JidoSystem Platform Architecture - Future State Design
Vision Statement
Transform JidoSystem from a collection of integrated components into a unified, production-ready platform for building autonomous agent systems at scale. This architecture assumes completion of Foundation infrastructure fixes and addresses all identified pain points.
Core Design Principles
1. Platform Over Framework
Instead of providing just tools, provide a complete runtime environment with batteries included.
2. Convention Over Configuration
Sensible defaults with escape hatches for customization.
3. Distributed First
Every component designed for multi-node deployment from day one.
4. Observable by Design
Telemetry, tracing, and metrics built into every layer.
5. Failure as Normal
Embrace failures with proper isolation, recovery, and degradation.
Architectural Layers
┌────────────────────────────────────────────────────────────┐
│ User Applications │
│ (Custom Agents, Business Logic, Workflows) │
├────────────────────────────────────────────────────────────┤
│ JidoSystem Platform API │
│ (Unified Interface, DSLs, Code Generation, CLIs) │
├────────────────────────────────────────────────────────────┤
│ Agent Runtime Layer │
│ (Lifecycle, State Management, Communication) │
├────────────────────────────────────────────────────────────┤
│ Coordination Services │
│ (Discovery, Consensus, Elections, Choreography) │
├────────────────────────────────────────────────────────────┤
│ Infrastructure Services │
│ (Storage, Caching, Queuing, Circuit Breaking, Metrics) │
├────────────────────────────────────────────────────────────┤
│ Platform Core │
│ (Event Bus, Config, Security, Observability) │
├────────────────────────────────────────────────────────────┤
│ Distribution Layer │
│ (Clustering, Sharding, Replication, Mesh) │
├────────────────────────────────────────────────────────────┤
│ BEAM/OTP Runtime │
└────────────────────────────────────────────────────────────┘
Component Architecture
1. Platform Core
Event Bus (Unified Event System)
defmodule JidoSystem.EventBus do
@moduledoc """
Unified event system that bridges all event sources.
"""
# Single publishing interface
def publish(event_type, data, metadata \\ %{}) do
event = build_event(event_type, data, metadata)
# Publish to all subscribers
:ok = dispatch_to_subscribers(event)
# Store in event store
:ok = EventStore.append(event)
# Emit telemetry
:ok = emit_telemetry(event)
# Forward to external systems if configured
:ok = forward_external(event)
end
# Unified subscription
def subscribe(pattern, handler, opts \\ []) do
Registry.register(EventBus.Registry, pattern, {handler, opts})
end
# Event sourcing support
def replay(stream, from: position, to: handler) do
EventStore.read_stream(stream, from: position)
|> Stream.each(&handler.(&1))
|> Stream.run()
end
end
Configuration Service
defmodule JidoSystem.Config do
@moduledoc """
Centralized configuration with validation and hot reload.
"""
use JidoSystem.Config.Schema
config_schema do
section :platform do
field :cluster_name, :string, required: true
field :environment, :atom, default: :production
field :deployment_type, :atom, default: :kubernetes
end
section :agents do
field :default_timeout, :timeout, default: 30_000
field :max_queue_size, :pos_integer, default: 10_000
field :supervision_strategy, :atom, default: :one_for_one
end
section :infrastructure do
field :cache_backend, :atom, default: :redis
field :event_store_backend, :atom, default: :postgresql
field :circuit_breaker_threshold, :pos_integer, default: 5
end
end
# Runtime configuration updates
def update(path, value) do
with :ok <- validate_update(path, value),
:ok <- apply_update(path, value) do
broadcast_update(path, value)
end
end
end
Security Layer
defmodule JidoSystem.Security do
@moduledoc """
Capability-based security and access control.
"""
defmodule Capability do
defstruct [:name, :constraints, :granted_by, :expires_at]
end
def grant_capability(agent, capability, constraints \\ %{}) do
cap = %Capability{
name: capability,
constraints: constraints,
granted_by: self(),
expires_at: expiry_time(constraints)
}
Registry.update_value(agent, fn state ->
update_in(state.capabilities, &[cap | &1])
end)
end
def check_capability(agent, capability, context \\ %{}) do
with {:ok, caps} <- get_capabilities(agent),
{:ok, cap} <- find_valid_capability(caps, capability),
:ok <- verify_constraints(cap, context) do
{:ok, cap}
else
_ -> {:error, :unauthorized}
end
end
end
2. Agent Runtime Layer
Enhanced Agent Supervisor
defmodule JidoSystem.AgentSupervisor do
@moduledoc """
Intelligent agent supervision with resource awareness.
"""
use DynamicSupervisor
def start_agent(agent_spec, opts \\ []) do
# Check resource availability
with {:ok, resources} <- ResourceManager.reserve(agent_spec.resources),
{:ok, placement} <- PlacementStrategy.decide(agent_spec, opts) do
# Start with resource limits
spec = %{
agent_spec |
resources: resources,
node: placement.node,
metadata: build_metadata(agent_spec, placement)
}
DynamicSupervisor.start_child(__MODULE__, spec)
end
end
# Automatic scaling based on load
def handle_info({:scale_request, agent_type, count}, state) do
scale_agents(agent_type, count)
{:noreply, state}
end
end
Agent State Manager
defmodule JidoSystem.AgentState do
@moduledoc """
Distributed agent state management with persistence.
"""
defmacro __using__(opts) do
quote do
use Jido.Agent
# Automatic state persistence
def handle_state_change(old_state, new_state) do
StateStore.persist(self(), new_state)
super(old_state, new_state)
end
# State recovery on restart
def init(args) do
case StateStore.recover(self()) do
{:ok, state} -> {:ok, state}
:not_found -> super(args)
end
end
# Distributed state sync
def handle_info({:state_sync, from_node}, state) do
sync_state_with_node(from_node, state)
{:noreply, state}
end
end
end
end
3. Coordination Services
Service Discovery
defmodule JidoSystem.Discovery do
@moduledoc """
Multi-strategy service discovery.
"""
def discover(criteria, opts \\ []) do
strategy = Keyword.get(opts, :strategy, :adaptive)
case strategy do
:local -> discover_local(criteria)
:cluster -> discover_cluster(criteria)
:global -> discover_global(criteria)
:adaptive -> discover_adaptive(criteria, opts)
end
end
# Adaptive discovery based on criteria
defp discover_adaptive(criteria, opts) do
cond do
local_sufficient?(criteria) -> discover_local(criteria)
cluster_sufficient?(criteria) -> discover_cluster(criteria)
true -> discover_global(criteria)
end
end
# Rich capability matching
def match_capabilities(required, provided) do
score = calculate_capability_score(required, provided)
constraints_met? = verify_constraints(required, provided)
if constraints_met? and score > 0 do
{:ok, score}
else
{:error, :no_match}
end
end
end
Choreography Engine
defmodule JidoSystem.Choreography do
@moduledoc """
Distributed choreography for agent coordination.
"""
defmodule Choreography do
defstruct [:id, :participants, :steps, :state, :context]
end
def start_choreography(definition, participants) do
choreography = %Choreography{
id: generate_id(),
participants: participants,
steps: parse_definition(definition),
state: :initiated,
context: %{}
}
# Notify all participants
broadcast_to_participants(choreography, :choreography_started)
# Start execution
execute_next_step(choreography)
end
# Distributed state machine
def handle_participant_event(choreography_id, participant, event) do
with {:ok, choreography} <- get_choreography(choreography_id),
:ok <- validate_event(choreography, participant, event) do
updated = update_choreography_state(choreography, participant, event)
if next_step?(updated) do
execute_next_step(updated)
else
complete_choreography(updated)
end
end
end
end
4. Infrastructure Services Enhancement
Distributed Cache
defmodule JidoSystem.Cache do
@moduledoc """
Multi-tier distributed cache with consistency guarantees.
"""
def get(key, opts \\ []) do
consistency = Keyword.get(opts, :consistency, :eventual)
case consistency do
:eventual -> get_from_nearest(key)
:strong -> get_from_primary(key)
:bounded -> get_with_staleness(key, opts[:max_staleness])
end
end
def put(key, value, opts \\ []) do
ttl = Keyword.get(opts, :ttl)
replicas = Keyword.get(opts, :replicas, 3)
# Write to primary
:ok = write_primary(key, value, ttl)
# Async replication
Task.async(fn ->
replicate_to_nodes(key, value, ttl, replicas)
end)
:ok
end
# Multi-tier architecture
defp get_from_nearest(key) do
# L1: Process cache
with :miss <- ProcessCache.get(key),
# L2: Node cache
:miss <- NodeCache.get(key),
# L3: Distributed cache
{:ok, value} <- DistributedCache.get(key) do
# Populate upper tiers
warm_caches(key, value)
{:ok, value}
end
end
end
Resource Pool Manager
defmodule JidoSystem.ResourcePool do
@moduledoc """
Intelligent resource pooling with fairness.
"""
def acquire(pool_name, opts \\ []) do
priority = Keyword.get(opts, :priority, :normal)
timeout = Keyword.get(opts, :timeout, 5_000)
request = %ResourceRequest{
pool: pool_name,
priority: priority,
requester: self(),
constraints: opts[:constraints] || %{}
}
case ResourceScheduler.schedule(request, timeout) do
{:ok, resource} ->
monitor_ref = Process.monitor(self())
track_allocation(resource, monitor_ref)
{:ok, resource}
{:error, :timeout} ->
handle_timeout(request, opts)
end
end
# Fair scheduling with priorities
defmodule ResourceScheduler do
def schedule(request, timeout) do
queue = get_queue(request.pool)
# Priority queue with fairness
position = calculate_position(request, queue)
wait_for_resource(request, position, timeout)
end
end
end
5. Platform API Layer
Declarative Agent Definition
defmodule MyApp.DataProcessor do
use JidoSystem.Platform.Agent
agent do
name "data_processor"
description "Processes incoming data streams"
capabilities do
processing [:stream, :batch]
formats [:json, :csv, :parquet]
throughput {1000, :per_second}
end
resources do
memory "512MB"
cpu {2, :cores}
storage "10GB"
end
lifecycle do
startup_timeout 30_000
shutdown_grace_period 60_000
on_start :initialize_connections
on_terminate :cleanup_resources
end
resilience do
circuit_breaker threshold: 5, timeout: 30_000
retry_policy :exponential, max_attempts: 3
bulkhead max_concurrent: 100
end
observability do
metrics [:throughput, :latency, :error_rate]
tracing sample_rate: 0.1
logging level: :info
end
end
action process_stream(data) do
with {:ok, parsed} <- parse_data(data),
{:ok, validated} <- validate_data(parsed),
{:ok, result} <- transform_data(validated) do
{:ok, result}
end
end
end
Workflow DSL
defmodule MyApp.OrderWorkflow do
use JidoSystem.Platform.Workflow
workflow do
name "order_processing"
description "End-to-end order processing"
participants do
validator: {ValidationAgent, constraints: %{region: :us}}
processor: {ProcessingAgent, min_count: 2}
notifier: {NotificationAgent, optional: true}
end
flow do
parallel do
step :validate_order, agent: :validator
step :check_inventory, agent: :processor
end
step :process_payment, agent: :processor,
timeout: 30_000,
compensation: :refund_payment
conditional on: :payment_success do
true ->
step :fulfill_order, agent: :processor
step :send_confirmation, agent: :notifier
false ->
step :cancel_order, agent: :processor
step :notify_failure, agent: :notifier
end
end
error_handling do
on_error :validation_failed, retry: 3
on_error :payment_failed, compensate: true
on_timeout :alert_operator
end
end
end
6. Deployment and Operations
Cluster Formation
defmodule JidoSystem.Cluster do
@moduledoc """
Automatic cluster formation and management.
"""
def form_cluster(strategy, opts \\ []) do
case strategy do
:kubernetes -> form_k8s_cluster(opts)
:dns -> form_dns_cluster(opts)
:consul -> form_consul_cluster(opts)
:static -> form_static_cluster(opts)
end
end
# Kubernetes native clustering
defp form_k8s_cluster(opts) do
namespace = Keyword.get(opts, :namespace, "default")
selector = Keyword.get(opts, :selector, "app=jido-system")
# Use Kubernetes API to discover peers
{:ok, endpoints} = K8s.Client.list_endpoints(namespace, selector)
# Form cluster
connect_nodes(endpoints)
end
# Health-aware clustering
def handle_node_event(:nodedown, node) do
# Redistribute work from failed node
redistribute_agents(node)
# Update routing tables
update_routing(node, :down)
# Alert operators
emit_alert(:node_down, %{node: node})
end
end
Live Migration
defmodule JidoSystem.Migration do
@moduledoc """
Zero-downtime agent migration.
"""
def migrate_agent(agent_pid, target_node, opts \\ []) do
strategy = Keyword.get(opts, :strategy, :checkpoint_restore)
case strategy do
:checkpoint_restore ->
checkpoint_restore_migration(agent_pid, target_node)
:state_transfer ->
state_transfer_migration(agent_pid, target_node)
:dual_write ->
dual_write_migration(agent_pid, target_node)
end
end
defp checkpoint_restore_migration(agent_pid, target_node) do
# Pause agent
:ok = Agent.pause(agent_pid)
# Checkpoint state
{:ok, checkpoint} = Agent.checkpoint(agent_pid)
# Start on target
{:ok, new_pid} = rpc(target_node, Agent, :restore, [checkpoint])
# Update routing
:ok = Router.update_routes(agent_pid, new_pid)
# Resume on new node
:ok = Agent.resume(new_pid)
# Stop old instance
:ok = Agent.stop(agent_pid)
{:ok, new_pid}
end
end
Observability Architecture
Unified Telemetry Pipeline
defmodule JidoSystem.Observability do
@moduledoc """
Comprehensive observability with OpenTelemetry.
"""
def setup do
# Metrics
setup_metrics_collection()
# Tracing
setup_distributed_tracing()
# Logging
setup_structured_logging()
# Custom dashboards
setup_dashboards()
end
defp setup_metrics_collection do
# System metrics
:telemetry.attach_many(
"jido-system-metrics",
[
[:jido, :agent, :*],
[:jido, :action, :*],
[:jido, :workflow, :*]
],
&handle_metric/4,
nil
)
# Export to Prometheus
Prometheus.setup()
end
defp setup_distributed_tracing do
# OpenTelemetry configuration
OpenTelemetry.register_tracer(:jido_system, "1.0.0")
# Auto-instrumentation
OpenTelemetry.attach_auto_instrumentation()
end
end
Production Readiness Features
1. Chaos Engineering Support
defmodule JidoSystem.Chaos do
def inject_fault(type, target, duration) do
case type do
:network_delay -> inject_network_delay(target, duration)
:node_failure -> inject_node_failure(target, duration)
:resource_exhaustion -> inject_resource_exhaustion(target, duration)
end
end
end
2. Canary Deployments
defmodule JidoSystem.Canary do
def deploy_canary(agent_module, percentage) do
# Route percentage of traffic to new version
Router.add_canary_route(agent_module, percentage)
# Monitor metrics
monitor_canary_metrics(agent_module)
end
end
3. Feature Flags
defmodule JidoSystem.Features do
def enabled?(feature, context \\ %{}) do
FeatureStore.check(feature, context)
end
def with_feature(feature, context, do: enabled_fn, else: disabled_fn) do
if enabled?(feature, context) do
enabled_fn.()
else
disabled_fn.()
end
end
end
Migration Path
Phase 1: Platform Foundation (Months 1-2)
- Implement EventBus
- Create Config service
- Setup Security layer
- Basic observability
Phase 2: Enhanced Runtime (Months 3-4)
- Upgrade Agent supervisor
- Add State management
- Implement Discovery
- Resource pooling
Phase 3: Advanced Features (Months 5-6)
- Choreography engine
- Live migration
- Chaos engineering
- Canary deployments
Phase 4: Production Hardening (Months 7-8)
- Performance optimization
- Security audit
- Documentation
- Training materials
Success Metrics
Technical Metrics
- 99.99% platform availability
- <100ms p99 latency for agent operations
- <1s agent startup time
10,000 agents per node
- <30s cluster formation
Operational Metrics
- <5 min MTTR (Mean Time To Recovery)
- Zero-downtime deployments
- Automated scaling response <30s
- 100% observability coverage
Business Metrics
- 50% reduction in development time
- 90% reduction in operational overhead
- 10x improvement in system reliability
- 5x improvement in deployment frequency
Conclusion
This architecture transforms JidoSystem from a collection of components into a true platform for building autonomous agent systems. By addressing all identified pain points and providing a clear migration path, teams can build production-ready agent systems with confidence.
The key innovations are:
- Unified abstractions across all layers
- Distributed-first design
- Observable by default
- Production-ready from day one
- Clear separation of concerns
With this architecture, JidoSystem becomes not just a framework, but a complete platform for the next generation of autonomous systems.