Jido Full-Stack Agentic System Buildout
Executive Summary
This document outlines a comprehensive plan to build a production-ready, full-stack agentic system using Jido integrated with Foundation’s infrastructure. The goal is to create a complete example that demonstrates autonomous agent capabilities while leveraging Foundation’s registry, telemetry, resource management, and MABEAM coordination systems.
Current Foundation Capabilities Analysis
✅ Existing Infrastructure
- Foundation Core: Registry, Telemetry, Error Handling, Resource Management
- MABEAM: Multi-Agent coordination, discovery, fault tolerance
- JidoFoundation.Bridge: Integration layer between Jido and Foundation
- Signal Routing: Global signal router with pattern matching
- Comprehensive Testing: 190+ tests covering all integration scenarios
🎯 Target Architecture
┌─────────────────────────────────────────────────────────────────┐
│ Full-Stack Jido System │
├─────────────────────────────────────────────────────────────────┤
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │
│ │ Agent Layer │ │ Workflow Layer │ │ Skill Layer │ │
│ │ • TaskAgent │ │ • OrderFlow │ │ • MonitorSkill │ │
│ │ • MonitorAgent │ │ • AnalysisFlow │ │ • ProcessSkill │ │
│ │ • CoordAgent │ │ • DeployFlow │ │ • AlertSkill │ │
│ └─────────────────┘ └─────────────────┘ └─────────────────┘ │
├─────────────────────────────────────────────────────────────────┤
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │
│ │ Action Layer │ │ Sensor Layer │ │ Signal Layer │ │
│ │ • ProcessData │ │ • SystemSensor │ │ • EventBus │ │
│ │ • CallAPI │ │ • DBSensor │ │ • SignalRouter │ │
│ │ • Transform │ │ • FileSensor │ │ • EventStore │ │
│ └─────────────────┘ └─────────────────┘ └─────────────────┘ │
├─────────────────────────────────────────────────────────────────┤
│ Foundation Infrastructure │
│ ┌─────────────────────────────────────────────────────────┐ │
│ │ Registry • Telemetry • Resources • MABEAM • Bridge │ │
│ └─────────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────────┘
Phase 1: Core Jido Integration Layer
1.1 Enhanced Agent Infrastructure
Location: lib/jido_system/agents/
# Base agent with Foundation integration
defmodule JidoSystem.Agents.FoundationAgent do
use Jido.Agent
require Logger
# Auto-register with Foundation on start
@impl true
def on_init(agent) do
:ok = JidoFoundation.Bridge.register_agent(self(),
capabilities: agent.schema.capabilities || [],
metadata: %{
agent_type: agent.name,
jido_version: Application.spec(:jido, :vsn),
foundation_integrated: true
}
)
{:ok, agent}
end
# Emit telemetry for action execution
@impl true
def on_before_action(agent, instruction) do
JidoFoundation.Bridge.emit_agent_event(self(), :action_starting,
%{action: instruction.action},
%{instruction_id: instruction.id}
)
{:ok, agent, instruction}
end
end
# Task processing agent
defmodule JidoSystem.Agents.TaskAgent do
use JidoSystem.Agents.FoundationAgent,
name: "task_agent",
description: "Processes tasks with Foundation infrastructure support",
actions: [
JidoSystem.Actions.ProcessTask,
JidoSystem.Actions.ValidateTask,
JidoSystem.Actions.CompleteTask
],
capabilities: [:task_processing, :validation, :completion],
schema: [
status: [type: :atom, default: :idle],
processed_count: [type: :integer, default: 0],
error_count: [type: :integer, default: 0],
last_task: [type: :map, default: %{}]
]
end
# System monitoring agent
defmodule JidoSystem.Agents.MonitorAgent do
use JidoSystem.Agents.FoundationAgent,
name: "monitor_agent",
description: "Monitors system health and triggers alerts",
sensors: [
JidoSystem.Sensors.SystemHealthSensor,
JidoSystem.Sensors.ResourceUsageSensor
],
capabilities: [:monitoring, :alerting, :health_checks],
schema: [
alert_threshold: [type: :float, default: 0.8],
check_interval: [type: :integer, default: 30_000],
alerts_sent: [type: :integer, default: 0]
]
end
# Multi-agent coordinator
defmodule JidoSystem.Agents.CoordinatorAgent do
use JidoSystem.Agents.FoundationAgent,
name: "coordinator_agent",
description: "Coordinates multiple agents using MABEAM",
capabilities: [:coordination, :task_distribution, :load_balancing],
schema: [
managed_agents: [type: :list, default: []],
active_tasks: [type: :map, default: %{}],
coordination_strategy: [type: :atom, default: :round_robin]
]
@impl true
def handle_instruction(%{action: JidoSystem.Actions.DistributeTask} = instruction, agent) do
# Use Foundation's agent discovery
{:ok, capable_agents} = JidoFoundation.Bridge.find_agents_by_capability(
instruction.params.required_capability
)
# Distribute using MABEAM coordination
selected_agent = select_best_agent(capable_agents, agent.state.coordination_strategy)
JidoFoundation.Bridge.coordinate_agents(self(), selected_agent, %{
action: :delegate_task,
task: instruction.params.task,
deadline: instruction.params.deadline
})
{:ok, %{agent | state: update_state(agent.state, selected_agent, instruction)}}
end
end
1.2 Production Actions
Location: lib/jido_system/actions/
# Circuit-breaker protected external API action
defmodule JidoSystem.Actions.CallExternalAPI do
use Jido.Action,
name: "call_external_api",
description: "Makes external API calls with Foundation circuit breaker protection",
schema: [
url: [type: :string, required: true],
method: [type: :atom, default: :get],
headers: [type: :map, default: %{}],
body: [type: :any, default: nil],
timeout: [type: :integer, default: 5000]
]
@impl true
def run(params, context) do
service_id = {:external_api, params.url}
JidoFoundation.Bridge.execute_protected(context.agent_pid, fn ->
HTTPoison.request(params.method, params.url, params.body, params.headers,
timeout: params.timeout
)
end,
service_id: service_id,
fallback: {:error, :service_unavailable},
timeout: params.timeout
)
end
end
# Resource-aware data processing
defmodule JidoSystem.Actions.ProcessLargeDataset do
use Jido.Action,
name: "process_large_dataset",
description: "Processes large datasets with resource management",
schema: [
dataset: [type: :any, required: true],
chunk_size: [type: :integer, default: 1000],
processing_type: [type: :atom, required: true]
]
@impl true
def run(params, context) do
# Acquire computational resources
case JidoFoundation.Bridge.acquire_resource(:heavy_computation, %{
agent: context.agent_pid,
estimated_size: length(params.dataset)
}) do
{:ok, resource_token} ->
try do
result = process_with_chunks(params.dataset, params.chunk_size, params.processing_type)
{:ok, result}
after
JidoFoundation.Bridge.release_resource(resource_token)
end
{:error, :resource_exhausted} ->
# Retry with smaller chunks
smaller_chunks = div(params.chunk_size, 2)
if smaller_chunks > 0 do
run(%{params | chunk_size: smaller_chunks}, context)
else
{:error, :insufficient_resources}
end
end
end
end
# Multi-step workflow with compensation
defmodule JidoSystem.Actions.ComplexWorkflow do
use Jido.Action,
name: "complex_workflow",
description: "Multi-step workflow with rollback capabilities",
schema: [
steps: [type: :list, required: true],
rollback_on_error: [type: :boolean, default: true],
continue_on_partial_failure: [type: :boolean, default: false]
]
@impl true
def run(params, context) do
with {:ok, results} <- execute_steps(params.steps, context, []),
{:ok, validated} <- validate_results(results) do
{:ok, %{
results: validated,
steps_completed: length(params.steps),
status: :success
}}
else
{:error, {step_index, reason, partial_results}} when params.rollback_on_error ->
{:ok, _} = rollback_steps(step_index, partial_results, context)
{:error, %{reason: reason, step: step_index, rollback_completed: true}}
{:error, reason} ->
{:error, reason}
end
end
def compensate(result, params, context) do
# Jido compensation hook for cleanup
if result.rollback_completed do
Logger.info("Workflow #{context.instruction_id} rolled back successfully")
end
:ok
end
end
1.3 Intelligent Sensors
Location: lib/jido_system/sensors/
# System health monitoring
defmodule JidoSystem.Sensors.SystemHealthSensor do
use Jido.Sensor,
name: "system_health_sensor",
description: "Monitors system health metrics",
schema: [
memory_threshold: [type: :float, default: 0.8],
cpu_threshold: [type: :float, default: 0.8],
check_interval: [type: :integer, default: 10_000]
]
@impl true
def deliver_signal(state) do
health_data = %{
memory_usage: get_memory_usage(),
cpu_usage: get_cpu_usage(),
disk_usage: get_disk_usage(),
process_count: length(Process.list()),
timestamp: DateTime.utc_now()
}
alert_level = determine_alert_level(health_data, state.config)
signal_type = case alert_level do
:critical -> "system.health.critical"
:warning -> "system.health.warning"
:normal -> "system.health.normal"
end
{:ok, Jido.Signal.new(%{
source: "#{state.sensor.name}:#{state.id}",
type: signal_type,
data: health_data
})}
end
end
# Database performance sensor
defmodule JidoSystem.Sensors.DatabaseSensor do
use Jido.Sensor,
name: "database_sensor",
description: "Monitors database performance and connectivity",
schema: [
connection_pool: [type: :atom, required: true],
query_timeout_threshold: [type: :integer, default: 5000],
slow_query_threshold: [type: :integer, default: 1000]
]
@impl true
def deliver_signal(state) do
db_metrics = %{
connection_count: get_connection_count(state.config.connection_pool),
avg_query_time: get_avg_query_time(),
slow_queries: get_slow_query_count(state.config.slow_query_threshold),
failed_queries: get_failed_query_count(),
pool_overflow: check_pool_overflow(state.config.connection_pool)
}
{:ok, Jido.Signal.new(%{
source: "#{state.sensor.name}:#{state.id}",
type: "database.metrics",
data: db_metrics
})}
end
end
Phase 2: Advanced Workflow Orchestration
2.1 Business Process Workflows
Location: lib/jido_system/workflows/
# E-commerce order processing workflow
defmodule JidoSystem.Workflows.OrderProcessingFlow do
use Jido.Workflow,
name: "order_processing_flow",
description: "Complete order processing from validation to fulfillment"
def define_flow do
[
# Step 1: Validate order
%{
name: :validate_order,
action: JidoSystem.Actions.ValidateOrder,
timeout: 5_000,
required: true,
on_error: :halt
},
# Step 2: Check inventory (parallel with payment)
%{
name: :check_inventory,
action: JidoSystem.Actions.CheckInventory,
timeout: 10_000,
parallel_group: :validation,
on_error: :retry
},
# Step 3: Process payment (parallel with inventory)
%{
name: :process_payment,
action: JidoSystem.Actions.ProcessPayment,
timeout: 15_000,
parallel_group: :validation,
compensation: JidoSystem.Actions.RefundPayment,
on_error: :compensate
},
# Step 4: Reserve inventory (requires both previous steps)
%{
name: :reserve_inventory,
action: JidoSystem.Actions.ReserveInventory,
depends_on: [:check_inventory, :process_payment],
timeout: 5_000,
compensation: JidoSystem.Actions.ReleaseInventory
},
# Step 5: Create shipment
%{
name: :create_shipment,
action: JidoSystem.Actions.CreateShipment,
depends_on: [:reserve_inventory],
timeout: 10_000,
async: true # Can continue without waiting
},
# Step 6: Send confirmation
%{
name: :send_confirmation,
action: JidoSystem.Actions.SendConfirmation,
depends_on: [:process_payment],
timeout: 5_000,
on_error: :continue # Non-critical step
}
]
end
def run(order_data, context) do
# Enhanced workflow execution with Foundation integration
workflow_id = "order_#{order_data.id}_#{System.unique_integer()}"
# Register workflow with Foundation for monitoring
:ok = JidoFoundation.Bridge.register_agent(self(),
capabilities: [:workflow_execution, :order_processing],
metadata: %{
workflow_id: workflow_id,
order_id: order_data.id,
started_at: DateTime.utc_now()
}
)
try do
result = execute_workflow(define_flow(), order_data, context)
# Emit completion telemetry
JidoFoundation.Bridge.emit_agent_event(self(), :workflow_completed,
%{duration_ms: calculate_duration(context.started_at)},
%{workflow_id: workflow_id, success: elem(result, 0) == :ok}
)
result
after
JidoFoundation.Bridge.unregister_agent(self())
end
end
end
# Data pipeline workflow
defmodule JidoSystem.Workflows.DataPipelineFlow do
use Jido.Workflow,
name: "data_pipeline_flow",
description: "ETL pipeline with real-time monitoring"
def define_flow do
[
# Extract from multiple sources
%{
name: :extract_database,
action: JidoSystem.Actions.ExtractFromDatabase,
parallel_group: :extract,
timeout: 30_000
},
%{
name: :extract_api,
action: JidoSystem.Actions.ExtractFromAPI,
parallel_group: :extract,
timeout: 60_000,
retry: %{max_attempts: 3, backoff: :exponential}
},
%{
name: :extract_files,
action: JidoSystem.Actions.ExtractFromFiles,
parallel_group: :extract,
timeout: 120_000
},
# Transform data
%{
name: :merge_sources,
action: JidoSystem.Actions.MergeDataSources,
depends_on: [:extract_database, :extract_api, :extract_files],
timeout: 60_000,
resource_requirements: %{memory_mb: 1024}
},
%{
name: :clean_data,
action: JidoSystem.Actions.CleanData,
depends_on: [:merge_sources],
timeout: 30_000
},
%{
name: :enrich_data,
action: JidoSystem.Actions.EnrichData,
depends_on: [:clean_data],
timeout: 45_000,
parallel_group: :transform
},
%{
name: :validate_data,
action: JidoSystem.Actions.ValidateData,
depends_on: [:clean_data],
timeout: 15_000,
parallel_group: :transform
},
# Load to destinations
%{
name: :load_warehouse,
action: JidoSystem.Actions.LoadToWarehouse,
depends_on: [:enrich_data, :validate_data],
timeout: 90_000,
parallel_group: :load
},
%{
name: :load_cache,
action: JidoSystem.Actions.LoadToCache,
depends_on: [:enrich_data, :validate_data],
timeout: 30_000,
parallel_group: :load
},
%{
name: :generate_report,
action: JidoSystem.Actions.GenerateReport,
depends_on: [:load_warehouse],
timeout: 60_000,
on_error: :continue # Non-critical
}
]
end
end
2.2 Reactive Skills
Location: lib/jido_system/skills/
# Auto-scaling skill
defmodule JidoSystem.Skills.AutoScalingSkill do
use Jido.Skill,
name: "auto_scaling",
description: "Automatically scales agents based on load",
opts_key: :auto_scaling,
signals: [
input: ["system.load.*", "agent.queue.*", "performance.*"],
output: ["scaling.agent.spawned", "scaling.agent.terminated"]
],
config: [
scale_up_threshold: [type: :float, default: 0.8],
scale_down_threshold: [type: :float, default: 0.2],
min_agents: [type: :integer, default: 1],
max_agents: [type: :integer, default: 10],
cooldown_period: [type: :integer, default: 60_000]
]
def router do
[
%{
path: "system.load.high",
instruction: %{action: JidoSystem.Actions.ScaleUp},
priority: 100,
conditions: %{
load_above: 0.8,
agents_below_max: true
}
},
%{
path: "system.load.low",
instruction: %{action: JidoSystem.Actions.ScaleDown},
priority: 50,
conditions: %{
load_below: 0.2,
agents_above_min: true
}
},
%{
path: "agent.queue.overflow",
instruction: %{action: JidoSystem.Actions.EmergencyScale},
priority: 200
}
]
end
# Custom skill logic for scaling decisions
def handle_signal(%{type: "system.load.high", data: load_data}, state) do
current_agents = length(state.managed_agents)
if should_scale_up?(load_data, current_agents, state.config) do
# Use Foundation's agent discovery to find suitable nodes
{:ok, available_nodes} = Foundation.Coordination.get_available_nodes()
target_node = select_best_node(available_nodes, load_data)
# Spawn new agent using MABEAM coordination
{:ok, new_agent} = spawn_agent_on_node(target_node, state.agent_template)
# Register with Foundation
:ok = JidoFoundation.Bridge.register_agent(new_agent,
capabilities: [:task_processing, :auto_scaled],
metadata: %{
spawned_by: self(),
spawn_reason: :high_load,
target_node: target_node
}
)
updated_state = %{state | managed_agents: [new_agent | state.managed_agents]}
# Emit scaling event
signal = Jido.Signal.new(%{
source: "auto_scaling_skill",
type: "scaling.agent.spawned",
data: %{
agent: new_agent,
reason: :high_load,
total_agents: length(updated_state.managed_agents)
}
})
{:ok, updated_state, [signal]}
else
{:ok, state, []}
end
end
end
# Intelligent monitoring skill
defmodule JidoSystem.Skills.IntelligentMonitoringSkill do
use Jido.Skill,
name: "intelligent_monitoring",
description: "AI-powered monitoring with predictive alerts",
opts_key: :monitoring,
signals: [
input: ["*.metrics", "*.health.*", "*.performance.*"],
output: ["alert.predictive.*", "insight.generated"]
],
config: [
prediction_window: [type: :integer, default: 300_000], # 5 minutes
alert_confidence_threshold: [type: :float, default: 0.7],
metric_history_limit: [type: :integer, default: 1000]
]
def router do
[
%{
path: "**.metrics",
instruction: %{action: JidoSystem.Actions.AnalyzeMetrics},
priority: 10
},
%{
path: "system.health.**",
instruction: %{action: JidoSystem.Actions.PredictIssues},
priority: 50
},
%{
path: "alert.predictive.**",
instruction: %{action: JidoSystem.Actions.TriggerPreventiveAction},
priority: 100
}
]
end
end
Phase 3: Production Deployment Infrastructure
3.1 Application Structure
Location: lib/jido_system/application.ex
defmodule JidoSystem.Application do
use Application
require Logger
def start(_type, _args) do
Logger.info("Starting JidoSystem with Foundation integration")
children = [
# Foundation infrastructure first
Foundation,
# Jido task supervisor for async operations
{Task.Supervisor, name: JidoSystem.TaskSupervisor},
# Core agent supervisors
{DynamicSupervisor, name: JidoSystem.AgentSupervisor, strategy: :one_for_one},
# Start core system agents
{JidoSystem.Agents.MonitorAgent, id: "system_monitor"},
{JidoSystem.Agents.CoordinatorAgent, id: "main_coordinator"},
# Start agent pool for task processing
task_agent_pool(),
# Signal router for inter-agent communication
{JidoFoundation.SignalRouter, name: JidoSystem.SignalRouter},
# Workflow scheduler
{JidoSystem.WorkflowScheduler, []},
# Health check endpoint for load balancers
{JidoSystem.HealthCheck, port: 8080}
]
opts = [strategy: :one_for_one, name: JidoSystem.Supervisor]
case Supervisor.start_link(children, opts) do
{:ok, pid} ->
Logger.info("JidoSystem started successfully")
register_system_with_discovery()
{:ok, pid}
{:error, reason} ->
Logger.error("Failed to start JidoSystem: #{inspect(reason)}")
{:error, reason}
end
end
defp task_agent_pool do
# Dynamic pool of task processing agents
pool_size = Application.get_env(:jido_system, :task_agent_pool_size, 5)
for i <- 1..pool_size do
Supervisor.child_spec(
{JidoSystem.Agents.TaskAgent, id: "task_agent_#{i}"},
id: "task_agent_#{i}"
)
end
end
defp register_system_with_discovery do
# Register the entire system with Foundation's discovery
:ok = Foundation.register_service(:jido_system, %{
version: Application.spec(:jido_system, :vsn),
capabilities: [:task_processing, :workflow_execution, :monitoring],
endpoints: [
health: "http://localhost:8080/health",
metrics: "http://localhost:8080/metrics"
],
started_at: DateTime.utc_now()
})
end
end
3.2 Configuration Management
Location: config/
# config/config.exs
import Config
# Foundation configuration
config :foundation,
registry_impl: Foundation.Registry.ETS,
coordination_impl: Foundation.Coordination.Local,
infrastructure_impl: Foundation.Infrastructure.Local,
telemetry_enabled: true,
resource_limits: %{
max_memory_mb: 2048,
max_ets_entries: 1_000_000,
max_registry_size: 100_000,
cleanup_interval: 60_000,
alert_threshold: 0.9
}
# Jido system configuration
config :jido_system,
task_agent_pool_size: 5,
max_concurrent_workflows: 20,
workflow_timeout: 300_000,
auto_scaling_enabled: true,
monitoring_enabled: true,
signal_routing_enabled: true
# Jido framework configuration
config :jido,
default_timeout: 60_000,
task_supervisor: JidoSystem.TaskSupervisor,
telemetry_enabled: true,
error_strategy: :continue
# Environment-specific overrides
import_config "#{config_env()}.exs"
# config/prod.exs
import Config
config :jido_system,
task_agent_pool_size: 20,
max_concurrent_workflows: 100,
auto_scaling_enabled: true,
monitoring_enabled: true
config :foundation,
resource_limits: %{
max_memory_mb: 8192,
max_ets_entries: 10_000_000,
max_registry_size: 1_000_000,
cleanup_interval: 30_000,
alert_threshold: 0.8
}
# Logger configuration for production
config :logger,
level: :info,
backends: [:console, {LoggerFileBackend, :file}]
config :logger, :file,
path: "/var/log/jido_system/app.log",
level: :info,
format: "$date $time [$level] $metadata$message\n",
metadata: [:agent_id, :workflow_id, :action]
Phase 4: Advanced Features
4.1 AI Integration Layer
Location: lib/jido_system/ai/
# LLM-powered decision making agent
defmodule JidoSystem.AI.DecisionAgent do
use JidoSystem.Agents.FoundationAgent,
name: "decision_agent",
description: "Makes intelligent decisions using LLM integration",
actions: [
JidoSystem.AI.Actions.AnalyzeContext,
JidoSystem.AI.Actions.GenerateStrategy,
JidoSystem.AI.Actions.MakeDecision
],
capabilities: [:ai_decision_making, :context_analysis, :strategy_generation]
@impl true
def handle_instruction(%{action: JidoSystem.AI.Actions.MakeDecision} = instruction, agent) do
# Use Foundation's circuit breaker for LLM calls
result = JidoFoundation.Bridge.execute_protected(self(), fn ->
call_llm_with_context(instruction.params.context, instruction.params.options)
end,
service_id: {:llm_service, :decision_making},
timeout: 30_000,
fallback: {:ok, %{decision: :fallback_strategy, confidence: 0.5}}
)
case result do
{:ok, decision} ->
# Update agent state with decision history
updated_state = record_decision(agent.state, decision, instruction)
# Emit decision telemetry
JidoFoundation.Bridge.emit_agent_event(self(), :decision_made,
%{confidence: decision.confidence},
%{decision_type: instruction.params.decision_type}
)
{:ok, %{agent | state: updated_state}, decision}
{:error, reason} ->
{:error, %{reason: reason, fallback_available: true}}
end
end
end
# Context-aware workflow adapter
defmodule JidoSystem.AI.ContextualWorkflow do
use Jido.Workflow,
name: "contextual_workflow",
description: "Adapts workflow execution based on context analysis"
def run(workflow_spec, context) do
# Analyze context using AI
{:ok, analysis} = JidoSystem.AI.Actions.AnalyzeContext.run(
%{context: context},
%{agent_pid: self()}
)
# Adapt workflow based on analysis
adapted_spec = adapt_workflow(workflow_spec, analysis)
# Execute with Foundation monitoring
execute_monitored_workflow(adapted_spec, context)
end
defp adapt_workflow(spec, analysis) do
# AI-driven workflow adaptation logic
spec
|> adjust_timeouts_for_complexity(analysis.complexity)
|> add_validation_steps_for_risk(analysis.risk_level)
|> optimize_parallelization(analysis.parallelizability)
end
end
4.2 Distributed Coordination
Location: lib/jido_system/distributed/
# Cross-node agent coordination
defmodule JidoSystem.Distributed.ClusterCoordinator do
use JidoSystem.Agents.FoundationAgent,
name: "cluster_coordinator",
description: "Coordinates agents across multiple nodes",
capabilities: [:cluster_coordination, :node_management, :load_distribution]
def distribute_task_across_cluster(task, requirements) do
# Find capable agents across all nodes
{:ok, all_agents} = Foundation.Coordination.find_agents_globally(
requirements.capabilities,
minimum_count: requirements.min_agents
)
# Group agents by node for optimal distribution
agents_by_node = group_agents_by_node(all_agents)
# Calculate optimal distribution strategy
distribution_plan = calculate_distribution(task, agents_by_node, requirements)
# Execute distributed task with coordination
execute_distributed_task(distribution_plan)
end
defp execute_distributed_task(plan) do
# Use MABEAM for cross-node coordination
coordination_id = System.unique_integer()
# Create coordination context
{:ok, context} = JidoFoundation.Bridge.create_coordination_context(
plan.agents,
coordination_type: :distributed_task,
timeout: plan.timeout
)
# Execute on each node with monitoring
results = plan.nodes
|> Task.async_stream(fn {node, agents, task_chunk} ->
execute_on_node(node, agents, task_chunk, context)
end, max_concurrency: length(plan.nodes))
|> Enum.map(fn
{:ok, result} -> result
{:exit, reason} -> {:error, reason}
end)
# Aggregate results
aggregate_distributed_results(results, plan)
end
end
# Fault-tolerant agent migration
defmodule JidoSystem.Distributed.AgentMigration do
@moduledoc """
Handles agent migration between nodes for load balancing and fault tolerance.
"""
def migrate_agent(agent_pid, target_node, options \\ []) do
# Serialize agent state
{:ok, state_snapshot} = capture_agent_state(agent_pid)
# Create coordination for migration
migration_id = "migration_#{System.unique_integer()}"
# Use Foundation's coordination for safe migration
Foundation.Coordination.coordinate_process_migration(
agent_pid,
target_node,
%{
migration_id: migration_id,
state_snapshot: state_snapshot,
options: options
}
)
end
defp capture_agent_state(agent_pid) do
# Safely capture agent state for migration
state = Jido.Agent.get_state(agent_pid)
pending_instructions = Jido.Agent.get_queue(agent_pid)
{:ok, %{
state: state,
pending_instructions: pending_instructions,
captured_at: DateTime.utc_now()
}}
end
end
Implementation Timeline
Week 1-2: Foundation Integration (Phase 1)
- Enhanced Agent Infrastructure
- Production Actions with Circuit Breakers
- Intelligent Sensors
- Basic Integration Tests
Week 3-4: Workflow Orchestration (Phase 2)
- Business Process Workflows
- Reactive Skills
- Advanced Coordination Patterns
- Performance Testing
Week 5-6: Production Infrastructure (Phase 3)
- Application Structure
- Configuration Management
- Deployment Scripts
- Monitoring Dashboard
Week 7-8: Advanced Features (Phase 4)
- AI Integration Layer
- Distributed Coordination
- Cross-node Agent Migration
- End-to-end Testing
Success Metrics
Technical Metrics
- Performance: Handle 1000+ concurrent tasks
- Reliability: 99.9% uptime with fault tolerance
- Scalability: Auto-scale from 1-100 agents
- Monitoring: Real-time metrics and alerting
- Integration: Seamless Jido-Foundation integration
Business Metrics
- Workflow Completion: 99%+ success rate
- Resource Efficiency: Optimal resource utilization
- Response Time: Sub-second response for simple tasks
- Error Recovery: Automatic recovery from 90%+ of errors
- Cost Optimization: Efficient resource usage
Directory Structure
lib/jido_system/
├── application.ex # Main application
├── agents/ # Core agents
│ ├── foundation_agent.ex # Base agent with Foundation integration
│ ├── task_agent.ex # Task processing
│ ├── monitor_agent.ex # System monitoring
│ └── coordinator_agent.ex # Multi-agent coordination
├── actions/ # Jido actions
│ ├── external_api.ex # Circuit-breaker protected API calls
│ ├── data_processing.ex # Resource-aware processing
│ ├── workflow.ex # Complex workflows
│ └── coordination.ex # Agent coordination actions
├── sensors/ # Monitoring sensors
│ ├── system_health.ex # System metrics
│ ├── database.ex # Database monitoring
│ └── application.ex # Application-specific sensors
├── workflows/ # Business workflows
│ ├── order_processing.ex # E-commerce example
│ └── data_pipeline.ex # ETL pipeline
├── skills/ # Reactive skills
│ ├── auto_scaling.ex # Dynamic scaling
│ └── monitoring.ex # Intelligent monitoring
├── ai/ # AI integration
│ ├── decision_agent.ex # LLM-powered decisions
│ └── contextual_workflow.ex # Context-aware workflows
├── distributed/ # Distributed coordination
│ ├── cluster_coordinator.ex # Cross-node coordination
│ └── agent_migration.ex # Agent migration
├── health_check.ex # Health check endpoint
└── workflow_scheduler.ex # Workflow scheduling
Conclusion
This comprehensive buildout plan creates a production-ready, full-stack agentic system that demonstrates the powerful combination of Jido’s agent framework with Foundation’s infrastructure capabilities. The resulting system will showcase:
- Autonomous Agent Operation with Foundation infrastructure support
- Intelligent Workflow Orchestration with fault tolerance and monitoring
- Dynamic Scaling and Resource Management through Foundation services
- Multi-Agent Coordination using MABEAM protocols
- Production-Ready Architecture with monitoring, health checks, and deployment support
The implementation will serve as both a complete example and a foundation for building real-world agentic systems in Elixir.