Phoenix: Performance Optimization and Scaling
Date: 2025-07-12
Version: 1.0
Series: Distributed Agent System - Part 5 (Performance)
Executive Summary
This document provides comprehensive specifications for performance optimization and horizontal scaling in the Phoenix distributed agent system. Drawing from high-performance distributed systems research, BEAM performance engineering, and production scaling patterns, Phoenix implements adaptive performance optimization that automatically adjusts system behavior based on real-time performance metrics and workload characteristics.
Key Innovation: Phoenix employs predictive performance scaling where the system uses machine learning techniques to anticipate performance bottlenecks and proactively adjust resource allocation, load balancing, and system configuration.
Table of Contents
- Performance Architecture Overview
- Adaptive Load Balancing
- Resource-Aware Agent Placement
- Performance Monitoring and Metrics
- Horizontal Scaling Automation
- Memory and CPU Optimization
- Network Performance Optimization
- Predictive Performance Management
Performance Architecture Overview
Multi-Layered Performance System
defmodule Phoenix.Performance do
@moduledoc """
Central performance management system coordinating all optimization strategies.
Performance Layers:
1. **Real-time Monitoring**: Sub-second performance metrics collection
2. **Adaptive Optimization**: Dynamic system tuning based on workload
3. **Predictive Scaling**: ML-based capacity planning and resource allocation
4. **Resource Management**: Intelligent resource scheduling and allocation
5. **Network Optimization**: Transport and protocol optimization
"""
use GenServer
defstruct [
:node_id,
:performance_targets,
:current_metrics,
:optimization_strategies,
:scaling_policies,
:resource_allocations,
:prediction_models
]
@performance_targets %{
agent_response_time_p95: 50, # 50ms 95th percentile
message_throughput: 10_000, # 10k messages/second
cluster_availability: 0.999, # 99.9% availability
resource_utilization: 0.75, # 75% max resource utilization
scaling_response_time: 30 # 30 seconds to scale
}
def start_link(opts \\ []) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(opts) do
state = %__MODULE__{
node_id: Keyword.get(opts, :node_id, node()),
performance_targets: Map.merge(@performance_targets, Keyword.get(opts, :targets, %{})),
current_metrics: %{},
optimization_strategies: initialize_optimization_strategies(),
scaling_policies: initialize_scaling_policies(),
resource_allocations: %{},
prediction_models: initialize_prediction_models()
}
# Start performance monitoring
schedule_performance_collection()
schedule_optimization_cycle()
{:ok, state}
end
@doc """
Get current performance status and recommendations.
"""
def performance_status() do
GenServer.call(__MODULE__, :performance_status)
end
@doc """
Trigger immediate performance optimization.
"""
def optimize_now() do
GenServer.cast(__MODULE__, :optimize_now)
end
@doc """
Update performance targets.
"""
def update_targets(new_targets) do
GenServer.call(__MODULE__, {:update_targets, new_targets})
end
def handle_call(:performance_status, _from, state) do
status = %{
current_metrics: state.current_metrics,
target_compliance: calculate_target_compliance(state),
active_optimizations: get_active_optimizations(state),
scaling_recommendations: get_scaling_recommendations(state),
performance_trend: get_performance_trend(state)
}
{:reply, status, state}
end
def handle_call({:update_targets, new_targets}, _from, state) do
updated_targets = Map.merge(state.performance_targets, new_targets)
{:reply, :ok, %{state | performance_targets: updated_targets}}
end
def handle_cast(:optimize_now, state) do
new_state = execute_optimization_cycle(state)
{:noreply, new_state}
end
def handle_info(:collect_metrics, state) do
# Collect current performance metrics
new_metrics = collect_performance_metrics()
# Update prediction models with new data
updated_models = update_prediction_models(state.prediction_models, new_metrics)
new_state = %{state |
current_metrics: new_metrics,
prediction_models: updated_models
}
schedule_performance_collection()
{:noreply, new_state}
end
def handle_info(:optimization_cycle, state) do
# Execute optimization cycle
new_state = execute_optimization_cycle(state)
schedule_optimization_cycle()
{:noreply, new_state}
end
defp execute_optimization_cycle(state) do
# Analyze current performance against targets
performance_analysis = analyze_performance(state.current_metrics, state.performance_targets)
# Generate optimization recommendations
optimizations = generate_optimizations(performance_analysis, state)
# Execute high-priority optimizations
execute_optimizations(optimizations)
# Update resource allocations
new_allocations = update_resource_allocations(state.resource_allocations, optimizations)
%{state | resource_allocations: new_allocations}
end
defp analyze_performance(current_metrics, targets) do
Enum.map(targets, fn {metric, target_value} ->
current_value = Map.get(current_metrics, metric, 0)
compliance = calculate_compliance(current_value, target_value, metric)
{metric, %{
current: current_value,
target: target_value,
compliance: compliance,
deviation: calculate_deviation(current_value, target_value, metric)
}}
end)
|> Enum.into(%{})
end
defp generate_optimizations(analysis, state) do
# Generate optimization strategies based on performance analysis
optimizations = []
# Check each metric for optimization opportunities
optimizations = if analysis[:agent_response_time_p95].compliance < 0.9 do
[generate_latency_optimization(analysis, state) | optimizations]
else
optimizations
end
optimizations = if analysis[:message_throughput].compliance < 0.8 do
[generate_throughput_optimization(analysis, state) | optimizations]
else
optimizations
end
optimizations = if analysis[:resource_utilization].current > 0.8 do
[generate_scaling_optimization(analysis, state) | optimizations]
else
optimizations
end
# Sort by priority and impact
Enum.sort_by(optimizations, fn opt ->
{opt.priority, opt.estimated_impact}
end, :desc)
end
defp generate_latency_optimization(analysis, state) do
%{
type: :latency_optimization,
priority: :high,
estimated_impact: 0.8,
actions: [
{:enable_message_batching, %{batch_size: 10}},
{:optimize_agent_placement, %{strategy: :latency_aware}},
{:tune_network_buffers, %{buffer_size: 64_000}}
],
target_metric: :agent_response_time_p95,
expected_improvement: 0.3
}
end
defp generate_throughput_optimization(analysis, state) do
%{
type: :throughput_optimization,
priority: :high,
estimated_impact: 0.9,
actions: [
{:increase_connection_pools, %{pool_size: 20}},
{:enable_compression, %{algorithm: :lz4}},
{:optimize_message_routing, %{strategy: :direct_routing}}
],
target_metric: :message_throughput,
expected_improvement: 0.4
}
end
defp generate_scaling_optimization(analysis, state) do
%{
type: :scaling_optimization,
priority: :medium,
estimated_impact: 1.0,
actions: [
{:horizontal_scale_out, %{additional_nodes: 2}},
{:rebalance_agents, %{strategy: :even_distribution}}
],
target_metric: :resource_utilization,
expected_improvement: 0.5
}
end
defp execute_optimizations(optimizations) do
Enum.each(optimizations, fn optimization ->
case optimization.priority do
:high -> execute_optimization_immediately(optimization)
:medium -> schedule_optimization(optimization, delay: 5_000)
:low -> schedule_optimization(optimization, delay: 30_000)
end
end)
end
defp execute_optimization_immediately(optimization) do
Enum.each(optimization.actions, &execute_optimization_action/1)
end
defp execute_optimization_action({:enable_message_batching, config}) do
Phoenix.MessageBatching.enable(config)
end
defp execute_optimization_action({:optimize_agent_placement, config}) do
Phoenix.AgentPlacement.optimize(config)
end
defp execute_optimization_action({:tune_network_buffers, config}) do
Phoenix.NetworkTuning.adjust_buffers(config)
end
defp execute_optimization_action({:increase_connection_pools, config}) do
Phoenix.ConnectionPooling.resize_pools(config)
end
defp execute_optimization_action({:enable_compression, config}) do
Phoenix.MessageCompression.enable(config)
end
defp execute_optimization_action({:horizontal_scale_out, config}) do
Phoenix.AutoScaling.scale_out(config)
end
defp execute_optimization_action({:rebalance_agents, config}) do
Phoenix.LoadBalancing.rebalance_agents(config)
end
# Helper functions and initialization
defp collect_performance_metrics() do
%{
agent_response_time_p95: Phoenix.Metrics.get_percentile(:agent_response_time, 95),
message_throughput: Phoenix.Metrics.get_rate(:message_throughput),
cluster_availability: Phoenix.Metrics.get_availability(),
resource_utilization: Phoenix.Metrics.get_resource_utilization(),
scaling_response_time: Phoenix.Metrics.get_scaling_response_time()
}
end
defp schedule_performance_collection() do
Process.send_after(self(), :collect_metrics, 1_000) # Every second
end
defp schedule_optimization_cycle() do
Process.send_after(self(), :optimization_cycle, 10_000) # Every 10 seconds
end
defp initialize_optimization_strategies() do
%{
latency: Phoenix.LatencyOptimization,
throughput: Phoenix.ThroughputOptimization,
resource: Phoenix.ResourceOptimization,
network: Phoenix.NetworkOptimization
}
end
defp initialize_scaling_policies() do
%{
cpu_threshold: 0.8,
memory_threshold: 0.85,
network_threshold: 0.9,
scale_out_cooldown: 300, # 5 minutes
scale_in_cooldown: 600 # 10 minutes
}
end
defp initialize_prediction_models() do
%{
workload_prediction: Phoenix.ML.WorkloadPredictor.new(),
resource_prediction: Phoenix.ML.ResourcePredictor.new(),
scaling_prediction: Phoenix.ML.ScalingPredictor.new()
}
end
defp calculate_compliance(current, target, metric) do
# Calculate how well current performance meets target
case metric do
metric when metric in [:agent_response_time_p95, :scaling_response_time] ->
# Lower is better
if current <= target, do: 1.0, else: target / current
metric when metric in [:message_throughput, :cluster_availability] ->
# Higher is better
if current >= target, do: 1.0, else: current / target
:resource_utilization ->
# Target utilization (not too high, not too low)
optimal = target
if current <= optimal, do: current / optimal, else: (2 * optimal - current) / optimal
end
end
defp calculate_deviation(current, target, metric) do
case metric do
metric when metric in [:agent_response_time_p95, :scaling_response_time] ->
max(0, current - target) / target
metric when metric in [:message_throughput, :cluster_availability] ->
max(0, target - current) / target
:resource_utilization ->
abs(current - target) / target
end
end
defp calculate_target_compliance(state) do
analysis = analyze_performance(state.current_metrics, state.performance_targets)
compliances = Enum.map(analysis, fn {_metric, data} -> data.compliance end)
if Enum.empty?(compliances) do
0.0
else
Enum.sum(compliances) / length(compliances)
end
end
defp get_active_optimizations(_state) do
# Return currently active optimizations
[]
end
defp get_scaling_recommendations(state) do
# Generate scaling recommendations based on predictions
predictions = predict_future_load(state.prediction_models)
case predictions do
{:scale_out, confidence} when confidence > 0.8 ->
%{action: :scale_out, confidence: confidence, reason: :predicted_load_increase}
{:scale_in, confidence} when confidence > 0.8 ->
%{action: :scale_in, confidence: confidence, reason: :predicted_load_decrease}
_ ->
%{action: :no_action, confidence: 0.0, reason: :stable_load}
end
end
defp get_performance_trend(state) do
# Analyze performance trend over time
recent_metrics = get_recent_metrics_history()
if length(recent_metrics) >= 2 do
latest = hd(recent_metrics)
previous = Enum.at(recent_metrics, 1)
trend = calculate_trend(latest, previous)
%{direction: trend, confidence: 0.8}
else
%{direction: :stable, confidence: 0.0}
end
end
defp predict_future_load(models) do
# Use prediction models to forecast load
{:no_action, 0.5} # Simplified implementation
end
defp get_recent_metrics_history() do
# Get recent metrics history for trend analysis
[] # Simplified implementation
end
defp calculate_trend(latest, previous) do
# Calculate trend direction
:stable # Simplified implementation
end
defp update_prediction_models(models, new_metrics) do
# Update ML models with new performance data
models # Simplified implementation
end
defp update_resource_allocations(allocations, optimizations) do
# Update resource allocations based on optimizations
allocations # Simplified implementation
end
defp schedule_optimization(optimization, opts) do
delay = Keyword.get(opts, :delay, 0)
Process.send_after(self(), {:execute_optimization, optimization}, delay)
end
end
Adaptive Load Balancing
Intelligent Load Balancing Engine
defmodule Phoenix.LoadBalancing do
@moduledoc """
Adaptive load balancing system that dynamically adjusts routing strategies
based on real-time performance metrics and workload characteristics.
Balancing Strategies:
1. **Round Robin**: Simple round-robin with health checks
2. **Weighted Round Robin**: Weight-based distribution
3. **Least Connections**: Route to least loaded node
4. **Response Time**: Route to fastest responding node
5. **Resource Aware**: Consider CPU, memory, network load
6. **Predictive**: ML-based routing predictions
"""
use GenServer
defstruct [
:strategy,
:node_pool,
:node_metrics,
:routing_weights,
:performance_history,
:load_predictor
]
@strategies [:round_robin, :weighted_round_robin, :least_connections,
:response_time, :resource_aware, :predictive]
def start_link(opts \\ []) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(opts) do
strategy = Keyword.get(opts, :strategy, :resource_aware)
initial_nodes = Keyword.get(opts, :nodes, [node()])
state = %__MODULE__{
strategy: strategy,
node_pool: initialize_node_pool(initial_nodes),
node_metrics: %{},
routing_weights: %{},
performance_history: %{},
load_predictor: Phoenix.ML.LoadPredictor.new()
}
# Start metrics collection
schedule_metrics_collection()
schedule_weight_adjustment()
{:ok, state}
end
@doc """
Route request to optimal node based on current strategy.
"""
def route_request(request_spec) do
GenServer.call(__MODULE__, {:route_request, request_spec})
end
@doc """
Add node to load balancing pool.
"""
def add_node(node, initial_weight \\ 1.0) do
GenServer.call(__MODULE__, {:add_node, node, initial_weight})
end
@doc """
Remove node from load balancing pool.
"""
def remove_node(node) do
GenServer.call(__MODULE__, {:remove_node, node})
end
@doc """
Change load balancing strategy.
"""
def set_strategy(new_strategy) when new_strategy in @strategies do
GenServer.call(__MODULE__, {:set_strategy, new_strategy})
end
@doc """
Get current load balancing statistics.
"""
def get_stats() do
GenServer.call(__MODULE__, :get_stats)
end
def handle_call({:route_request, request_spec}, _from, state) do
# Select optimal node based on current strategy
case select_node(request_spec, state) do
{:ok, selected_node} ->
# Update routing statistics
new_state = update_routing_stats(state, selected_node, request_spec)
{:reply, {:ok, selected_node}, new_state}
{:error, reason} ->
{:reply, {:error, reason}, state}
end
end
def handle_call({:add_node, node, weight}, _from, state) do
new_pool = Map.put(state.node_pool, node, %{
status: :healthy,
weight: weight,
connections: 0,
last_request: nil
})
new_weights = Map.put(state.routing_weights, node, weight)
new_state = %{state |
node_pool: new_pool,
routing_weights: new_weights
}
{:reply, :ok, new_state}
end
def handle_call({:remove_node, node}, _from, state) do
new_pool = Map.delete(state.node_pool, node)
new_weights = Map.delete(state.routing_weights, node)
new_metrics = Map.delete(state.node_metrics, node)
new_state = %{state |
node_pool: new_pool,
routing_weights: new_weights,
node_metrics: new_metrics
}
{:reply, :ok, new_state}
end
def handle_call({:set_strategy, new_strategy}, _from, state) do
Logger.info("Load balancing strategy changed from #{state.strategy} to #{new_strategy}")
{:reply, :ok, %{state | strategy: new_strategy}}
end
def handle_call(:get_stats, _from, state) do
stats = %{
strategy: state.strategy,
active_nodes: map_size(state.node_pool),
node_pool: state.node_pool,
routing_weights: state.routing_weights,
recent_metrics: get_recent_metrics(state.node_metrics)
}
{:reply, stats, state}
end
def handle_info(:collect_metrics, state) do
# Collect performance metrics from all nodes
new_metrics = collect_node_metrics(state.node_pool)
# Update performance history
new_history = update_performance_history(state.performance_history, new_metrics)
new_state = %{state |
node_metrics: new_metrics,
performance_history: new_history
}
schedule_metrics_collection()
{:noreply, new_state}
end
def handle_info(:adjust_weights, state) do
# Adjust routing weights based on performance
new_weights = calculate_adaptive_weights(state)
new_state = %{state | routing_weights: new_weights}
schedule_weight_adjustment()
{:noreply, new_state}
end
defp select_node(request_spec, state) do
healthy_nodes = get_healthy_nodes(state.node_pool)
if Enum.empty?(healthy_nodes) do
{:error, :no_healthy_nodes}
else
selected = case state.strategy do
:round_robin ->
round_robin_select(healthy_nodes, state)
:weighted_round_robin ->
weighted_round_robin_select(healthy_nodes, state)
:least_connections ->
least_connections_select(healthy_nodes, state)
:response_time ->
response_time_select(healthy_nodes, state)
:resource_aware ->
resource_aware_select(healthy_nodes, state)
:predictive ->
predictive_select(healthy_nodes, request_spec, state)
end
{:ok, selected}
end
end
defp round_robin_select(nodes, _state) do
# Simple round-robin selection
node_index = :persistent_term.get({__MODULE__, :round_robin_index}, 0)
selected_node = Enum.at(nodes, rem(node_index, length(nodes)))
:persistent_term.put({__MODULE__, :round_robin_index}, node_index + 1)
selected_node
end
defp weighted_round_robin_select(nodes, state) do
# Weighted round-robin based on routing weights
total_weight = nodes
|> Enum.map(fn node -> Map.get(state.routing_weights, node, 1.0) end)
|> Enum.sum()
random_value = :rand.uniform() * total_weight
select_weighted_node(nodes, state.routing_weights, random_value, 0.0)
end
defp select_weighted_node([node | rest], weights, target, accumulator) do
weight = Map.get(weights, node, 1.0)
new_accumulator = accumulator + weight
if target <= new_accumulator do
node
else
select_weighted_node(rest, weights, target, new_accumulator)
end
end
defp select_weighted_node([], _weights, _target, _accumulator) do
# Fallback to first node if something goes wrong
hd(Map.keys(%{}))
end
defp least_connections_select(nodes, state) do
# Select node with least active connections
nodes
|> Enum.min_by(fn node ->
node_info = Map.get(state.node_pool, node, %{})
Map.get(node_info, :connections, 0)
end)
end
defp response_time_select(nodes, state) do
# Select node with best response time
nodes
|> Enum.min_by(fn node ->
metrics = Map.get(state.node_metrics, node, %{})
Map.get(metrics, :response_time_avg, 999_999)
end)
end
defp resource_aware_select(nodes, state) do
# Select node based on comprehensive resource utilization
nodes
|> Enum.min_by(fn node ->
calculate_resource_score(node, state.node_metrics)
end)
end
defp predictive_select(nodes, request_spec, state) do
# Use ML model to predict best node for request
predictions = Enum.map(nodes, fn node ->
score = Phoenix.ML.LoadPredictor.predict_score(
state.load_predictor,
node,
request_spec
)
{node, score}
end)
{best_node, _score} = Enum.max_by(predictions, fn {_node, score} -> score end)
best_node
end
defp calculate_resource_score(node, metrics) do
node_metrics = Map.get(metrics, node, %{})
# Composite score considering multiple factors
cpu_score = Map.get(node_metrics, :cpu_utilization, 0.0)
memory_score = Map.get(node_metrics, :memory_utilization, 0.0)
network_score = Map.get(node_metrics, :network_utilization, 0.0)
response_time_score = normalize_response_time(Map.get(node_metrics, :response_time_avg, 0))
# Lower score is better (represents load)
cpu_score * 0.3 + memory_score * 0.3 + network_score * 0.2 + response_time_score * 0.2
end
defp normalize_response_time(response_time) do
# Normalize response time to 0-1 scale (lower is better)
max_acceptable_time = 1000 # 1 second
min(response_time / max_acceptable_time, 1.0)
end
defp calculate_adaptive_weights(state) do
# Calculate new weights based on recent performance
Map.keys(state.node_pool)
|> Enum.map(fn node ->
performance_score = calculate_performance_score(node, state)
weight = performance_to_weight(performance_score)
{node, weight}
end)
|> Enum.into(%{})
end
defp calculate_performance_score(node, state) do
# Calculate performance score (higher is better)
node_metrics = Map.get(state.node_metrics, node, %{})
# Factors contributing to performance score
availability = Map.get(node_metrics, :availability, 0.0)
response_time = Map.get(node_metrics, :response_time_avg, 999_999)
error_rate = Map.get(node_metrics, :error_rate, 1.0)
throughput = Map.get(node_metrics, :throughput, 0.0)
# Combine factors (higher score = better performance)
availability_score = availability
response_time_score = 1000 / max(response_time, 1) # Inverse of response time
error_rate_score = 1.0 - error_rate
throughput_score = min(throughput / 1000, 1.0) # Normalize throughput
(availability_score + response_time_score + error_rate_score + throughput_score) / 4
end
defp performance_to_weight(performance_score) do
# Convert performance score to routing weight
# Performance score should be 0-1, weight should be 0.1-2.0
max(0.1, min(2.0, performance_score * 2.0))
end
defp get_healthy_nodes(node_pool) do
node_pool
|> Enum.filter(fn {_node, info} -> info.status == :healthy end)
|> Enum.map(fn {node, _info} -> node end)
end
defp collect_node_metrics(node_pool) do
# Collect metrics from all nodes in parallel
collection_tasks = Map.keys(node_pool)
|> Enum.map(fn node ->
Task.async(fn ->
case collect_single_node_metrics(node) do
{:ok, metrics} -> {node, metrics}
{:error, _reason} -> {node, %{status: :unhealthy}}
end
end)
end)
# Wait for all collections with timeout
Task.await_many(collection_tasks, 5_000)
|> Enum.into(%{})
end
defp collect_single_node_metrics(node) do
# Collect metrics from a single node
try do
metrics = case :rpc.call(node, Phoenix.Metrics, :get_node_metrics, [], 3_000) do
{:badrpc, _reason} ->
%{status: :unhealthy}
node_metrics ->
Map.put(node_metrics, :status, :healthy)
end
{:ok, metrics}
catch
_, _ -> {:error, :collection_failed}
end
end
defp update_routing_stats(state, selected_node, _request_spec) do
# Update connection count for selected node
current_info = Map.get(state.node_pool, selected_node, %{})
updated_info = %{current_info |
connections: Map.get(current_info, :connections, 0) + 1,
last_request: DateTime.utc_now()
}
new_pool = Map.put(state.node_pool, selected_node, updated_info)
%{state | node_pool: new_pool}
end
defp initialize_node_pool(nodes) do
Enum.map(nodes, fn node ->
{node, %{
status: :healthy,
weight: 1.0,
connections: 0,
last_request: nil
}}
end)
|> Enum.into(%{})
end
defp schedule_metrics_collection() do
Process.send_after(self(), :collect_metrics, 5_000) # Every 5 seconds
end
defp schedule_weight_adjustment() do
Process.send_after(self(), :adjust_weights, 30_000) # Every 30 seconds
end
defp get_recent_metrics(node_metrics) do
# Return recent metrics summary
Map.new(node_metrics, fn {node, metrics} ->
{node, %{
cpu: Map.get(metrics, :cpu_utilization, 0.0),
memory: Map.get(metrics, :memory_utilization, 0.0),
response_time: Map.get(metrics, :response_time_avg, 0.0)
}}
end)
end
defp update_performance_history(history, new_metrics) do
# Update performance history for trend analysis
timestamp = DateTime.utc_now()
# Add new metrics with timestamp
updated_history = Map.put(history, timestamp, new_metrics)
# Keep only last 100 entries
updated_history
|> Enum.sort_by(fn {timestamp, _} -> timestamp end, {:desc, DateTime})
|> Enum.take(100)
|> Enum.into(%{})
end
end
Resource-Aware Agent Placement
Intelligent Agent Placement Engine
defmodule Phoenix.AgentPlacement do
@moduledoc """
Resource-aware agent placement system that optimally distributes agents
across the cluster based on resource requirements, constraints, and performance objectives.
Placement Strategies:
1. **Resource Matching**: Match agent requirements to node capabilities
2. **Affinity Rules**: Co-locate or separate specific agent types
3. **Load Balancing**: Distribute load evenly across nodes
4. **Fault Tolerance**: Ensure redundancy and failover capabilities
5. **Performance Optimization**: Minimize latency and maximize throughput
"""
use GenServer
defstruct [
:cluster_topology,
:node_resources,
:agent_registry,
:placement_policies,
:optimization_objectives,
:constraint_solver
]
def start_link(opts \\ []) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(opts) do
state = %__MODULE__{
cluster_topology: initialize_cluster_topology(),
node_resources: %{},
agent_registry: %{},
placement_policies: load_placement_policies(opts),
optimization_objectives: initialize_objectives(),
constraint_solver: Phoenix.ConstraintSolver.new()
}
# Start resource monitoring
schedule_resource_monitoring()
{:ok, state}
end
@doc """
Find optimal placement for agent based on requirements and constraints.
"""
def find_placement(agent_spec) do
GenServer.call(__MODULE__, {:find_placement, agent_spec})
end
@doc """
Place agent on specified node with verification.
"""
def place_agent(agent_id, node, agent_spec) do
GenServer.call(__MODULE__, {:place_agent, agent_id, node, agent_spec})
end
@doc """
Migrate agent to different node.
"""
def migrate_agent(agent_id, target_node, migration_options \\ []) do
GenServer.call(__MODULE__, {:migrate_agent, agent_id, target_node, migration_options})
end
@doc """
Rebalance agents across cluster for optimal distribution.
"""
def rebalance_cluster(rebalance_options \\ []) do
GenServer.call(__MODULE__, {:rebalance_cluster, rebalance_options})
end
@doc """
Get current placement statistics and recommendations.
"""
def placement_stats() do
GenServer.call(__MODULE__, :placement_stats)
end
def handle_call({:find_placement, agent_spec}, _from, state) do
# Find optimal node for agent placement
case find_optimal_node(agent_spec, state) do
{:ok, selected_node, placement_score} ->
{:reply, {:ok, selected_node, placement_score}, state}
{:error, reason} ->
{:reply, {:error, reason}, state}
end
end
def handle_call({:place_agent, agent_id, node, agent_spec}, _from, state) do
# Verify placement is valid and reserve resources
case validate_placement(agent_spec, node, state) do
{:ok, resource_reservation} ->
# Reserve resources on target node
new_node_resources = reserve_resources(state.node_resources, node, resource_reservation)
# Register agent placement
new_agent_registry = Map.put(state.agent_registry, agent_id, %{
node: node,
spec: agent_spec,
placed_at: DateTime.utc_now(),
resources: resource_reservation
})
new_state = %{state |
node_resources: new_node_resources,
agent_registry: new_agent_registry
}
{:reply, {:ok, resource_reservation}, new_state}
{:error, reason} ->
{:reply, {:error, reason}, state}
end
end
def handle_call({:migrate_agent, agent_id, target_node, options}, _from, state) do
case Map.get(state.agent_registry, agent_id) do
nil ->
{:reply, {:error, :agent_not_found}, state}
agent_info ->
case execute_migration(agent_id, agent_info, target_node, options, state) do
{:ok, new_placement} ->
# Update agent registry
updated_info = %{agent_info |
node: target_node,
placed_at: DateTime.utc_now(),
migration_history: [agent_info.node | Map.get(agent_info, :migration_history, [])]
}
new_registry = Map.put(state.agent_registry, agent_id, updated_info)
{:reply, {:ok, new_placement}, %{state | agent_registry: new_registry}}
{:error, reason} ->
{:reply, {:error, reason}, state}
end
end
end
def handle_call({:rebalance_cluster, options}, _from, state) do
# Analyze current distribution and generate rebalancing plan
rebalancing_plan = generate_rebalancing_plan(state, options)
case execute_rebalancing_plan(rebalancing_plan, state) do
{:ok, new_state} ->
{:reply, {:ok, rebalancing_plan}, new_state}
{:error, reason} ->
{:reply, {:error, reason}, state}
end
end
def handle_call(:placement_stats, _from, state) do
stats = %{
total_agents: map_size(state.agent_registry),
nodes_in_use: count_nodes_in_use(state.agent_registry),
resource_utilization: calculate_resource_utilization(state.node_resources),
placement_efficiency: calculate_placement_efficiency(state),
constraint_violations: check_constraint_violations(state)
}
{:reply, stats, state}
end
def handle_info(:monitor_resources, state) do
# Update node resource information
new_resources = collect_cluster_resources()
new_state = %{state | node_resources: new_resources}
schedule_resource_monitoring()
{:noreply, new_state}
end
defp find_optimal_node(agent_spec, state) do
# Get candidate nodes that meet basic requirements
candidate_nodes = filter_candidate_nodes(agent_spec, state)
if Enum.empty?(candidate_nodes) do
{:error, :no_suitable_nodes}
else
# Score each candidate node
scored_candidates = Enum.map(candidate_nodes, fn node ->
score = calculate_placement_score(agent_spec, node, state)
{node, score}
end)
# Select node with highest score
{best_node, best_score} = Enum.max_by(scored_candidates, fn {_node, score} -> score end)
{:ok, best_node, best_score}
end
end
defp filter_candidate_nodes(agent_spec, state) do
# Filter nodes based on hard constraints
Map.keys(state.node_resources)
|> Enum.filter(fn node ->
meets_resource_requirements?(agent_spec, node, state) and
satisfies_placement_constraints?(agent_spec, node, state) and
node_healthy?(node)
end)
end
defp meets_resource_requirements?(agent_spec, node, state) do
# Check if node has sufficient resources
required_resources = Map.get(agent_spec, :resources, %{})
available_resources = get_available_resources(node, state.node_resources)
Enum.all?(required_resources, fn {resource_type, required_amount} ->
available_amount = Map.get(available_resources, resource_type, 0)
available_amount >= required_amount
end)
end
defp satisfies_placement_constraints?(agent_spec, node, state) do
# Check placement constraints (affinity, anti-affinity, etc.)
constraints = Map.get(agent_spec, :placement_constraints, [])
Enum.all?(constraints, fn constraint ->
evaluate_constraint(constraint, agent_spec, node, state)
end)
end
defp evaluate_constraint({:affinity, target_agents}, agent_spec, node, state) do
# Agent should be placed on same node as target agents
target_nodes = get_agent_nodes(target_agents, state.agent_registry)
node in target_nodes
end
defp evaluate_constraint({:anti_affinity, avoid_agents}, agent_spec, node, state) do
# Agent should NOT be placed on same node as avoid agents
avoid_nodes = get_agent_nodes(avoid_agents, state.agent_registry)
node not in avoid_nodes
end
defp evaluate_constraint({:node_selector, selector}, agent_spec, node, state) do
# Agent should only be placed on nodes matching selector
evaluate_node_selector(selector, node, state)
end
defp evaluate_constraint({:resource_ratio, ratios}, agent_spec, node, state) do
# Node resource utilization should not exceed specified ratios
utilization = calculate_node_utilization(node, state.node_resources)
Enum.all?(ratios, fn {resource_type, max_ratio} ->
current_ratio = Map.get(utilization, resource_type, 0.0)
current_ratio <= max_ratio
end)
end
defp calculate_placement_score(agent_spec, node, state) do
# Calculate composite placement score
resource_score = calculate_resource_score(agent_spec, node, state)
affinity_score = calculate_affinity_score(agent_spec, node, state)
load_balance_score = calculate_load_balance_score(node, state)
performance_score = calculate_performance_score(node, state)
# Weighted combination of scores
weights = %{
resource: 0.3,
affinity: 0.2,
load_balance: 0.3,
performance: 0.2
}
resource_score * weights.resource +
affinity_score * weights.affinity +
load_balance_score * weights.load_balance +
performance_score * weights.performance
end
defp calculate_resource_score(agent_spec, node, state) do
# Score based on resource efficiency (higher = better fit)
required_resources = Map.get(agent_spec, :resources, %{})
available_resources = get_available_resources(node, state.node_resources)
if Enum.empty?(required_resources) do
1.0
else
resource_efficiencies = Enum.map(required_resources, fn {resource_type, required} ->
available = Map.get(available_resources, resource_type, 0)
if available > 0, do: min(1.0, required / available), else: 0.0
end)
Enum.sum(resource_efficiencies) / length(resource_efficiencies)
end
end
defp calculate_affinity_score(agent_spec, node, state) do
# Score based on affinity constraints satisfaction
constraints = Map.get(agent_spec, :placement_constraints, [])
affinity_constraints = Enum.filter(constraints, fn
{:affinity, _} -> true
_ -> false
end)
if Enum.empty?(affinity_constraints) do
0.5 # Neutral score
else
satisfied_count = Enum.count(affinity_constraints, fn constraint ->
evaluate_constraint(constraint, agent_spec, node, state)
end)
satisfied_count / length(affinity_constraints)
end
end
defp calculate_load_balance_score(node, state) do
# Score based on load balancing (lower utilization = higher score)
utilization = calculate_node_utilization(node, state.node_resources)
average_utilization = calculate_average_utilization(utilization)
# Invert utilization to get score (lower utilization = higher score)
1.0 - average_utilization
end
defp calculate_performance_score(node, state) do
# Score based on node performance metrics
node_metrics = get_node_performance_metrics(node)
# Combine various performance factors
latency_score = 1.0 / max(Map.get(node_metrics, :avg_latency, 1), 1)
throughput_score = Map.get(node_metrics, :throughput, 0) / 1000.0
availability_score = Map.get(node_metrics, :availability, 0.0)
(latency_score + throughput_score + availability_score) / 3
end
defp validate_placement(agent_spec, node, state) do
# Validate that placement is possible and calculate resource reservation
if meets_resource_requirements?(agent_spec, node, state) and
satisfies_placement_constraints?(agent_spec, node, state) do
required_resources = Map.get(agent_spec, :resources, %{})
{:ok, required_resources}
else
{:error, :placement_validation_failed}
end
end
defp execute_migration(agent_id, agent_info, target_node, options, state) do
# Execute agent migration from current node to target node
migration_strategy = Keyword.get(options, :strategy, :live_migration)
case migration_strategy do
:live_migration ->
execute_live_migration(agent_id, agent_info, target_node, state)
:checkpoint_restore ->
execute_checkpoint_migration(agent_id, agent_info, target_node, state)
:cold_migration ->
execute_cold_migration(agent_id, agent_info, target_node, state)
end
end
defp execute_live_migration(agent_id, agent_info, target_node, state) do
# Live migration with minimal downtime
try do
# 1. Start agent on target node
{:ok, _} = Phoenix.Agent.start_on_node(target_node, agent_id, agent_info.spec)
# 2. Synchronize state
:ok = Phoenix.Agent.sync_state(agent_id, agent_info.node, target_node)
# 3. Switch traffic to new node
:ok = Phoenix.MessageRouter.switch_target(agent_id, target_node)
# 4. Stop agent on old node
:ok = Phoenix.Agent.stop_on_node(agent_info.node, agent_id)
# 5. Update resource allocations
release_resources(state.node_resources, agent_info.node, agent_info.resources)
reserve_resources(state.node_resources, target_node, agent_info.resources)
{:ok, %{strategy: :live_migration, downtime: 0}}
rescue
error ->
# Rollback on failure
Phoenix.Agent.stop_on_node(target_node, agent_id)
{:error, {:migration_failed, error}}
end
end
defp execute_checkpoint_migration(agent_id, agent_info, target_node, state) do
# Migration with checkpoint/restore
try do
# 1. Create checkpoint of agent state
{:ok, checkpoint} = Phoenix.Agent.create_checkpoint(agent_id)
# 2. Stop agent on current node
:ok = Phoenix.Agent.stop_on_node(agent_info.node, agent_id)
# 3. Start agent on target node from checkpoint
{:ok, _} = Phoenix.Agent.restore_from_checkpoint(target_node, agent_id, checkpoint)
# 4. Update resource allocations
release_resources(state.node_resources, agent_info.node, agent_info.resources)
reserve_resources(state.node_resources, target_node, agent_info.resources)
{:ok, %{strategy: :checkpoint_restore, downtime: 5_000}} # ~5 seconds downtime
rescue
error ->
# Attempt to restart on original node
Phoenix.Agent.start_on_node(agent_info.node, agent_id, agent_info.spec)
{:error, {:migration_failed, error}}
end
end
defp execute_cold_migration(agent_id, agent_info, target_node, state) do
# Cold migration (stop, move, start)
try do
# 1. Stop agent on current node
:ok = Phoenix.Agent.stop_on_node(agent_info.node, agent_id)
# 2. Start agent on target node
{:ok, _} = Phoenix.Agent.start_on_node(target_node, agent_id, agent_info.spec)
# 3. Update resource allocations
release_resources(state.node_resources, agent_info.node, agent_info.resources)
reserve_resources(state.node_resources, target_node, agent_info.resources)
{:ok, %{strategy: :cold_migration, downtime: 10_000}} # ~10 seconds downtime
rescue
error ->
# Attempt to restart on original node
Phoenix.Agent.start_on_node(agent_info.node, agent_id, agent_info.spec)
{:error, {:migration_failed, error}}
end
end
defp generate_rebalancing_plan(state, options) do
# Generate plan to rebalance agents across cluster
target_distribution = Keyword.get(options, :target, :even_distribution)
case target_distribution do
:even_distribution ->
generate_even_distribution_plan(state)
:resource_optimization ->
generate_resource_optimization_plan(state)
:latency_optimization ->
generate_latency_optimization_plan(state)
end
end
defp generate_even_distribution_plan(state) do
# Plan to distribute agents evenly across nodes
total_agents = map_size(state.agent_registry)
active_nodes = get_active_nodes(state.node_resources)
target_agents_per_node = div(total_agents, length(active_nodes))
current_distribution = calculate_current_distribution(state.agent_registry)
# Find nodes that are over/under capacity
moves = Enum.flat_map(current_distribution, fn {node, agent_count} ->
if agent_count > target_agents_per_node do
excess = agent_count - target_agents_per_node
select_agents_to_move(node, excess, state)
else
[]
end
end)
%{
type: :even_distribution,
moves: moves,
estimated_improvement: calculate_distribution_improvement(moves, state)
}
end
# Helper functions
defp get_available_resources(node, node_resources) do
total_resources = Map.get(node_resources, node, %{total: %{}, used: %{}})
total = Map.get(total_resources, :total, %{})
used = Map.get(total_resources, :used, %{})
Map.new(total, fn {resource_type, total_amount} ->
used_amount = Map.get(used, resource_type, 0)
{resource_type, total_amount - used_amount}
end)
end
defp get_agent_nodes(agent_selectors, agent_registry) do
# Get nodes where specified agents are running
agent_registry
|> Enum.filter(fn {agent_id, _info} ->
agent_matches_selectors?(agent_id, agent_selectors)
end)
|> Enum.map(fn {_agent_id, info} -> info.node end)
|> Enum.uniq()
end
defp agent_matches_selectors?(agent_id, selectors) do
# Check if agent matches any of the selectors
Enum.any?(selectors, fn selector ->
case selector do
{:agent_id, id} -> agent_id == id
{:agent_type, type} -> agent_has_type?(agent_id, type)
{:label, key, value} -> agent_has_label?(agent_id, key, value)
_ -> false
end
end)
end
defp reserve_resources(node_resources, node, resource_reservation) do
current_resources = Map.get(node_resources, node, %{total: %{}, used: %{}})
current_used = Map.get(current_resources, :used, %{})
new_used = Map.merge(current_used, resource_reservation, fn _key, current, additional ->
current + additional
end)
updated_resources = Map.put(current_resources, :used, new_used)
Map.put(node_resources, node, updated_resources)
end
defp release_resources(node_resources, node, resource_reservation) do
current_resources = Map.get(node_resources, node, %{total: %{}, used: %{}})
current_used = Map.get(current_resources, :used, %{})
new_used = Map.merge(current_used, resource_reservation, fn _key, current, release ->
max(0, current - release)
end)
updated_resources = Map.put(current_resources, :used, new_used)
Map.put(node_resources, node, updated_resources)
end
defp initialize_cluster_topology() do
# Initialize cluster topology information
%{
nodes: [node() | Node.list()],
regions: %{},
network_topology: %{}
}
end
defp schedule_resource_monitoring() do
Process.send_after(self(), :monitor_resources, 10_000) # Every 10 seconds
end
defp collect_cluster_resources() do
# Collect resource information from all nodes
%{} # Simplified implementation
end
defp load_placement_policies(opts) do
# Load placement policies from configuration
Keyword.get(opts, :policies, default_placement_policies())
end
defp default_placement_policies() do
%{
default_strategy: :resource_aware,
affinity_weight: 0.2,
resource_weight: 0.3,
load_balance_weight: 0.3,
performance_weight: 0.2
}
end
defp initialize_objectives() do
%{
minimize_latency: 0.3,
maximize_throughput: 0.3,
balance_load: 0.2,
minimize_cost: 0.2
}
end
# Placeholder implementations for external dependencies
defp node_healthy?(_node), do: true
defp evaluate_node_selector(_selector, _node, _state), do: true
defp calculate_node_utilization(_node, _resources), do: %{cpu: 0.5, memory: 0.6}
defp calculate_average_utilization(utilization) do
values = Map.values(utilization)
if Enum.empty?(values), do: 0.0, else: Enum.sum(values) / length(values)
end
defp get_node_performance_metrics(_node), do: %{avg_latency: 10, throughput: 1000, availability: 0.99}
defp count_nodes_in_use(registry) do
registry |> Map.values() |> Enum.map(& &1.node) |> Enum.uniq() |> length()
end
defp calculate_resource_utilization(_resources), do: %{cpu: 0.6, memory: 0.7}
defp calculate_placement_efficiency(_state), do: 0.85
defp check_constraint_violations(_state), do: []
defp agent_has_type?(_agent_id, _type), do: false
defp agent_has_label?(_agent_id, _key, _value), do: false
defp get_active_nodes(_resources), do: [node()]
defp calculate_current_distribution(registry) do
registry |> Enum.group_by(fn {_id, info} -> info.node end) |> Map.new(fn {node, agents} -> {node, length(agents)} end)
end
defp select_agents_to_move(_node, _count, _state), do: []
defp calculate_distribution_improvement(_moves, _state), do: 0.1
defp generate_resource_optimization_plan(state), do: generate_even_distribution_plan(state)
defp generate_latency_optimization_plan(state), do: generate_even_distribution_plan(state)
defp execute_rebalancing_plan(plan, state), do: {:ok, state}
end
Performance Monitoring and Metrics
Comprehensive Performance Monitoring System
defmodule Phoenix.Metrics do
@moduledoc """
Comprehensive performance monitoring and metrics collection system.
Metrics Categories:
1. **Agent Performance**: Response times, throughput, error rates
2. **System Resources**: CPU, memory, network, disk utilization
3. **Cluster Health**: Node availability, partition status, consensus health
4. **Application Metrics**: Business logic performance, custom metrics
5. **Infrastructure Metrics**: Load balancer, message queue, database performance
"""
use GenServer
defstruct [
:collectors,
:metric_store,
:aggregators,
:alert_thresholds,
:reporting_intervals,
:metric_history
]
@metric_types [:counter, :gauge, :histogram, :timer, :summary]
@default_collection_interval 1_000 # 1 second
@default_aggregation_interval 60_000 # 1 minute
def start_link(opts \\ []) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(opts) do
state = %__MODULE__{
collectors: initialize_collectors(),
metric_store: :ets.new(:phoenix_metrics, [:set, :public, :named_table]),
aggregators: initialize_aggregators(),
alert_thresholds: load_alert_thresholds(opts),
reporting_intervals: initialize_reporting_intervals(),
metric_history: %{}
}
# Start metric collection
schedule_metric_collection()
schedule_metric_aggregation()
{:ok, state}
end
@doc """
Record a metric value.
"""
def record_metric(metric_name, value, metadata \\ %{}) do
timestamp = System.system_time(:microsecond)
metric_entry = %{
name: metric_name,
value: value,
timestamp: timestamp,
metadata: metadata,
node: node()
}
:ets.insert(:phoenix_metrics, {metric_name, timestamp, metric_entry})
# Check for alert conditions
check_alert_threshold(metric_name, value)
end
@doc """
Increment a counter metric.
"""
def increment(metric_name, amount \\ 1, metadata \\ %{}) do
current_value = get_current_value(metric_name, 0)
record_metric(metric_name, current_value + amount, metadata)
end
@doc """
Record timing information.
"""
def time(metric_name, fun) when is_function(fun, 0) do
start_time = System.monotonic_time(:microsecond)
try do
result = fun.()
execution_time = System.monotonic_time(:microsecond) - start_time
record_metric(metric_name, execution_time, %{type: :timing, unit: :microseconds})
{:ok, result}
rescue
error ->
execution_time = System.monotonic_time(:microsecond) - start_time
record_metric(metric_name, execution_time, %{type: :timing, unit: :microseconds, error: true})
{:error, error}
end
end
@doc """
Get current metric value.
"""
def get_metric(metric_name) do
GenServer.call(__MODULE__, {:get_metric, metric_name})
end
@doc """
Get metric statistics (min, max, avg, percentiles).
"""
def get_metric_stats(metric_name, time_window \\ :last_hour) do
GenServer.call(__MODULE__, {:get_metric_stats, metric_name, time_window})
end
@doc """
Get all metrics for a specific node.
"""
def get_node_metrics(node \\ node()) do
GenServer.call(__MODULE__, {:get_node_metrics, node})
end
@doc """
Get cluster-wide aggregated metrics.
"""
def get_cluster_metrics() do
GenServer.call(__MODULE__, :get_cluster_metrics)
end
def handle_call({:get_metric, metric_name}, _from, state) do
latest_value = get_latest_metric_value(metric_name)
{:reply, latest_value, state}
end
def handle_call({:get_metric_stats, metric_name, time_window}, _from, state) do
stats = calculate_metric_statistics(metric_name, time_window)
{:reply, stats, state}
end
def handle_call({:get_node_metrics, node}, _from, state) do
node_metrics = collect_node_specific_metrics(node)
{:reply, node_metrics, state}
end
def handle_call(:get_cluster_metrics, _from, state) do
cluster_metrics = aggregate_cluster_metrics()
{:reply, cluster_metrics, state}
end
def handle_info(:collect_metrics, state) do
# Collect metrics from all registered collectors
Enum.each(state.collectors, fn {collector_name, collector_module} ->
spawn(fn ->
try do
metrics = collector_module.collect()
store_collected_metrics(collector_name, metrics)
rescue
error ->
Logger.error("Metric collection failed for #{collector_name}: #{inspect(error)}")
end
end)
end)
schedule_metric_collection()
{:noreply, state}
end
def handle_info(:aggregate_metrics, state) do
# Perform metric aggregation
new_history = perform_metric_aggregation(state.metric_history)
schedule_metric_aggregation()
{:noreply, %{state | metric_history: new_history}}
end
defp get_latest_metric_value(metric_name) do
case :ets.lookup(:phoenix_metrics, metric_name) do
[] -> nil
entries ->
# Get most recent entry
{_name, _timestamp, latest_entry} = Enum.max_by(entries, fn {_name, timestamp, _entry} ->
timestamp
end)
latest_entry.value
end
end
defp calculate_metric_statistics(metric_name, time_window) do
cutoff_time = calculate_cutoff_time(time_window)
# Get all metric entries within time window
entries = :ets.lookup(:phoenix_metrics, metric_name)
|> Enum.filter(fn {_name, timestamp, _entry} -> timestamp >= cutoff_time end)
|> Enum.map(fn {_name, _timestamp, entry} -> entry.value end)
if Enum.empty?(entries) do
%{count: 0, min: nil, max: nil, avg: nil, percentiles: %{}}
else
sorted_values = Enum.sort(entries)
%{
count: length(entries),
min: List.first(sorted_values),
max: List.last(sorted_values),
avg: Enum.sum(entries) / length(entries),
percentiles: calculate_percentiles(sorted_values)
}
end
end
defp calculate_percentiles(sorted_values) do
length = length(sorted_values)
%{
p50: percentile(sorted_values, length, 50),
p95: percentile(sorted_values, length, 95),
p99: percentile(sorted_values, length, 99)
}
end
defp percentile(sorted_values, length, percentile) do
index = round(length * percentile / 100) - 1
index = max(0, min(index, length - 1))
Enum.at(sorted_values, index)
end
defp collect_node_specific_metrics(node) do
# Collect comprehensive node metrics
base_metrics = %{
cpu_utilization: get_cpu_utilization(node),
memory_utilization: get_memory_utilization(node),
network_utilization: get_network_utilization(node),
disk_utilization: get_disk_utilization(node),
process_count: get_process_count(node),
agent_count: get_agent_count(node),
message_queue_length: get_message_queue_length(node),
response_time_avg: get_average_response_time(node),
throughput: get_throughput(node),
error_rate: get_error_rate(node),
availability: get_availability(node)
}
# Add BEAM-specific metrics
beam_metrics = if node == node() do
%{
beam_process_count: :erlang.system_info(:process_count),
beam_memory_total: :erlang.memory(:total),
beam_memory_processes: :erlang.memory(:processes),
beam_memory_system: :erlang.memory(:system),
beam_run_queue: :erlang.statistics(:run_queue),
beam_reductions: elem(:erlang.statistics(:reductions), 0)
}
else
get_remote_beam_metrics(node)
end
Map.merge(base_metrics, beam_metrics)
end
defp aggregate_cluster_metrics() do
# Aggregate metrics across all cluster nodes
all_nodes = [node() | Node.list()]
node_metrics = Enum.map(all_nodes, fn node ->
{node, collect_node_specific_metrics(node)}
end)
|> Enum.into(%{})
# Calculate cluster-wide aggregations
%{
cluster_cpu_avg: calculate_cluster_average(node_metrics, :cpu_utilization),
cluster_memory_avg: calculate_cluster_average(node_metrics, :memory_utilization),
cluster_throughput_total: calculate_cluster_sum(node_metrics, :throughput),
cluster_error_rate_avg: calculate_cluster_average(node_metrics, :error_rate),
cluster_availability: calculate_cluster_availability(node_metrics),
active_nodes: length(all_nodes),
total_agents: calculate_cluster_sum(node_metrics, :agent_count),
node_metrics: node_metrics
}
end
defp calculate_cluster_average(node_metrics, metric_key) do
values = Map.values(node_metrics)
|> Enum.map(fn metrics -> Map.get(metrics, metric_key, 0) end)
|> Enum.filter(&is_number/1)
if Enum.empty?(values) do
0.0
else
Enum.sum(values) / length(values)
end
end
defp calculate_cluster_sum(node_metrics, metric_key) do
Map.values(node_metrics)
|> Enum.map(fn metrics -> Map.get(metrics, metric_key, 0) end)
|> Enum.filter(&is_number/1)
|> Enum.sum()
end
defp calculate_cluster_availability(node_metrics) do
availabilities = Map.values(node_metrics)
|> Enum.map(fn metrics -> Map.get(metrics, :availability, 0.0) end)
if Enum.empty?(availabilities) do
0.0
else
# Cluster availability is the product of node availabilities
Enum.reduce(availabilities, 1.0, &(&1 * &2))
end
end
defp check_alert_threshold(metric_name, value) do
# Check if metric value exceeds alert thresholds
thresholds = get_alert_thresholds(metric_name)
Enum.each(thresholds, fn {level, threshold_value} ->
if exceeds_threshold?(value, threshold_value) do
trigger_alert(metric_name, value, level, threshold_value)
end
end)
end
defp exceeds_threshold?(value, threshold) when is_number(value) and is_number(threshold) do
value > threshold
end
defp exceeds_threshold?(_value, _threshold), do: false
defp trigger_alert(metric_name, value, level, threshold) do
alert = %{
metric: metric_name,
value: value,
threshold: threshold,
level: level,
timestamp: DateTime.utc_now(),
node: node()
}
Phoenix.Alerting.send_alert(alert)
end
defp initialize_collectors() do
%{
system_metrics: Phoenix.Metrics.SystemCollector,
agent_metrics: Phoenix.Metrics.AgentCollector,
network_metrics: Phoenix.Metrics.NetworkCollector,
application_metrics: Phoenix.Metrics.ApplicationCollector
}
end
defp initialize_aggregators() do
%{
time_series: Phoenix.Metrics.TimeSeriesAggregator,
statistical: Phoenix.Metrics.StatisticalAggregator,
threshold: Phoenix.Metrics.ThresholdAggregator
}
end
defp load_alert_thresholds(opts) do
Keyword.get(opts, :alert_thresholds, default_alert_thresholds())
end
defp default_alert_thresholds() do
%{
cpu_utilization: [{:warning, 0.8}, {:critical, 0.95}],
memory_utilization: [{:warning, 0.85}, {:critical, 0.95}],
response_time_avg: [{:warning, 100}, {:critical, 500}],
error_rate: [{:warning, 0.05}, {:critical, 0.1}]
}
end
defp initialize_reporting_intervals() do
%{
real_time: 1_000, # 1 second
short_term: 60_000, # 1 minute
medium_term: 300_000, # 5 minutes
long_term: 3_600_000 # 1 hour
}
end
defp calculate_cutoff_time(time_window) do
now = System.system_time(:microsecond)
case time_window do
:last_minute -> now - 60_000_000 # 60 seconds
:last_hour -> now - 3_600_000_000 # 1 hour
:last_day -> now - 86_400_000_000 # 24 hours
_ -> now - 3_600_000_000 # Default to 1 hour
end
end
defp schedule_metric_collection() do
Process.send_after(self(), :collect_metrics, @default_collection_interval)
end
defp schedule_metric_aggregation() do
Process.send_after(self(), :aggregate_metrics, @default_aggregation_interval)
end
defp store_collected_metrics(collector_name, metrics) do
timestamp = System.system_time(:microsecond)
Enum.each(metrics, fn {metric_name, value, metadata} ->
full_metric_name = "#{collector_name}.#{metric_name}"
record_metric(full_metric_name, value, Map.put(metadata, :collector, collector_name))
end)
end
defp perform_metric_aggregation(history) do
# Perform time-based aggregation of metrics
current_window = System.system_time(:microsecond)
# Aggregate metrics by time windows
aggregated = aggregate_time_windows(current_window)
# Update history with new aggregations
Map.put(history, current_window, aggregated)
|> keep_recent_history(100) # Keep last 100 aggregation windows
end
defp aggregate_time_windows(current_time) do
# Implementation would aggregate metrics over time windows
%{
timestamp: current_time,
aggregations: %{}
}
end
defp keep_recent_history(history, max_entries) do
history
|> Enum.sort_by(fn {timestamp, _} -> timestamp end, :desc)
|> Enum.take(max_entries)
|> Enum.into(%{})
end
defp get_current_value(metric_name, default) do
case get_latest_metric_value(metric_name) do
nil -> default
value -> value
end
end
defp get_alert_thresholds(metric_name) do
# Get alert thresholds for specific metric
GenServer.call(__MODULE__, {:get_alert_thresholds, metric_name})
end
# Placeholder implementations for system metrics
defp get_cpu_utilization(_node), do: 0.5
defp get_memory_utilization(_node), do: 0.6
defp get_network_utilization(_node), do: 0.3
defp get_disk_utilization(_node), do: 0.4
defp get_process_count(_node), do: 150
defp get_agent_count(_node), do: 25
defp get_message_queue_length(_node), do: 10
defp get_average_response_time(_node), do: 50.0
defp get_throughput(_node), do: 1000.0
defp get_error_rate(_node), do: 0.02
defp get_availability(_node), do: 0.99
defp get_remote_beam_metrics(_node), do: %{}
end
Horizontal Scaling Automation
Auto-Scaling Engine
defmodule Phoenix.AutoScaling do
@moduledoc """
Intelligent auto-scaling system that automatically adjusts cluster size
based on performance metrics, workload predictions, and scaling policies.
Scaling Strategies:
1. **Reactive Scaling**: Scale based on current metrics
2. **Predictive Scaling**: Scale based on ML predictions
3. **Scheduled Scaling**: Scale based on time patterns
4. **Event-Driven Scaling**: Scale based on external events
5. **Hybrid Scaling**: Combine multiple strategies
"""
use GenServer
defstruct [
:scaling_policies,
:current_capacity,
:target_capacity,
:scaling_history,
:workload_predictor,
:scaling_cooldowns,
:resource_pools
]
@scale_out_cooldown 300_000 # 5 minutes
@scale_in_cooldown 600_000 # 10 minutes
@prediction_horizon 3600 # 1 hour prediction horizon
def start_link(opts \\ []) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(opts) do
state = %__MODULE__{
scaling_policies: load_scaling_policies(opts),
current_capacity: get_current_cluster_capacity(),
target_capacity: get_current_cluster_capacity(),
scaling_history: [],
workload_predictor: Phoenix.ML.WorkloadPredictor.new(),
scaling_cooldowns: %{scale_out: 0, scale_in: 0},
resource_pools: initialize_resource_pools(opts)
}
# Start scaling evaluation
schedule_scaling_evaluation()
schedule_predictive_scaling()
{:ok, state}
end
@doc """
Trigger immediate scaling evaluation.
"""
def evaluate_scaling() do
GenServer.cast(__MODULE__, :evaluate_scaling)
end
@doc """
Manually scale cluster to specified capacity.
"""
def scale_to(target_capacity, reason \\ :manual) do
GenServer.call(__MODULE__, {:scale_to, target_capacity, reason})
end
@doc """
Add scaling policy.
"""
def add_scaling_policy(policy) do
GenServer.call(__MODULE__, {:add_policy, policy})
end
@doc """
Get current scaling status and recommendations.
"""
def scaling_status() do
GenServer.call(__MODULE__, :scaling_status)
end
def handle_call({:scale_to, target_capacity, reason}, _from, state) do
case validate_scaling_request(target_capacity, state) do
:ok ->
case execute_scaling(state.current_capacity, target_capacity, reason, state) do
{:ok, new_state} ->
{:reply, :ok, new_state}
{:error, reason} ->
{:reply, {:error, reason}, state}
end
{:error, reason} ->
{:reply, {:error, reason}, state}
end
end
def handle_call({:add_policy, policy}, _from, state) do
new_policies = [policy | state.scaling_policies]
{:reply, :ok, %{state | scaling_policies: new_policies}}
end
def handle_call(:scaling_status, _from, state) do
status = %{
current_capacity: state.current_capacity,
target_capacity: state.target_capacity,
scaling_policies: length(state.scaling_policies),
recent_scaling_events: Enum.take(state.scaling_history, 10),
cooldown_status: get_cooldown_status(state.scaling_cooldowns),
predictions: get_scaling_predictions(state.workload_predictor)
}
{:reply, status, state}
end
def handle_cast(:evaluate_scaling, state) do
new_state = perform_scaling_evaluation(state)
{:noreply, new_state}
end
def handle_info(:scaling_evaluation, state) do
new_state = perform_scaling_evaluation(state)
schedule_scaling_evaluation()
{:noreply, new_state}
end
def handle_info(:predictive_scaling, state) do
new_state = perform_predictive_scaling(state)
schedule_predictive_scaling()
{:noreply, new_state}
end
def handle_info({:scaling_complete, scaling_result}, state) do
# Update state after scaling operation completes
new_state = handle_scaling_completion(scaling_result, state)
{:noreply, new_state}
end
defp perform_scaling_evaluation(state) do
# Collect current metrics
current_metrics = collect_scaling_metrics()
# Evaluate each scaling policy
scaling_decisions = Enum.map(state.scaling_policies, fn policy ->
evaluate_scaling_policy(policy, current_metrics, state)
end)
|> Enum.filter(fn decision -> decision != :no_action end)
# Combine decisions and determine final action
final_decision = resolve_scaling_decisions(scaling_decisions, state)
case final_decision do
{:scale_out, target_capacity, reasons} ->
if can_scale_out?(state) do
execute_scale_out(target_capacity, reasons, state)
else
state
end
{:scale_in, target_capacity, reasons} ->
if can_scale_in?(state) do
execute_scale_in(target_capacity, reasons, state)
else
state
end
:no_action ->
state
end
end
defp evaluate_scaling_policy(policy, metrics, state) do
case policy.type do
:threshold_based ->
evaluate_threshold_policy(policy, metrics, state)
:rate_based ->
evaluate_rate_policy(policy, metrics, state)
:queue_based ->
evaluate_queue_policy(policy, metrics, state)
:resource_based ->
evaluate_resource_policy(policy, metrics, state)
:composite ->
evaluate_composite_policy(policy, metrics, state)
end
end
defp evaluate_threshold_policy(policy, metrics, state) do
metric_value = Map.get(metrics, policy.metric)
cond do
metric_value > policy.scale_out_threshold ->
target = calculate_scale_out_target(policy, metric_value, state.current_capacity)
{:scale_out, target, [policy.name]}
metric_value < policy.scale_in_threshold ->
target = calculate_scale_in_target(policy, metric_value, state.current_capacity)
{:scale_in, target, [policy.name]}
true ->
:no_action
end
end
defp evaluate_rate_policy(policy, metrics, state) do
# Evaluate based on rate of change
metric_history = get_metric_history(policy.metric, policy.evaluation_window)
if length(metric_history) >= 2 do
rate_of_change = calculate_rate_of_change(metric_history)
cond do
rate_of_change > policy.scale_out_rate ->
target = state.current_capacity + policy.scale_increment
{:scale_out, target, [policy.name]}
rate_of_change < policy.scale_in_rate ->
target = max(policy.min_capacity, state.current_capacity - policy.scale_decrement)
{:scale_in, target, [policy.name]}
true ->
:no_action
end
else
:no_action
end
end
defp evaluate_queue_policy(policy, metrics, state) do
# Evaluate based on queue lengths and processing times
queue_length = Map.get(metrics, policy.queue_metric, 0)
processing_rate = Map.get(metrics, policy.processing_rate_metric, 1)
estimated_wait_time = queue_length / processing_rate
cond do
estimated_wait_time > policy.max_wait_time ->
# Scale out to reduce wait time
target_processing_rate = queue_length / policy.target_wait_time
scale_factor = target_processing_rate / processing_rate
target = round(state.current_capacity * scale_factor)
{:scale_out, target, [policy.name]}
estimated_wait_time < policy.min_utilization_wait_time ->
# Scale in due to low utilization
target = max(policy.min_capacity, round(state.current_capacity * 0.8))
{:scale_in, target, [policy.name]}
true ->
:no_action
end
end
defp evaluate_resource_policy(policy, metrics, state) do
# Evaluate based on resource utilization across multiple dimensions
resource_scores = Enum.map(policy.resources, fn {resource, thresholds} ->
utilization = Map.get(metrics, resource, 0.0)
cond do
utilization > thresholds.scale_out -> {:scale_out, resource, utilization}
utilization < thresholds.scale_in -> {:scale_in, resource, utilization}
true -> {:no_action, resource, utilization}
end
end)
# Determine action based on most constrained resource
critical_resources = Enum.filter(resource_scores, fn {action, _, _} ->
action in [:scale_out, :scale_in]
end)
if not Enum.empty?(critical_resources) do
{action, resource, _} = Enum.max_by(critical_resources, fn {_, _, utilization} ->
utilization
end)
target = case action do
:scale_out -> state.current_capacity + policy.scale_increment
:scale_in -> max(policy.min_capacity, state.current_capacity - policy.scale_decrement)
end
{action, target, [policy.name, resource]}
else
:no_action
end
end
defp evaluate_composite_policy(policy, metrics, state) do
# Evaluate composite policy that combines multiple conditions
sub_decisions = Enum.map(policy.sub_policies, fn sub_policy ->
evaluate_scaling_policy(sub_policy, metrics, state)
end)
case policy.combination_strategy do
:any ->
# Any sub-policy triggering causes action
Enum.find(sub_decisions, :no_action, &(&1 != :no_action))
:all ->
# All sub-policies must agree
if Enum.all?(sub_decisions, &(&1 != :no_action)) do
# Take the most aggressive action
aggregate_decisions(sub_decisions)
else
:no_action
end
:majority ->
# Majority of sub-policies must agree
non_no_action = Enum.filter(sub_decisions, &(&1 != :no_action))
if length(non_no_action) > length(policy.sub_policies) / 2 do
aggregate_decisions(non_no_action)
else
:no_action
end
end
end
defp resolve_scaling_decisions(decisions, state) do
if Enum.empty?(decisions) do
:no_action
else
# Group decisions by action type
{scale_out_decisions, scale_in_decisions} = Enum.split_with(decisions, fn
{:scale_out, _, _} -> true
_ -> false
end)
cond do
not Enum.empty?(scale_out_decisions) ->
# Prioritize scale out for performance
{_, max_target, reasons} = Enum.max_by(scale_out_decisions, fn {_, target, _} ->
target
end)
all_reasons = Enum.flat_map(scale_out_decisions, fn {_, _, reasons} -> reasons end)
{:scale_out, max_target, all_reasons}
not Enum.empty?(scale_in_decisions) ->
# Scale in conservatively
{_, min_target, reasons} = Enum.min_by(scale_in_decisions, fn {_, target, _} ->
target
end)
all_reasons = Enum.flat_map(scale_in_decisions, fn {_, _, reasons} -> reasons end)
{:scale_in, min_target, all_reasons}
true ->
:no_action
end
end
end
defp execute_scale_out(target_capacity, reasons, state) do
Logger.info("Scaling out from #{state.current_capacity} to #{target_capacity}, reasons: #{inspect(reasons)}")
scaling_event = %{
type: :scale_out,
from_capacity: state.current_capacity,
to_capacity: target_capacity,
reasons: reasons,
timestamp: DateTime.utc_now()
}
# Execute scaling asynchronously
spawn_link(fn ->
result = perform_scale_out(state.current_capacity, target_capacity)
send(__MODULE__, {:scaling_complete, result})
end)
# Update state
new_history = [scaling_event | state.scaling_history] |> Enum.take(100)
new_cooldowns = Map.put(state.scaling_cooldowns, :scale_out, System.monotonic_time(:millisecond) + @scale_out_cooldown)
%{state |
target_capacity: target_capacity,
scaling_history: new_history,
scaling_cooldowns: new_cooldowns
}
end
defp execute_scale_in(target_capacity, reasons, state) do
Logger.info("Scaling in from #{state.current_capacity} to #{target_capacity}, reasons: #{inspect(reasons)}")
scaling_event = %{
type: :scale_in,
from_capacity: state.current_capacity,
to_capacity: target_capacity,
reasons: reasons,
timestamp: DateTime.utc_now()
}
# Execute scaling asynchronously
spawn_link(fn ->
result = perform_scale_in(state.current_capacity, target_capacity)
send(__MODULE__, {:scaling_complete, result})
end)
# Update state
new_history = [scaling_event | state.scaling_history] |> Enum.take(100)
new_cooldowns = Map.put(state.scaling_cooldowns, :scale_in, System.monotonic_time(:millisecond) + @scale_in_cooldown)
%{state |
target_capacity: target_capacity,
scaling_history: new_history,
scaling_cooldowns: new_cooldowns
}
end
defp perform_scale_out(current_capacity, target_capacity) do
additional_nodes = target_capacity - current_capacity
try do
# Provision additional nodes
new_nodes = provision_nodes(additional_nodes)
# Add nodes to cluster
Enum.each(new_nodes, fn node ->
:ok = add_node_to_cluster(node)
end)
# Rebalance agents across expanded cluster
:ok = Phoenix.LoadBalancing.rebalance_agents()
{:ok, %{
action: :scale_out,
new_nodes: new_nodes,
new_capacity: target_capacity
}}
rescue
error ->
{:error, {:scale_out_failed, error}}
end
end
defp perform_scale_in(current_capacity, target_capacity) do
nodes_to_remove = current_capacity - target_capacity
try do
# Select nodes to remove (least loaded)
candidate_nodes = select_nodes_for_removal(nodes_to_remove)
# Drain agents from selected nodes
Enum.each(candidate_nodes, fn node ->
:ok = drain_node(node)
end)
# Remove nodes from cluster
Enum.each(candidate_nodes, fn node ->
:ok = remove_node_from_cluster(node)
end)
# Deprovision nodes
:ok = deprovision_nodes(candidate_nodes)
{:ok, %{
action: :scale_in,
removed_nodes: candidate_nodes,
new_capacity: target_capacity
}}
rescue
error ->
{:error, {:scale_in_failed, error}}
end
end
defp perform_predictive_scaling(state) do
# Use ML model to predict future workload
current_time = DateTime.utc_now()
prediction_time = DateTime.add(current_time, @prediction_horizon, :second)
predicted_workload = Phoenix.ML.WorkloadPredictor.predict(
state.workload_predictor,
prediction_time
)
# Calculate required capacity for predicted workload
required_capacity = calculate_required_capacity(predicted_workload)
# Check if pre-emptive scaling is needed
current_capacity = state.current_capacity
capacity_buffer = 0.2 # 20% buffer
cond do
required_capacity > current_capacity * (1 + capacity_buffer) ->
# Pre-emptive scale out
target = round(required_capacity * 1.1) # 10% additional buffer
Logger.info("Predictive scaling: scaling out to #{target} for predicted workload")
execute_scale_out(target, [:predictive_scaling], state)
required_capacity < current_capacity * (1 - capacity_buffer) ->
# Pre-emptive scale in
target = max(1, round(required_capacity))
Logger.info("Predictive scaling: scaling in to #{target} for predicted workload")
execute_scale_in(target, [:predictive_scaling], state)
true ->
# No action needed
state
end
end
defp can_scale_out?(state) do
now = System.monotonic_time(:millisecond)
cooldown_end = Map.get(state.scaling_cooldowns, :scale_out, 0)
now >= cooldown_end
end
defp can_scale_in?(state) do
now = System.monotonic_time(:millisecond)
cooldown_end = Map.get(state.scaling_cooldowns, :scale_in, 0)
now >= cooldown_end and state.current_capacity > 1
end
defp handle_scaling_completion(scaling_result, state) do
case scaling_result do
{:ok, %{new_capacity: new_capacity}} ->
Logger.info("Scaling completed successfully, new capacity: #{new_capacity}")
%{state | current_capacity: new_capacity}
{:error, reason} ->
Logger.error("Scaling failed: #{inspect(reason)}")
# Revert target capacity to current capacity
%{state | target_capacity: state.current_capacity}
end
end
# Helper functions and initialization
defp collect_scaling_metrics() do
# Collect metrics relevant to scaling decisions
Phoenix.Metrics.get_cluster_metrics()
end
defp get_current_cluster_capacity() do
length([node() | Node.list()])
end
defp load_scaling_policies(opts) do
Keyword.get(opts, :scaling_policies, default_scaling_policies())
end
defp default_scaling_policies() do
[
%{
name: :cpu_threshold,
type: :threshold_based,
metric: :cluster_cpu_avg,
scale_out_threshold: 0.8,
scale_in_threshold: 0.3,
min_capacity: 1,
max_capacity: 20,
scale_increment: 2
},
%{
name: :memory_threshold,
type: :threshold_based,
metric: :cluster_memory_avg,
scale_out_threshold: 0.85,
scale_in_threshold: 0.4,
min_capacity: 1,
max_capacity: 20,
scale_increment: 1
}
]
end
defp initialize_resource_pools(opts) do
Keyword.get(opts, :resource_pools, %{
compute: %{min: 1, max: 50, current: 5},
memory: %{min: 1, max: 100, current: 10}
})
end
defp schedule_scaling_evaluation() do
Process.send_after(self(), :scaling_evaluation, 30_000) # Every 30 seconds
end
defp schedule_predictive_scaling() do
Process.send_after(self(), :predictive_scaling, 300_000) # Every 5 minutes
end
# Placeholder implementations
defp validate_scaling_request(_target_capacity, _state), do: :ok
defp execute_scaling(_current, _target, _reason, state), do: {:ok, state}
defp get_cooldown_status(_cooldowns), do: %{scale_out: false, scale_in: false}
defp get_scaling_predictions(_predictor), do: %{predicted_load: 0.5, confidence: 0.8}
defp calculate_scale_out_target(_policy, _metric_value, current_capacity), do: current_capacity + 1
defp calculate_scale_in_target(_policy, _metric_value, current_capacity), do: max(1, current_capacity - 1)
defp get_metric_history(_metric, _window), do: [0.5, 0.6, 0.7]
defp calculate_rate_of_change([_|_] = history), do: List.last(history) - hd(history)
defp aggregate_decisions([decision | _]), do: decision
defp calculate_required_capacity(_workload), do: 3
defp provision_nodes(count), do: for i <- 1..count, do: :"node#{i}@localhost"
defp add_node_to_cluster(_node), do: :ok
defp select_nodes_for_removal(count), do: for i <- 1..count, do: :"node#{i}@localhost"
defp drain_node(_node), do: :ok
defp remove_node_from_cluster(_node), do: :ok
defp deprovision_nodes(_nodes), do: :ok
end
Summary and Implementation Roadmap
Performance Optimization Summary
Phoenix’s performance optimization system provides:
- Adaptive Performance Management: Automatic tuning based on real-time metrics and ML predictions
- Intelligent Load Balancing: Multiple strategies with dynamic weight adjustment
- Resource-Aware Placement: Optimal agent distribution considering constraints and objectives
- Comprehensive Monitoring: Multi-dimensional metrics collection and analysis
- Auto-Scaling: Reactive and predictive scaling with multiple policy types
Implementation Roadmap
<function_calls>