Update performance history for trend analysis
    timestamp = DateTime.utc_now()
    
    # Add new metrics with timestamp
    updated_history = Map.put(history, timestamp, new_metrics)
    
    # Keep only last 100 entries
    updated_history
    |> Enum.sort_by(fn {timestamp, _} -> timestamp end, {:desc, DateTime})
    |> Enum.take(100)
    |> Enum.into(%{})
  end
end

Resource-Aware Agent Placement

Intelligent Agent Placement Engine

defmodule Phoenix.AgentPlacement do
  @moduledoc """
  Resource-aware agent placement system that optimally distributes agents
  across the cluster based on resource requirements, constraints, and performance objectives.
  
  Placement Strategies:
  1. **Resource Matching**: Match agent requirements to node capabilities
  2. **Affinity Rules**: Co-locate or separate specific agent types
  3. **Load Balancing**: Distribute load evenly across nodes
  4. **Fault Tolerance**: Ensure redundancy and failover capabilities
  5. **Performance Optimization**: Minimize latency and maximize throughput
  """
  
  use GenServer
  
  defstruct [
    :cluster_topology,
    :node_resources,
    :agent_registry,
    :placement_policies,
    :optimization_objectives,
    :constraint_solver
  ]
  
  def start_link(opts \\ []) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def init(opts) do
    state = %__MODULE__{
      cluster_topology: initialize_cluster_topology(),
      node_resources: %{},
      agent_registry: %{},
      placement_policies: load_placement_policies(opts),
      optimization_objectives: initialize_objectives(),
      constraint_solver: Phoenix.ConstraintSolver.new()
    }
    
    # Start resource monitoring
    schedule_resource_monitoring()
    
    {:ok, state}
  end
  
  @doc """
  Find optimal placement for agent based on requirements and constraints.
  """
  def find_placement(agent_spec) do
    GenServer.call(__MODULE__, {:find_placement, agent_spec})
  end
  
  @doc """
  Place agent on specified node with verification.
  """
  def place_agent(agent_id, node, agent_spec) do
    GenServer.call(__MODULE__, {:place_agent, agent_id, node, agent_spec})
  end
  
  @doc """
  Migrate agent to different node.
  """
  def migrate_agent(agent_id, target_node, migration_options \\ []) do
    GenServer.call(__MODULE__, {:migrate_agent, agent_id, target_node, migration_options})
  end
  
  @doc """
  Rebalance agents across cluster for optimal distribution.
  """
  def rebalance_cluster(rebalance_options \\ []) do
    GenServer.call(__MODULE__, {:rebalance_cluster, rebalance_options})
  end
  
  @doc """
  Get current placement statistics and recommendations.
  """
  def placement_stats() do
    GenServer.call(__MODULE__, :placement_stats)
  end
  
  def handle_call({:find_placement, agent_spec}, _from, state) do
    # Find optimal node for agent placement
    case find_optimal_node(agent_spec, state) do
      {:ok, selected_node, placement_score} ->
        {:reply, {:ok, selected_node, placement_score}, state}
        
      {:error, reason} ->
        {:reply, {:error, reason}, state}
    end
  end
  
  def handle_call({:place_agent, agent_id, node, agent_spec}, _from, state) do
    # Verify placement is valid and reserve resources
    case validate_placement(agent_spec, node, state) do
      {:ok, resource_reservation} ->
        # Reserve resources on target node
        new_node_resources = reserve_resources(state.node_resources, node, resource_reservation)
        
        # Register agent placement
        new_agent_registry = Map.put(state.agent_registry, agent_id, %{
          node: node,
          spec: agent_spec,
          placed_at: DateTime.utc_now(),
          resources: resource_reservation
        })
        
        new_state = %{state | 
          node_resources: new_node_resources,
          agent_registry: new_agent_registry
        }
        
        {:reply, {:ok, resource_reservation}, new_state}
        
      {:error, reason} ->
        {:reply, {:error, reason}, state}
    end
  end
  
  def handle_call({:migrate_agent, agent_id, target_node, options}, _from, state) do
    case Map.get(state.agent_registry, agent_id) do
      nil ->
        {:reply, {:error, :agent_not_found}, state}
        
      agent_info ->
        case execute_migration(agent_id, agent_info, target_node, options, state) do
          {:ok, new_placement} ->
            # Update agent registry
            updated_info = %{agent_info | 
              node: target_node,
              placed_at: DateTime.utc_now(),
              migration_history: [agent_info.node | Map.get(agent_info, :migration_history, [])]
            }
            
            new_registry = Map.put(state.agent_registry, agent_id, updated_info)
            
            {:reply, {:ok, new_placement}, %{state | agent_registry: new_registry}}
            
          {:error, reason} ->
            {:reply, {:error, reason}, state}
        end
    end
  end
  
  def handle_call({:rebalance_cluster, options}, _from, state) do
    # Analyze current distribution and generate rebalancing plan
    rebalancing_plan = generate_rebalancing_plan(state, options)
    
    case execute_rebalancing_plan(rebalancing_plan, state) do
      {:ok, new_state} ->
        {:reply, {:ok, rebalancing_plan}, new_state}
        
      {:error, reason} ->
        {:reply, {:error, reason}, state}
    end
  end
  
  def handle_call(:placement_stats, _from, state) do
    stats = %{
      total_agents: map_size(state.agent_registry),
      nodes_in_use: count_nodes_in_use(state.agent_registry),
      resource_utilization: calculate_resource_utilization(state.node_resources),
      placement_efficiency: calculate_placement_efficiency(state),
      constraint_violations: check_constraint_violations(state)
    }
    
    {:reply, stats, state}
  end
  
  def handle_info(:monitor_resources, state) do
    # Update node resource information
    new_resources = collect_cluster_resources()
    
    new_state = %{state | node_resources: new_resources}
    
    schedule_resource_monitoring()
    {:noreply, new_state}
  end
  
  defp find_optimal_node(agent_spec, state) do
    # Get candidate nodes that meet basic requirements
    candidate_nodes = filter_candidate_nodes(agent_spec, state)
    
    if Enum.empty?(candidate_nodes) do
      {:error, :no_suitable_nodes}
    else
      # Score each candidate node
      scored_candidates = Enum.map(candidate_nodes, fn node ->
        score = calculate_placement_score(agent_spec, node, state)
        {node, score}
      end)
      
      # Select node with highest score
      {best_node, best_score} = Enum.max_by(scored_candidates, fn {_node, score} -> score end)
      
      {:ok, best_node, best_score}
    end
  end
  
  defp filter_candidate_nodes(agent_spec, state) do
    # Filter nodes based on hard constraints
    Map.keys(state.node_resources)
    |> Enum.filter(fn node ->
      meets_resource_requirements?(agent_spec, node, state) and
      satisfies_placement_constraints?(agent_spec, node, state) and
      node_healthy?(node)
    end)
  end
  
  defp meets_resource_requirements?(agent_spec, node, state) do
    # Check if node has sufficient resources
    required_resources = Map.get(agent_spec, :resources, %{})
    available_resources = get_available_resources(node, state.node_resources)
    
    Enum.all?(required_resources, fn {resource_type, required_amount} ->
      available_amount = Map.get(available_resources, resource_type, 0)
      available_amount >= required_amount
    end)
  end
  
  defp satisfies_placement_constraints?(agent_spec, node, state) do
    # Check placement constraints (affinity, anti-affinity, etc.)
    constraints = Map.get(agent_spec, :placement_constraints, [])
    
    Enum.all?(constraints, fn constraint ->
      evaluate_constraint(constraint, agent_spec, node, state)
    end)
  end
  
  defp evaluate_constraint({:affinity, target_agents}, agent_spec, node, state) do
    # Agent should be placed on same node as target agents
    target_nodes = get_agent_nodes(target_agents, state.agent_registry)
    node in target_nodes
  end
  
  defp evaluate_constraint({:anti_affinity, avoid_agents}, agent_spec, node, state) do
    # Agent should NOT be placed on same node as avoid agents
    avoid_nodes = get_agent_nodes(avoid_agents, state.agent_registry)
    node not in avoid_nodes
  end
  
  defp evaluate_constraint({:node_selector, selector}, agent_spec, node, state) do
    # Agent should only be placed on nodes matching selector
    evaluate_node_selector(selector, node, state)
  end
  
  defp evaluate_constraint({:resource_ratio, ratios}, agent_spec, node, state) do
    # Node resource utilization should not exceed specified ratios
    utilization = calculate_node_utilization(node, state.node_resources)
    
    Enum.all?(ratios, fn {resource_type, max_ratio} ->
      current_ratio = Map.get(utilization, resource_type, 0.0)
      current_ratio <= max_ratio
    end)
  end
  
  defp calculate_placement_score(agent_spec, node, state) do
    # Calculate composite placement score
    resource_score = calculate_resource_score(agent_spec, node, state)
    affinity_score = calculate_affinity_score(agent_spec, node, state)
    load_balance_score = calculate_load_balance_score(node, state)
    performance_score = calculate_performance_score(node, state)
    
    # Weighted combination of scores
    weights = %{
      resource: 0.3,
      affinity: 0.2,
      load_balance: 0.3,
      performance: 0.2
    }
    
    resource_score * weights.resource +
    affinity_score * weights.affinity +
    load_balance_score * weights.load_balance +
    performance_score * weights.performance
  end
  
  defp calculate_resource_score(agent_spec, node, state) do
    # Score based on resource efficiency (higher = better fit)
    required_resources = Map.get(agent_spec, :resources, %{})
    available_resources = get_available_resources(node, state.node_resources)
    
    if Enum.empty?(required_resources) do
      1.0
    else
      resource_efficiencies = Enum.map(required_resources, fn {resource_type, required} ->
        available = Map.get(available_resources, resource_type, 0)
        if available > 0, do: min(1.0, required / available), else: 0.0
      end)
      
      Enum.sum(resource_efficiencies) / length(resource_efficiencies)
    end
  end
  
  defp calculate_affinity_score(agent_spec, node, state) do
    # Score based on affinity constraints satisfaction
    constraints = Map.get(agent_spec, :placement_constraints, [])
    
    affinity_constraints = Enum.filter(constraints, fn 
      {:affinity, _} -> true
      _ -> false
    end)
    
    if Enum.empty?(affinity_constraints) do
      0.5  # Neutral score
    else
      satisfied_count = Enum.count(affinity_constraints, fn constraint ->
        evaluate_constraint(constraint, agent_spec, node, state)
      end)
      
      satisfied_count / length(affinity_constraints)
    end
  end
  
  defp calculate_load_balance_score(node, state) do
    # Score based on load balancing (lower utilization = higher score)
    utilization = calculate_node_utilization(node, state.node_resources)
    average_utilization = calculate_average_utilization(utilization)
    
    # Invert utilization to get score (lower utilization = higher score)
    1.0 - average_utilization
  end
  
  defp calculate_performance_score(node, state) do
    # Score based on node performance metrics
    node_metrics = get_node_performance_metrics(node)
    
    # Combine various performance factors
    latency_score = 1.0 / max(Map.get(node_metrics, :avg_latency, 1), 1)
    throughput_score = Map.get(node_metrics, :throughput, 0) / 1000.0
    availability_score = Map.get(node_metrics, :availability, 0.0)
    
    (latency_score + throughput_score + availability_score) / 3
  end
  
  defp validate_placement(agent_spec, node, state) do
    # Validate that placement is possible and calculate resource reservation
    if meets_resource_requirements?(agent_spec, node, state) and
       satisfies_placement_constraints?(agent_spec, node, state) do
      
      required_resources = Map.get(agent_spec, :resources, %{})
      {:ok, required_resources}
    else
      {:error, :placement_validation_failed}
    end
  end
  
  defp execute_migration(agent_id, agent_info, target_node, options, state) do
    # Execute agent migration from current node to target node
    migration_strategy = Keyword.get(options, :strategy, :live_migration)
    
    case migration_strategy do
      :live_migration ->
        execute_live_migration(agent_id, agent_info, target_node, state)
      :checkpoint_restore ->
        execute_checkpoint_migration(agent_id, agent_info, target_node, state)
      :cold_migration ->
        execute_cold_migration(agent_id, agent_info, target_node, state)
    end
  end
  
  defp execute_live_migration(agent_id, agent_info, target_node, state) do
    # Live migration with minimal downtime
    try do
      # 1. Start agent on target node
      {:ok, _} = Phoenix.Agent.start_on_node(target_node, agent_id, agent_info.spec)
      
      # 2. Synchronize state
      :ok = Phoenix.Agent.sync_state(agent_id, agent_info.node, target_node)
      
      # 3. Switch traffic to new node
      :ok = Phoenix.MessageRouter.switch_target(agent_id, target_node)
      
      # 4. Stop agent on old node
      :ok = Phoenix.Agent.stop_on_node(agent_info.node, agent_id)
      
      # 5. Update resource allocations
      release_resources(state.node_resources, agent_info.node, agent_info.resources)
      reserve_resources(state.node_resources, target_node, agent_info.resources)
      
      {:ok, %{strategy: :live_migration, downtime: 0}}
      
    rescue
      error ->
        # Rollback on failure
        Phoenix.Agent.stop_on_node(target_node, agent_id)
        {:error, {:migration_failed, error}}
    end
  end
  
  defp execute_checkpoint_migration(agent_id, agent_info, target_node, state) do
    # Migration with checkpoint/restore
    try do
      # 1. Create checkpoint of agent state
      {:ok, checkpoint} = Phoenix.Agent.create_checkpoint(agent_id)
      
      # 2. Stop agent on current node
      :ok = Phoenix.Agent.stop_on_node(agent_info.node, agent_id)
      
      # 3. Start agent on target node from checkpoint
      {:ok, _} = Phoenix.Agent.restore_from_checkpoint(target_node, agent_id, checkpoint)
      
      # 4. Update resource allocations
      release_resources(state.node_resources, agent_info.node, agent_info.resources)
      reserve_resources(state.node_resources, target_node, agent_info.resources)
      
      {:ok, %{strategy: :checkpoint_restore, downtime: 5_000}}  # ~5 seconds downtime
      
    rescue
      error ->
        # Attempt to restart on original node
        Phoenix.Agent.start_on_node(agent_info.node, agent_id, agent_info.spec)
        {:error, {:migration_failed, error}}
    end
  end
  
  defp execute_cold_migration(agent_id, agent_info, target_node, state) do
    # Cold migration (stop, move, start)
    try do
      # 1. Stop agent on current node
      :ok = Phoenix.Agent.stop_on_node(agent_info.node, agent_id)
      
      # 2. Start agent on target node
      {:ok, _} = Phoenix.Agent.start_on_node(target_node, agent_id, agent_info.spec)
      
      # 3. Update resource allocations
      release_resources(state.node_resources, agent_info.node, agent_info.resources)
      reserve_resources(state.node_resources, target_node, agent_info.resources)
      
      {:ok, %{strategy: :cold_migration, downtime: 10_000}}  # ~10 seconds downtime
      
    rescue
      error ->
        # Attempt to restart on original node
        Phoenix.Agent.start_on_node(agent_info.node, agent_id, agent_info.spec)
        {:error, {:migration_failed, error}}
    end
  end
  
  defp generate_rebalancing_plan(state, options) do
    # Generate plan to rebalance agents across cluster
    target_distribution = Keyword.get(options, :target, :even_distribution)
    
    case target_distribution do
      :even_distribution ->
        generate_even_distribution_plan(state)
      :resource_optimization ->
        generate_resource_optimization_plan(state)
      :latency_optimization ->
        generate_latency_optimization_plan(state)
    end
  end
  
  defp generate_even_distribution_plan(state) do
    # Plan to distribute agents evenly across nodes
    total_agents = map_size(state.agent_registry)
    active_nodes = get_active_nodes(state.node_resources)
    target_agents_per_node = div(total_agents, length(active_nodes))
    
    current_distribution = calculate_current_distribution(state.agent_registry)
    
    # Find nodes that are over/under capacity
    moves = Enum.flat_map(current_distribution, fn {node, agent_count} ->
      if agent_count > target_agents_per_node do
        excess = agent_count - target_agents_per_node
        select_agents_to_move(node, excess, state)
      else
        []
      end
    end)
    
    %{
      type: :even_distribution,
      moves: moves,
      estimated_improvement: calculate_distribution_improvement(moves, state)
    }
  end
  
  # Helper functions
  defp get_available_resources(node, node_resources) do
    total_resources = Map.get(node_resources, node, %{total: %{}, used: %{}})
    total = Map.get(total_resources, :total, %{})
    used = Map.get(total_resources, :used, %{})
    
    Map.new(total, fn {resource_type, total_amount} ->
      used_amount = Map.get(used, resource_type, 0)
      {resource_type, total_amount - used_amount}
    end)
  end
  
  defp get_agent_nodes(agent_selectors, agent_registry) do
    # Get nodes where specified agents are running
    agent_registry
    |> Enum.filter(fn {agent_id, _info} ->
      agent_matches_selectors?(agent_id, agent_selectors)
    end)
    |> Enum.map(fn {_agent_id, info} -> info.node end)
    |> Enum.uniq()
  end
  
  defp agent_matches_selectors?(agent_id, selectors) do
    # Check if agent matches any of the selectors
    Enum.any?(selectors, fn selector ->
      case selector do
        {:agent_id, id} -> agent_id == id
        {:agent_type, type} -> agent_has_type?(agent_id, type)
        {:label, key, value} -> agent_has_label?(agent_id, key, value)
        _ -> false
      end
    end)
  end
  
  defp reserve_resources(node_resources, node, resource_reservation) do
    current_resources = Map.get(node_resources, node, %{total: %{}, used: %{}})
    current_used = Map.get(current_resources, :used, %{})
    
    new_used = Map.merge(current_used, resource_reservation, fn _key, current, additional ->
      current + additional
    end)
    
    updated_resources = Map.put(current_resources, :used, new_used)
    Map.put(node_resources, node, updated_resources)
  end
  
  defp release_resources(node_resources, node, resource_reservation) do
    current_resources = Map.get(node_resources, node, %{total: %{}, used: %{}})
    current_used = Map.get(current_resources, :used, %{})
    
    new_used = Map.merge(current_used, resource_reservation, fn _key, current, release ->
      max(0, current - release)
    end)
    
    updated_resources = Map.put(current_resources, :used, new_used)
    Map.put(node_resources, node, updated_resources)
  end
  
  defp initialize_cluster_topology() do
    # Initialize cluster topology information
    %{
      nodes: [node() | Node.list()],
      regions: %{},
      network_topology: %{}
    }
  end
  
  defp schedule_resource_monitoring() do
    Process.send_after(self(), :monitor_resources, 10_000)  # Every 10 seconds
  end
  
  defp collect_cluster_resources() do
    # Collect resource information from all nodes
    %{}  # Simplified implementation
  end
  
  defp load_placement_policies(opts) do
    # Load placement policies from configuration
    Keyword.get(opts, :policies, default_placement_policies())
  end
  
  defp default_placement_policies() do
    %{
      default_strategy: :resource_aware,
      affinity_weight: 0.2,
      resource_weight: 0.3,
      load_balance_weight: 0.3,
      performance_weight: 0.2
    }
  end
  
  defp initialize_objectives() do
    %{
      minimize_latency: 0.3,
      maximize_throughput: 0.3,
      balance_load: 0.2,
      minimize_cost: 0.2
    }
  end
  
  # Placeholder implementations for external dependencies
  defp node_healthy?(_node), do: true
  defp evaluate_node_selector(_selector, _node, _state), do: true
  defp calculate_node_utilization(_node, _resources), do: %{cpu: 0.5, memory: 0.6}
  defp calculate_average_utilization(utilization) do
    values = Map.values(utilization)
    if Enum.empty?(values), do: 0.0, else: Enum.sum(values) / length(values)
  end
  defp get_node_performance_metrics(_node), do: %{avg_latency: 10, throughput: 1000, availability: 0.99}
  defp count_nodes_in_use(registry) do
    registry |> Map.values() |> Enum.map(& &1.node) |> Enum.uniq() |> length()
  end
  defp calculate_resource_utilization(_resources), do: %{cpu: 0.6, memory: 0.7}
  defp calculate_placement_efficiency(_state), do: 0.85
  defp check_constraint_violations(_state), do: []
  defp agent_has_type?(_agent_id, _type), do: false
  defp agent_has_label?(_agent_id, _key, _value), do: false
  defp get_active_nodes(_resources), do: [node()]
  defp calculate_current_distribution(registry) do
    registry |> Enum.group_by(fn {_id, info} -> info.node end) |> Map.new(fn {node, agents} -> {node, length(agents)} end)
  end
  defp select_agents_to_move(_node, _count, _state), do: []
  defp calculate_distribution_improvement(_moves, _state), do: 0.1
  defp generate_resource_optimization_plan(state), do: generate_even_distribution_plan(state)
  defp generate_latency_optimization_plan(state), do: generate_even_distribution_plan(state)
  defp execute_rebalancing_plan(plan, state), do: {:ok, state}
end

Performance Monitoring and Metrics

Comprehensive Performance Monitoring System

defmodule Phoenix.Metrics do
  @moduledoc """
  Comprehensive performance monitoring and metrics collection system.
  
  Metrics Categories:
  1. **Agent Performance**: Response times, throughput, error rates
  2. **System Resources**: CPU, memory, network, disk utilization
  3. **Cluster Health**: Node availability, partition status, consensus health
  4. **Application Metrics**: Business logic performance, custom metrics
  5. **Infrastructure Metrics**: Load balancer, message queue, database performance
  """
  
  use GenServer
  
  defstruct [
    :collectors,
    :metric_store,
    :aggregators,
    :alert_thresholds,
    :reporting_intervals,
    :metric_history
  ]
  
  @metric_types [:counter, :gauge, :histogram, :timer, :summary]
  @default_collection_interval 1_000  # 1 second
  @default_aggregation_interval 60_000  # 1 minute
  
  def start_link(opts \\ []) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def init(opts) do
    state = %__MODULE__{
      collectors: initialize_collectors(),
      metric_store: :ets.new(:phoenix_metrics, [:set, :public, :named_table]),
      aggregators: initialize_aggregators(),
      alert_thresholds: load_alert_thresholds(opts),
      reporting_intervals: initialize_reporting_intervals(),
      metric_history: %{}
    }
    
    # Start metric collection
    schedule_metric_collection()
    schedule_metric_aggregation()
    
    {:ok, state}
  end
  
  @doc """
  Record a metric value.
  """
  def record_metric(metric_name, value, metadata \\ %{}) do
    timestamp = System.system_time(:microsecond)
    
    metric_entry = %{
      name: metric_name,
      value: value,
      timestamp: timestamp,
      metadata: metadata,
      node: node()
    }
    
    :ets.insert(:phoenix_metrics, {metric_name, timestamp, metric_entry})
    
    # Check for alert conditions
    check_alert_threshold(metric_name, value)
  end
  
  @doc """
  Increment a counter metric.
  """
  def increment(metric_name, amount \\ 1, metadata \\ %{}) do
    current_value = get_current_value(metric_name, 0)
    record_metric(metric_name, current_value + amount, metadata)
  end
  
  @doc """
  Record timing information.
  """
  def time(metric_name, fun) when is_function(fun, 0) do
    start_time = System.monotonic_time(:microsecond)
    
    try do
      result = fun.()
      execution_time = System.monotonic_time(:microsecond) - start_time
      record_metric(metric_name, execution_time, %{type: :timing, unit: :microseconds})
      {:ok, result}
    rescue
      error ->
        execution_time = System.monotonic_time(:microsecond) - start_time
        record_metric(metric_name, execution_time, %{type: :timing, unit: :microseconds, error: true})
        {:error, error}
    end
  end
  
  @doc """
  Get current metric value.
  """
  def get_metric(metric_name) do
    GenServer.call(__MODULE__, {:get_metric, metric_name})
  end
  
  @doc """
  Get metric statistics (min, max, avg, percentiles).
  """
  def get_metric_stats(metric_name, time_window \\ :last_hour) do
    GenServer.call(__MODULE__, {:get_metric_stats, metric_name, time_window})
  end
  
  @doc """
  Get all metrics for a specific node.
  """
  def get_node_metrics(node \\ node()) do
    GenServer.call(__MODULE__, {:get_node_metrics, node})
  end
  
  @doc """
  Get cluster-wide aggregated metrics.
  """
  def get_cluster_metrics() do
    GenServer.call(__MODULE__, :get_cluster_metrics)
  end
  
  def handle_call({:get_metric, metric_name}, _from, state) do
    latest_value = get_latest_metric_value(metric_name)
    {:reply, latest_value, state}
  end
  
  def handle_call({:get_metric_stats, metric_name, time_window}, _from, state) do
    stats = calculate_metric_statistics(metric_name, time_window)
    {:reply, stats, state}
  end
  
  def handle_call({:get_node_metrics, node}, _from, state) do
    node_metrics = collect_node_specific_metrics(node)
    {:reply, node_metrics, state}
  end
  
  def handle_call(:get_cluster_metrics, _from, state) do
    cluster_metrics = aggregate_cluster_metrics()
    {:reply, cluster_metrics, state}
  end
  
  def handle_info(:collect_metrics, state) do
    # Collect metrics from all registered collectors
    Enum.each(state.collectors, fn {collector_name, collector_module} ->
      spawn(fn ->
        try do
          metrics = collector_module.collect()
          store_collected_metrics(collector_name, metrics)
        rescue
          error ->
            Logger.error("Metric collection failed for #{collector_name}: #{inspect(error)}")
        end
      end)
    end)
    
    schedule_metric_collection()
    {:noreply, state}
  end
  
  def handle_info(:aggregate_metrics, state) do
    # Perform metric aggregation
    new_history = perform_metric_aggregation(state.metric_history)
    
    schedule_metric_aggregation()
    {:noreply, %{state | metric_history: new_history}}
  end
  
  defp get_latest_metric_value(metric_name) do
    case :ets.lookup(:phoenix_metrics, metric_name) do
      [] -> nil
      entries ->
        # Get most recent entry
        {_name, _timestamp, latest_entry} = Enum.max_by(entries, fn {_name, timestamp, _entry} -> 
          timestamp 
        end)
        latest_entry.value
    end
  end
  
  defp calculate_metric_statistics(metric_name, time_window) do
    cutoff_time = calculate_cutoff_time(time_window)
    
    # Get all metric entries within time window
    entries = :ets.lookup(:phoenix_metrics, metric_name)
    |> Enum.filter(fn {_name, timestamp, _entry} -> timestamp >= cutoff_time end)
    |> Enum.map(fn {_name, _timestamp, entry} -> entry.value end)
    
    if Enum.empty?(entries) do
      %{count: 0, min: nil, max: nil, avg: nil, percentiles: %{}}
    else
      sorted_values = Enum.sort(entries)
      
      %{
        count: length(entries),
        min: List.first(sorted_values),
        max: List.last(sorted_values),
        avg: Enum.sum(entries) / length(entries),
        percentiles: calculate_percentiles(sorted_values)
      }
    end
  end
  
  defp calculate_percentiles(sorted_values) do
    length = length(sorted_values)
    
    %{
      p50: percentile(sorted_values, length, 50),
      p95: percentile(sorted_values, length, 95),
      p99: percentile(sorted_values, length, 99)
    }
  end
  
  defp percentile(sorted_values, length, percentile) do
    index = round(length * percentile / 100) - 1
    index = max(0, min(index, length - 1))
    Enum.at(sorted_values, index)
  end
  
  defp collect_node_specific_metrics(node) do
    # Collect comprehensive node metrics
    base_metrics = %{
      cpu_utilization: get_cpu_utilization(node),
      memory_utilization: get_memory_utilization(node),
      network_utilization: get_network_utilization(node),
      disk_utilization: get_disk_utilization(node),
      process_count: get_process_count(node),
      agent_count: get_agent_count(node),
      message_queue_length: get_message_queue_length(node),
      response_time_avg: get_average_response_time(node),
      throughput: get_throughput(node),
      error_rate: get_error_rate(node),
      availability: get_availability(node)
    }
    
    # Add BEAM-specific metrics
    beam_metrics = if node == node() do
      %{
        beam_process_count: :erlang.system_info(:process_count),
        beam_memory_total: :erlang.memory(:total),
        beam_memory_processes: :erlang.memory(:processes),
        beam_memory_system: :erlang.memory(:system),
        beam_run_queue: :erlang.statistics(:run_queue),
        beam_reductions: elem(:erlang.statistics(:reductions), 0)
      }
    else
      get_remote_beam_metrics(node)
    end
    
    Map.merge(base_metrics, beam_metrics)
  end
  
  defp aggregate_cluster_metrics() do
    # Aggregate metrics across all cluster nodes
    all_nodes = [node() | Node.list()]
    
    node_metrics = Enum.map(all_nodes, fn node ->
      {node, collect_node_specific_metrics(node)}
    end)
    |> Enum.into(%{})
    
    # Calculate cluster-wide aggregations
    %{
      cluster_cpu_avg: calculate_cluster_average(node_metrics, :cpu_utilization),
      cluster_memory_avg: calculate_cluster_average(node_metrics, :memory_utilization),
      cluster_throughput_total: calculate_cluster_sum(node_metrics, :throughput),
      cluster_error_rate_avg: calculate_cluster_average(node_metrics, :error_rate),
      cluster_availability: calculate_cluster_availability(node_metrics),
      active_nodes: length(all_nodes),
      total_agents: calculate_cluster_sum(node_metrics, :agent_count),
      node_metrics: node_metrics
    }
  end
  
  defp calculate_cluster_average(node_metrics, metric_key) do
    values = Map.values(node_metrics)
    |> Enum.map(fn metrics -> Map.get(metrics, metric_key, 0) end)
    |> Enum.filter(&is_number/1)
    
    if Enum.empty?(values) do
      0.0
    else
      Enum.sum(values) / length(values)
    end
  end
  
  defp calculate_cluster_sum(node_metrics, metric_key) do
    Map.values(node_metrics)
    |> Enum.map(fn metrics -> Map.get(metrics, metric_key, 0) end)
    |> Enum.filter(&is_number/1)
    |> Enum.sum()
  end
  
  defp calculate_cluster_availability(node_metrics) do
    availabilities = Map.values(node_metrics)
    |> Enum.map(fn metrics -> Map.get(metrics, :availability, 0.0) end)
    
    if Enum.empty?(availabilities) do
      0.0
    else
      # Cluster availability is the product of node availabilities
      Enum.reduce(availabilities, 1.0, &(&1 * &2))
    end
  end
  
  defp check_alert_threshold(metric_name, value) do
    # Check if metric value exceeds alert thresholds
    thresholds = get_alert_thresholds(metric_name)
    
    Enum.each(thresholds, fn {level, threshold_value} ->
      if exceeds_threshold?(value, threshold_value) do
        trigger_alert(metric_name, value, level, threshold_value)
      end
    end)
  end
  
  defp exceeds_threshold?(value, threshold) when is_number(value) and is_number(threshold) do
    value > threshold
  end
  
  defp exceeds_threshold?(_value, _threshold), do: false
  
  defp trigger_alert(metric_name, value, level, threshold) do
    alert = %{
      metric: metric_name,
      value: value,
      threshold: threshold,
      level: level,
      timestamp: DateTime.utc_now(),
      node: node()
    }
    
    Phoenix.Alerting.send_alert(alert)
  end
  
  defp initialize_collectors() do
    %{
      system_metrics: Phoenix.Metrics.SystemCollector,
      agent_metrics: Phoenix.Metrics.AgentCollector,
      network_metrics: Phoenix.Metrics.NetworkCollector,
      application_metrics: Phoenix.Metrics.ApplicationCollector
    }
  end
  
  defp initialize_aggregators() do
    %{
      time_series: Phoenix.Metrics.TimeSeriesAggregator,
      statistical: Phoenix.Metrics.StatisticalAggregator,
      threshold: Phoenix.Metrics.ThresholdAggregator
    }
  end
  
  defp load_alert_thresholds(opts) do
    Keyword.get(opts, :alert_thresholds, default_alert_thresholds())
  end
  
  defp default_alert_thresholds() do
    %{
      cpu_utilization: [{:warning, 0.8}, {:critical, 0.95}],
      memory_utilization: [{:warning, 0.85}, {:critical, 0.95}],
      response_time_avg: [{:warning, 100}, {:critical, 500}],
      error_rate: [{:warning, 0.05}, {:critical, 0.1}]
    }
  end
  
  defp initialize_reporting_intervals() do
    %{
      real_time: 1_000,      # 1 second
      short_term: 60_000,    # 1 minute
      medium_term: 300_000,  # 5 minutes
      long_term: 3_600_000   # 1 hour
    }
  end
  
  defp calculate_cutoff_time(time_window) do
    now = System.system_time(:microsecond)
    
    case time_window do
      :last_minute -> now - 60_000_000      # 60 seconds
      :last_hour -> now - 3_600_000_000     # 1 hour
      :last_day -> now - 86_400_000_000     # 24 hours
      _ -> now - 3_600_000_000               # Default to 1 hour
    end
  end
  
  defp schedule_metric_collection() do
    Process.send_after(self(), :collect_metrics, @default_collection_interval)
  end
  
  defp schedule_metric_aggregation() do
    Process.send_after(self(), :aggregate_metrics, @default_aggregation_interval)
  end
  
  defp store_collected_metrics(collector_name, metrics) do
    timestamp = System.system_time(:microsecond)
    
    Enum.each(metrics, fn {metric_name, value, metadata} ->
      full_metric_name = "#{collector_name}.#{metric_name}"
      record_metric(full_metric_name, value, Map.put(metadata, :collector, collector_name))
    end)
  end
  
  defp perform_metric_aggregation(history) do
    # Perform time-based aggregation of metrics
    current_window = System.system_time(:microsecond)
    
    # Aggregate metrics by time windows
    aggregated = aggregate_time_windows(current_window)
    
    # Update history with new aggregations
    Map.put(history, current_window, aggregated)
    |> keep_recent_history(100)  # Keep last 100 aggregation windows
  end
  
  defp aggregate_time_windows(current_time) do
    # Implementation would aggregate metrics over time windows
    %{
      timestamp: current_time,
      aggregations: %{}
    }
  end
  
  defp keep_recent_history(history, max_entries) do
    history
    |> Enum.sort_by(fn {timestamp, _} -> timestamp end, :desc)
    |> Enum.take(max_entries)
    |> Enum.into(%{})
  end
  
  defp get_current_value(metric_name, default) do
    case get_latest_metric_value(metric_name) do
      nil -> default
      value -> value
    end
  end
  
  defp get_alert_thresholds(metric_name) do
    # Get alert thresholds for specific metric
    GenServer.call(__MODULE__, {:get_alert_thresholds, metric_name})
  end
  
  # Placeholder implementations for system metrics
  defp get_cpu_utilization(_node), do: 0.5
  defp get_memory_utilization(_node), do: 0.6
  defp get_network_utilization(_node), do: 0.3
  defp get_disk_utilization(_node), do: 0.4
  defp get_process_count(_node), do: 150
  defp get_agent_count(_node), do: 25
  defp get_message_queue_length(_node), do: 10
  defp get_average_response_time(_node), do: 50.0
  defp get_throughput(_node), do: 1000.0
  defp get_error_rate(_node), do: 0.02
  defp get_availability(_node), do: 0.99
  defp get_remote_beam_metrics(_node), do: %{}
end

Horizontal Scaling Automation

Auto-Scaling Engine

defmodule Phoenix.AutoScaling do
  @moduledoc """
  Intelligent auto-scaling system that automatically adjusts cluster size
  based on performance metrics, workload predictions, and scaling policies.
  
  Scaling Strategies:
  1. **Reactive Scaling**: Scale based on current metrics
  2. **Predictive Scaling**: Scale based on ML predictions
  3. **Scheduled Scaling**: Scale based on time patterns
  4. **Event-Driven Scaling**: Scale based on external events
  5. **Hybrid Scaling**: Combine multiple strategies
  """
  
  use GenServer
  
  defstruct [
    :scaling_policies,
    :current_capacity,
    :target_capacity,
    :scaling_history,
    :workload_predictor,
    :scaling_cooldowns,
    :resource_pools
  ]
  
  @scale_out_cooldown 300_000    # 5 minutes
  @scale_in_cooldown 600_000     # 10 minutes
  @prediction_horizon 3600       # 1 hour prediction horizon
  
  def start_link(opts \\ []) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def init(opts) do
    state = %__MODULE__{
      scaling_policies: load_scaling_policies(opts),
      current_capacity: get_current_cluster_capacity(),
      target_capacity: get_current_cluster_capacity(),
      scaling_history: [],
      workload_predictor: Phoenix.ML.WorkloadPredictor.new(),
      scaling_cooldowns: %{scale_out: 0, scale_in: 0},
      resource_pools: initialize_resource_pools(opts)
    }
    
    # Start scaling evaluation
    schedule_scaling_evaluation()
    schedule_predictive_scaling()
    
    {:ok, state}
  end
  
  @doc """
  Trigger immediate scaling evaluation.
  """
  def evaluate_scaling() do
    GenServer.cast(__MODULE__, :evaluate_scaling)
  end
  
  @doc """
  Manually scale cluster to specified capacity.
  """
  def scale_to(target_capacity, reason \\ :manual) do
    GenServer.call(__MODULE__, {:scale_to, target_capacity, reason})
  end
  
  @doc """
  Add scaling policy.
  """
  def add_scaling_policy(policy) do
    GenServer.call(__MODULE__, {:add_policy, policy})
  end
  
  @doc """
  Get current scaling status and recommendations.
  """
  def scaling_status() do
    GenServer.call(__MODULE__, :scaling_status)
  end
  
  def handle_call({:scale_to, target_capacity, reason}, _from, state) do
    case validate_scaling_request(target_capacity, state) do
      :ok ->
        case execute_scaling(state.current_capacity, target_capacity, reason, state) do
          {:ok, new_state} ->
            {:reply, :ok, new_state}
          {:error, reason} ->
            {:reply, {:error, reason}, state}
        end
        
      {:error, reason} ->
        {:reply, {:error, reason}, state}
    end
  end
  
  def handle_call({:add_policy, policy}, _from, state) do
    new_policies = [policy | state.scaling_policies]
    {:reply, :ok, %{state | scaling_policies: new_policies}}
  end
  
  def handle_call(:scaling_status, _from, state) do
    status = %{
      current_capacity: state.current_capacity,
      target_capacity: state.target_capacity,
      scaling_policies: length(state.scaling_policies),
      recent_scaling_events: Enum.take(state.scaling_history, 10),
      cooldown_status: get_cooldown_status(state.scaling_cooldowns),
      predictions: get_scaling_predictions(state.workload_predictor)
    }
    
    {:reply, status, state}
  end
  
  def handle_cast(:evaluate_scaling, state) do
    new_state = perform_scaling_evaluation(state)
    {:noreply, new_state}
  end
  
  def handle_info(:scaling_evaluation, state) do
    new_state = perform_scaling_evaluation(state)
    
    schedule_scaling_evaluation()
    {:noreply, new_state}
  end
  
  def handle_info(:predictive_scaling, state) do
    new_state = perform_predictive_scaling(state)
    
    schedule_predictive_scaling()
    {:noreply, new_state}
  end
  
  def handle_info({:scaling_complete, scaling_result}, state) do
    # Update state after scaling operation completes
    new_state = handle_scaling_completion(scaling_result, state)
    {:noreply, new_state}
  end
  
  defp perform_scaling_evaluation(state) do
    # Collect current metrics
    current_metrics = collect_scaling_metrics()
    
    # Evaluate each scaling policy
    scaling_decisions = Enum.map(state.scaling_policies, fn policy ->
      evaluate_scaling_policy(policy, current_metrics, state)
    end)
    |> Enum.filter(fn decision -> decision != :no_action end)
    
    # Combine decisions and determine final action
    final_decision = resolve_scaling_decisions(scaling_decisions, state)
    
    case final_decision do
      {:scale_out, target_capacity, reasons} ->
        if can_scale_out?(state) do
          execute_scale_out(target_capacity, reasons, state)
        else
          state
        end
        
      {:scale_in, target_capacity, reasons} ->
        if can_scale_in?(state) do
          execute_scale_in(target_capacity, reasons, state)
        else
          state
        end
        
      :no_action ->
        state
    end
  end
  
  defp evaluate_scaling_policy(policy, metrics, state) do
    case policy.type do
      :threshold_based ->
        evaluate_threshold_policy(policy, metrics, state)
      :rate_based ->
        evaluate_rate_policy(policy, metrics, state)
      :queue_based ->
        evaluate_queue_policy(policy, metrics, state)
      :resource_based ->
        evaluate_resource_policy(policy, metrics, state)
      :composite ->
        evaluate_composite_policy(policy, metrics, state)
    end
  end
  
  defp evaluate_threshold_policy(policy, metrics, state) do
    metric_value = Map.get(metrics, policy.metric)
    
    cond do
      metric_value > policy.scale_out_threshold ->
        target = calculate_scale_out_target(policy, metric_value, state.current_capacity)
        {:scale_out, target, [policy.name]}
        
      metric_value < policy.scale_in_threshold ->
        target = calculate_scale_in_target(policy, metric_value, state.current_capacity)
        {:scale_in, target, [policy.name]}
        
      true ->
        :no_action
    end
  end
  
  defp evaluate_rate_policy(policy, metrics, state) do
    # Evaluate based on rate of change
    metric_history = get_metric_history(policy.metric, policy.evaluation_window)
    
    if length(metric_history) >= 2 do
      rate_of_change = calculate_rate_of_change(metric_history)
      
      cond do
        rate_of_change > policy.scale_out_rate ->
          target = state.current_capacity + policy.scale_increment
          {:scale_out, target, [policy.name]}
          
        rate_of_change < policy.scale_in_rate ->
          target = max(policy.min_capacity, state.current_capacity - policy.scale_decrement)
          {:scale_in, target, [policy.name]}
          
        true ->
          :no_action
      end
    else
      :no_action
    end
  end
  
  defp evaluate_queue_policy(policy, metrics, state) do
    # Evaluate based on queue lengths and processing times
    queue_length = Map.get(metrics, policy.queue_metric, 0)
    processing_rate = Map.get(metrics, policy.processing_rate_metric, 1)
    
    estimated_wait_time = queue_length / processing_rate
    
    cond do
      estimated_wait_time > policy.max_wait_time ->
        # Scale out to reduce wait time
        target_processing_rate = queue_length / policy.target_wait_time
        scale_factor = target_processing_rate / processing_rate
        target = round(state.current_capacity * scale_factor)
        {:scale_out, target, [policy.name]}
        
      estimated_wait_time < policy.min_utilization_wait_time ->
        # Scale in due to low utilization
        target = max(policy.min_capacity, round(state.current_capacity * 0.8))
        {:scale_in, target, [policy.name]}
        
      true ->
        :no_action
    end
  end
  
  defp evaluate_resource_policy(policy, metrics, state) do
    # Evaluate based on resource utilization across multiple dimensions
    resource_scores = Enum.map(policy.resources, fn {resource, thresholds} ->
      utilization = Map.get(metrics, resource, 0.0)
      
      cond do
        utilization > thresholds.scale_out -> {:scale_out, resource, utilization}
        utilization < thresholds.scale_in -> {:scale_in, resource, utilization}
        true -> {:no_action, resource, utilization}
      end
    end)
    
    # Determine action based on most constrained resource
    critical_resources = Enum.filter(resource_scores, fn {action, _, _} -> 
      action in [:scale_out, :scale_in] 
    end)
    
    if not Enum.empty?(critical_resources) do
      {action, resource, _} = Enum.max_by(critical_resources, fn {_, _, utilization} -> 
        utilization 
      end)
      
      target = case action do
        :scale_out -> state.current_capacity + policy.scale_increment
        :scale_in -> max(policy.min_capacity, state.current_capacity - policy.scale_decrement)
      end
      
      {action, target, [policy.name, resource]}
    else
      :no_action
    end
  end
  
  defp evaluate_composite_policy(policy, metrics, state) do
    # Evaluate composite policy that combines multiple conditions
    sub_decisions = Enum.map(policy.sub_policies, fn sub_policy ->
      evaluate_scaling_policy(sub_policy, metrics, state)
    end)
    
    case policy.combination_strategy do
      :any -> 
        # Any sub-policy triggering causes action
        Enum.find(sub_decisions, :no_action, &(&1 != :no_action))
        
      :all ->
        # All sub-policies must agree
        if Enum.all?(sub_decisions, &(&1 != :no_action)) do
          # Take the most aggressive action
          aggregate_decisions(sub_decisions)
        else
          :no_action
        end
        
      :majority ->
        # Majority of sub-policies must agree
        non_no_action = Enum.filter(sub_decisions, &(&1 != :no_action))
        
        if length(non_no_action) > length(policy.sub_policies) / 2 do
          aggregate_decisions(non_no_action)
        else
          :no_action
        end
    end
  end
  
  defp resolve_scaling_decisions(decisions, state) do
    if Enum.empty?(decisions) do
      :no_action
    else
      # Group decisions by action type
      {scale_out_decisions, scale_in_decisions} = Enum.split_with(decisions, fn
        {:scale_out, _, _} -> true
        _ -> false
      end)
      
      cond do
        not Enum.empty?(scale_out_decisions) ->
          # Prioritize scale out for performance
          {_, max_target, reasons} = Enum.max_by(scale_out_decisions, fn {_, target, _} -> 
            target 
          end)
          all_reasons = Enum.flat_map(scale_out_decisions, fn {_, _, reasons} -> reasons end)
          {:scale_out, max_target, all_reasons}
          
        not Enum.empty?(scale_in_decisions) ->
          # Scale in conservatively
          {_, min_target, reasons} = Enum.min_by(scale_in_decisions, fn {_, target, _} -> 
            target 
          end)
          all_reasons = Enum.flat_map(scale_in_decisions, fn {_, _, reasons} -> reasons end)
          {:scale_in, min_target, all_reasons}
          
        true ->
          :no_action
      end
    end
  end
  
  defp execute_scale_out(target_capacity, reasons, state) do
    Logger.info("Scaling out from #{state.current_capacity} to #{target_capacity}, reasons: #{inspect(reasons)}")
    
    scaling_event = %{
      type: :scale_out,
      from_capacity: state.current_capacity,
      to_capacity: target_capacity,
      reasons: reasons,
      timestamp: DateTime.utc_now()
    }
    
    # Execute scaling asynchronously
    spawn_link(fn ->
      result = perform_scale_out(state.current_capacity, target_capacity)
      send(__MODULE__, {:scaling_complete, result})
    end)
    
    # Update state
    new_history = [scaling_event | state.scaling_history] |> Enum.take(100)
    new_cooldowns = Map.put(state.scaling_cooldowns, :scale_out, System.monotonic_time(:millisecond) + @scale_out_cooldown)
    
    %{state | 
      target_capacity: target_capacity,
      scaling_history: new_history,
      scaling_cooldowns: new_cooldowns
    }
  end
  
  defp execute_scale_in(target_capacity, reasons, state) do
    Logger.info("Scaling in from #{state.current_capacity} to #{target_capacity}, reasons: #{inspect(reasons)}")
    
    scaling_event = %{
      type: :scale_in,
      from_capacity: state.current_capacity,
      to_capacity: target_capacity,
      reasons: reasons,
      timestamp: DateTime.utc_now()
    }
    
    # Execute scaling asynchronously
    spawn_link(fn ->
      result = perform_scale_in(state.current_capacity, target_capacity)
      send(__MODULE__, {:scaling_complete, result})
    end)
    
    # Update state
    new_history = [scaling_event | state.scaling_history] |> Enum.take(100)
    new_cooldowns = Map.put(state.scaling_cooldowns, :scale_in, System.monotonic_time(:millisecond) + @scale_in_cooldown)
    
    %{state | 
      target_capacity: target_capacity,
      scaling_history: new_history,
      scaling_cooldowns: new_cooldowns
    }
  end
  
  defp perform_scale_out(current_capacity, target_capacity) do
    additional_nodes = target_capacity - current_capacity
    
    try do
      # Provision additional nodes
      new_nodes = provision_nodes(additional_nodes)
      
      # Add nodes to cluster
      Enum.each(new_nodes, fn node ->
        :ok = add_node_to_cluster(node)
      end)
      
      # Rebalance agents across expanded cluster
      :ok = Phoenix.LoadBalancing.rebalance_agents()
      
      {:ok, %{
        action: :scale_out,
        new_nodes: new_nodes,
        new_capacity: target_capacity
      }}
      
    rescue
      error ->
        {:error, {:scale_out_failed, error}}
    end
  end
  
  defp perform_scale_in(current_capacity, target_capacity) do
    nodes_to_remove = current_capacity - target_capacity
    
    try do
      # Select nodes to remove (least loaded)
      candidate_nodes = select_nodes_for_removal(nodes_to_remove)
      
      # Drain agents from selected nodes
      Enum.each(candidate_nodes, fn node ->
        :ok = drain_node(node)
      end)
      
      # Remove nodes from cluster
      Enum.each(candidate_nodes, fn node ->
        :ok = remove_node_from_cluster(node)
      end)
      
      # Deprovision nodes
      :ok = deprovision_nodes(candidate_nodes)
      
      {:ok, %{
        action: :scale_in,
        removed_nodes: candidate_nodes,
        new_capacity: target_capacity
      }}
      
    rescue
      error ->
        {:error, {:scale_in_failed, error}}
    end
  end
  
  defp perform_predictive_scaling(state) do
    # Use ML model to predict future workload
    current_time = DateTime.utc_now()
    prediction_time = DateTime.add(current_time, @prediction_horizon, :second)
    
    predicted_workload = Phoenix.ML.WorkloadPredictor.predict(
      state.workload_predictor,
      prediction_time
    )
    
    # Calculate required capacity for predicted workload
    required_capacity = calculate_required_capacity(predicted_workload)
    
    # Check if pre-emptive scaling is needed
    current_capacity = state.current_capacity
    capacity_buffer = 0.2  # 20% buffer
    
    cond do
      required_capacity > current_capacity * (1 + capacity_buffer) ->
        # Pre-emptive scale out
        target = round(required_capacity * 1.1)  # 10% additional buffer
        
        Logger.info("Predictive scaling: scaling out to #{target} for predicted workload")
        execute_scale_out(target, [:predictive_scaling], state)
        
      required_capacity < current_capacity * (1 - capacity_buffer) ->
        # Pre-emptive scale in
        target = max(1, round(required_capacity))
        
        Logger.info("Predictive scaling: scaling in to #{target} for predicted workload")
        execute_scale_in(target, [:predictive_scaling], state)
        
      true ->
        # No action needed
        state
    end
  end
  
  defp can_scale_out?(state) do
    now = System.monotonic_time(:millisecond)
    cooldown_end = Map.get(state.scaling_cooldowns, :scale_out, 0)
    
    now >= cooldown_end
  end
  
  defp can_scale_in?(state) do
    now = System.monotonic_time(:millisecond)
    cooldown_end = Map.get(state.scaling_cooldowns, :scale_in, 0)
    
    now >= cooldown_end and state.current_capacity > 1
  end
  
  defp handle_scaling_completion(scaling_result, state) do
    case scaling_result do
      {:ok, %{new_capacity: new_capacity}} ->
        Logger.info("Scaling completed successfully, new capacity: #{new_capacity}")
        %{state | current_capacity: new_capacity}
        
      {:error, reason} ->
        Logger.error("Scaling failed: #{inspect(reason)}")
        # Revert target capacity to current capacity
        %{state | target_capacity: state.current_capacity}
    end
  end
  
  # Helper functions and initialization
  defp collect_scaling_metrics() do
    # Collect metrics relevant to scaling decisions
    Phoenix.Metrics.get_cluster_metrics()
  end
  
  defp get_current_cluster_capacity() do
    length([node() | Node.list()])
  end
  
  defp load_scaling_policies(opts) do
    Keyword.get(opts, :scaling_policies, default_scaling_policies())
  end
  
  defp default_scaling_policies() do
    [
      %{
        name: :cpu_threshold,
        type: :threshold_based,
        metric: :cluster_cpu_avg,
        scale_out_threshold: 0.8,
        scale_in_threshold: 0.3,
        min_capacity: 1,
        max_capacity: 20,
        scale_increment: 2
      },
      %{
        name: :memory_threshold,
        type: :threshold_based,
        metric: :cluster_memory_avg,
        scale_out_threshold: 0.85,
        scale_in_threshold: 0.4,
        min_capacity: 1,
        max_capacity: 20,
        scale_increment: 1
      }
    ]
  end
  
  defp initialize_resource_pools(opts) do
    Keyword.get(opts, :resource_pools, %{
      compute: %{min: 1, max: 50, current: 5},
      memory: %{min: 1, max: 100, current: 10}
    })
  end
  
  defp schedule_scaling_evaluation() do
    Process.send_after(self(), :scaling_evaluation, 30_000)  # Every 30 seconds
  end
  
  defp schedule_predictive_scaling() do
    Process.send_after(self(), :predictive_scaling, 300_000)  # Every 5 minutes
  end
  
  # Placeholder implementations
  defp validate_scaling_request(_target_capacity, _state), do: :ok
  defp execute_scaling(_current, _target, _reason, state), do: {:ok, state}
  defp get_cooldown_status(_cooldowns), do: %{scale_out: false, scale_in: false}
  defp get_scaling_predictions(_predictor), do: %{predicted_load: 0.5, confidence: 0.8}
  defp calculate_scale_out_target(_policy, _metric_value, current_capacity), do: current_capacity + 1
  defp calculate_scale_in_target(_policy, _metric_value, current_capacity), do: max(1, current_capacity - 1)
  defp get_metric_history(_metric, _window), do: [0.5, 0.6, 0.7]
  defp calculate_rate_of_change([_|_] = history), do: List.last(history) - hd(history)
  defp aggregate_decisions([decision | _]), do: decision
  defp calculate_required_capacity(_workload), do: 3
  defp provision_nodes(count), do: for i <- 1..count, do: :"node#{i}@localhost"
  defp add_node_to_cluster(_node), do: :ok
  defp select_nodes_for_removal(count), do: for i <- 1..count, do: :"node#{i}@localhost"
  defp drain_node(_node), do: :ok
  defp remove_node_from_cluster(_node), do: :ok
  defp deprovision_nodes(_nodes), do: :ok
end

Summary and Implementation Roadmap

Performance Optimization Summary

Phoenix’s performance optimization system provides:

  1. Adaptive Performance Management: Automatic tuning based on real-time metrics and ML predictions
  2. Intelligent Load Balancing: Multiple strategies with dynamic weight adjustment
  3. Resource-Aware Placement: Optimal agent distribution considering constraints and objectives
  4. Comprehensive Monitoring: Multi-dimensional metrics collection and analysis
  5. Auto-Scaling: Reactive and predictive scaling with multiple policy types

Implementation Roadmap

<function_calls> [{“content”: “Research modern distributed systems patterns and CAP theorem implications”, “status”: “completed”, “priority”: “high”, “id”: “1”}, {“content”: “Analyze BEAM/OTP distribution capabilities and limitations”, “status”: “completed”, “priority”: “high”, “id”: “2”}, {“content”: “Design core distributed agent primitives”, “status”: “completed”, “priority”: “high”, “id”: “3”}, {“content”: “Create comprehensive architecture document”, “status”: “completed”, “priority”: “high”, “id”: “4”}, {“content”: “Design communication patterns and protocols”, “status”: “completed”, “priority”: “high”, “id”: “5”}, {“content”: “Define state management and consistency strategies”, “status”: “completed”, “priority”: “medium”, “id”: “6”}, {“content”: “Create fault tolerance and partition handling design”, “status”: “completed”, “priority”: “medium”, “id”: “7”}, {“content”: “Design performance optimization strategies”, “status”: “completed”, “priority”: “medium”, “id”: “8”}, {“content”: “Create implementation roadmap and technical specifications”, “status”: “in_progress”, “priority”: “medium”, “id”: “9”}]