← Back to Foundation

JIDO PLATFORM ARCHITECTURE

Documentation for JIDO_PLATFORM_ARCHITECTURE from the Foundation repository.

JidoSystem Platform Architecture - Future State Design

Vision Statement

Transform JidoSystem from a collection of integrated components into a unified, production-ready platform for building autonomous agent systems at scale. This architecture assumes completion of Foundation infrastructure fixes and addresses all identified pain points.

Core Design Principles

1. Platform Over Framework

Instead of providing just tools, provide a complete runtime environment with batteries included.

2. Convention Over Configuration

Sensible defaults with escape hatches for customization.

3. Distributed First

Every component designed for multi-node deployment from day one.

4. Observable by Design

Telemetry, tracing, and metrics built into every layer.

5. Failure as Normal

Embrace failures with proper isolation, recovery, and degradation.

Architectural Layers

┌────────────────────────────────────────────────────────────┐
│                    User Applications                       │
│         (Custom Agents, Business Logic, Workflows)         │
├────────────────────────────────────────────────────────────┤
│                  JidoSystem Platform API                   │
│    (Unified Interface, DSLs, Code Generation, CLIs)       │
├────────────────────────────────────────────────────────────┤
│                    Agent Runtime Layer                     │
│     (Lifecycle, State Management, Communication)          │
├────────────────────────────────────────────────────────────┤
│                  Coordination Services                     │
│    (Discovery, Consensus, Elections, Choreography)        │
├────────────────────────────────────────────────────────────┤
│                 Infrastructure Services                    │
│  (Storage, Caching, Queuing, Circuit Breaking, Metrics)   │
├────────────────────────────────────────────────────────────┤
│                    Platform Core                           │
│      (Event Bus, Config, Security, Observability)         │
├────────────────────────────────────────────────────────────┤
│                  Distribution Layer                        │
│        (Clustering, Sharding, Replication, Mesh)          │
├────────────────────────────────────────────────────────────┤
│                    BEAM/OTP Runtime                        │
└────────────────────────────────────────────────────────────┘

Component Architecture

1. Platform Core

Event Bus (Unified Event System)

defmodule JidoSystem.EventBus do
  @moduledoc """
  Unified event system that bridges all event sources.
  """
  
  # Single publishing interface
  def publish(event_type, data, metadata \\ %{}) do
    event = build_event(event_type, data, metadata)
    
    # Publish to all subscribers
    :ok = dispatch_to_subscribers(event)
    
    # Store in event store
    :ok = EventStore.append(event)
    
    # Emit telemetry
    :ok = emit_telemetry(event)
    
    # Forward to external systems if configured
    :ok = forward_external(event)
  end
  
  # Unified subscription
  def subscribe(pattern, handler, opts \\ []) do
    Registry.register(EventBus.Registry, pattern, {handler, opts})
  end
  
  # Event sourcing support
  def replay(stream, from: position, to: handler) do
    EventStore.read_stream(stream, from: position)
    |> Stream.each(&handler.(&1))
    |> Stream.run()
  end
end

Configuration Service

defmodule JidoSystem.Config do
  @moduledoc """
  Centralized configuration with validation and hot reload.
  """
  
  use JidoSystem.Config.Schema
  
  config_schema do
    section :platform do
      field :cluster_name, :string, required: true
      field :environment, :atom, default: :production
      field :deployment_type, :atom, default: :kubernetes
    end
    
    section :agents do
      field :default_timeout, :timeout, default: 30_000
      field :max_queue_size, :pos_integer, default: 10_000
      field :supervision_strategy, :atom, default: :one_for_one
    end
    
    section :infrastructure do
      field :cache_backend, :atom, default: :redis
      field :event_store_backend, :atom, default: :postgresql
      field :circuit_breaker_threshold, :pos_integer, default: 5
    end
  end
  
  # Runtime configuration updates
  def update(path, value) do
    with :ok <- validate_update(path, value),
         :ok <- apply_update(path, value) do
      broadcast_update(path, value)
    end
  end
end

Security Layer

defmodule JidoSystem.Security do
  @moduledoc """
  Capability-based security and access control.
  """
  
  defmodule Capability do
    defstruct [:name, :constraints, :granted_by, :expires_at]
  end
  
  def grant_capability(agent, capability, constraints \\ %{}) do
    cap = %Capability{
      name: capability,
      constraints: constraints,
      granted_by: self(),
      expires_at: expiry_time(constraints)
    }
    
    Registry.update_value(agent, fn state ->
      update_in(state.capabilities, &[cap | &1])
    end)
  end
  
  def check_capability(agent, capability, context \\ %{}) do
    with {:ok, caps} <- get_capabilities(agent),
         {:ok, cap} <- find_valid_capability(caps, capability),
         :ok <- verify_constraints(cap, context) do
      {:ok, cap}
    else
      _ -> {:error, :unauthorized}
    end
  end
end

2. Agent Runtime Layer

Enhanced Agent Supervisor

defmodule JidoSystem.AgentSupervisor do
  @moduledoc """
  Intelligent agent supervision with resource awareness.
  """
  
  use DynamicSupervisor
  
  def start_agent(agent_spec, opts \\ []) do
    # Check resource availability
    with {:ok, resources} <- ResourceManager.reserve(agent_spec.resources),
         {:ok, placement} <- PlacementStrategy.decide(agent_spec, opts) do
      
      # Start with resource limits
      spec = %{
        agent_spec | 
        resources: resources,
        node: placement.node,
        metadata: build_metadata(agent_spec, placement)
      }
      
      DynamicSupervisor.start_child(__MODULE__, spec)
    end
  end
  
  # Automatic scaling based on load
  def handle_info({:scale_request, agent_type, count}, state) do
    scale_agents(agent_type, count)
    {:noreply, state}
  end
end

Agent State Manager

defmodule JidoSystem.AgentState do
  @moduledoc """
  Distributed agent state management with persistence.
  """
  
  defmacro __using__(opts) do
    quote do
      use Jido.Agent
      
      # Automatic state persistence
      def handle_state_change(old_state, new_state) do
        StateStore.persist(self(), new_state)
        super(old_state, new_state)
      end
      
      # State recovery on restart
      def init(args) do
        case StateStore.recover(self()) do
          {:ok, state} -> {:ok, state}
          :not_found -> super(args)
        end
      end
      
      # Distributed state sync
      def handle_info({:state_sync, from_node}, state) do
        sync_state_with_node(from_node, state)
        {:noreply, state}
      end
    end
  end
end

3. Coordination Services

Service Discovery

defmodule JidoSystem.Discovery do
  @moduledoc """
  Multi-strategy service discovery.
  """
  
  def discover(criteria, opts \\ []) do
    strategy = Keyword.get(opts, :strategy, :adaptive)
    
    case strategy do
      :local -> discover_local(criteria)
      :cluster -> discover_cluster(criteria)
      :global -> discover_global(criteria)
      :adaptive -> discover_adaptive(criteria, opts)
    end
  end
  
  # Adaptive discovery based on criteria
  defp discover_adaptive(criteria, opts) do
    cond do
      local_sufficient?(criteria) -> discover_local(criteria)
      cluster_sufficient?(criteria) -> discover_cluster(criteria)
      true -> discover_global(criteria)
    end
  end
  
  # Rich capability matching
  def match_capabilities(required, provided) do
    score = calculate_capability_score(required, provided)
    constraints_met? = verify_constraints(required, provided)
    
    if constraints_met? and score > 0 do
      {:ok, score}
    else
      {:error, :no_match}
    end
  end
end

Choreography Engine

defmodule JidoSystem.Choreography do
  @moduledoc """
  Distributed choreography for agent coordination.
  """
  
  defmodule Choreography do
    defstruct [:id, :participants, :steps, :state, :context]
  end
  
  def start_choreography(definition, participants) do
    choreography = %Choreography{
      id: generate_id(),
      participants: participants,
      steps: parse_definition(definition),
      state: :initiated,
      context: %{}
    }
    
    # Notify all participants
    broadcast_to_participants(choreography, :choreography_started)
    
    # Start execution
    execute_next_step(choreography)
  end
  
  # Distributed state machine
  def handle_participant_event(choreography_id, participant, event) do
    with {:ok, choreography} <- get_choreography(choreography_id),
         :ok <- validate_event(choreography, participant, event) do
      
      updated = update_choreography_state(choreography, participant, event)
      
      if next_step?(updated) do
        execute_next_step(updated)
      else
        complete_choreography(updated)
      end
    end
  end
end

4. Infrastructure Services Enhancement

Distributed Cache

defmodule JidoSystem.Cache do
  @moduledoc """
  Multi-tier distributed cache with consistency guarantees.
  """
  
  def get(key, opts \\ []) do
    consistency = Keyword.get(opts, :consistency, :eventual)
    
    case consistency do
      :eventual -> get_from_nearest(key)
      :strong -> get_from_primary(key)
      :bounded -> get_with_staleness(key, opts[:max_staleness])
    end
  end
  
  def put(key, value, opts \\ []) do
    ttl = Keyword.get(opts, :ttl)
    replicas = Keyword.get(opts, :replicas, 3)
    
    # Write to primary
    :ok = write_primary(key, value, ttl)
    
    # Async replication
    Task.async(fn ->
      replicate_to_nodes(key, value, ttl, replicas)
    end)
    
    :ok
  end
  
  # Multi-tier architecture
  defp get_from_nearest(key) do
    # L1: Process cache
    with :miss <- ProcessCache.get(key),
         # L2: Node cache  
         :miss <- NodeCache.get(key),
         # L3: Distributed cache
         {:ok, value} <- DistributedCache.get(key) do
      
      # Populate upper tiers
      warm_caches(key, value)
      {:ok, value}
    end
  end
end

Resource Pool Manager

defmodule JidoSystem.ResourcePool do
  @moduledoc """
  Intelligent resource pooling with fairness.
  """
  
  def acquire(pool_name, opts \\ []) do
    priority = Keyword.get(opts, :priority, :normal)
    timeout = Keyword.get(opts, :timeout, 5_000)
    
    request = %ResourceRequest{
      pool: pool_name,
      priority: priority,
      requester: self(),
      constraints: opts[:constraints] || %{}
    }
    
    case ResourceScheduler.schedule(request, timeout) do
      {:ok, resource} ->
        monitor_ref = Process.monitor(self())
        track_allocation(resource, monitor_ref)
        {:ok, resource}
        
      {:error, :timeout} ->
        handle_timeout(request, opts)
    end
  end
  
  # Fair scheduling with priorities
  defmodule ResourceScheduler do
    def schedule(request, timeout) do
      queue = get_queue(request.pool)
      
      # Priority queue with fairness
      position = calculate_position(request, queue)
      
      wait_for_resource(request, position, timeout)
    end
  end
end

5. Platform API Layer

Declarative Agent Definition

defmodule MyApp.DataProcessor do
  use JidoSystem.Platform.Agent
  
  agent do
    name "data_processor"
    description "Processes incoming data streams"
    
    capabilities do
      processing [:stream, :batch]
      formats [:json, :csv, :parquet]
      throughput {1000, :per_second}
    end
    
    resources do
      memory "512MB"
      cpu {2, :cores}
      storage "10GB"
    end
    
    lifecycle do
      startup_timeout 30_000
      shutdown_grace_period 60_000
      
      on_start :initialize_connections
      on_terminate :cleanup_resources
    end
    
    resilience do
      circuit_breaker threshold: 5, timeout: 30_000
      retry_policy :exponential, max_attempts: 3
      bulkhead max_concurrent: 100
    end
    
    observability do
      metrics [:throughput, :latency, :error_rate]
      tracing sample_rate: 0.1
      logging level: :info
    end
  end
  
  action process_stream(data) do
    with {:ok, parsed} <- parse_data(data),
         {:ok, validated} <- validate_data(parsed),
         {:ok, result} <- transform_data(validated) do
      {:ok, result}
    end
  end
end

Workflow DSL

defmodule MyApp.OrderWorkflow do
  use JidoSystem.Platform.Workflow
  
  workflow do
    name "order_processing"
    description "End-to-end order processing"
    
    participants do
      validator: {ValidationAgent, constraints: %{region: :us}}
      processor: {ProcessingAgent, min_count: 2}
      notifier: {NotificationAgent, optional: true}
    end
    
    flow do
      parallel do
        step :validate_order, agent: :validator
        step :check_inventory, agent: :processor
      end
      
      step :process_payment, agent: :processor,
        timeout: 30_000,
        compensation: :refund_payment
      
      conditional on: :payment_success do
        true ->
          step :fulfill_order, agent: :processor
          step :send_confirmation, agent: :notifier
          
        false ->
          step :cancel_order, agent: :processor
          step :notify_failure, agent: :notifier
      end
    end
    
    error_handling do
      on_error :validation_failed, retry: 3
      on_error :payment_failed, compensate: true
      on_timeout :alert_operator
    end
  end
end

6. Deployment and Operations

Cluster Formation

defmodule JidoSystem.Cluster do
  @moduledoc """
  Automatic cluster formation and management.
  """
  
  def form_cluster(strategy, opts \\ []) do
    case strategy do
      :kubernetes -> form_k8s_cluster(opts)
      :dns -> form_dns_cluster(opts)
      :consul -> form_consul_cluster(opts)
      :static -> form_static_cluster(opts)
    end
  end
  
  # Kubernetes native clustering
  defp form_k8s_cluster(opts) do
    namespace = Keyword.get(opts, :namespace, "default")
    selector = Keyword.get(opts, :selector, "app=jido-system")
    
    # Use Kubernetes API to discover peers
    {:ok, endpoints} = K8s.Client.list_endpoints(namespace, selector)
    
    # Form cluster
    connect_nodes(endpoints)
  end
  
  # Health-aware clustering
  def handle_node_event(:nodedown, node) do
    # Redistribute work from failed node
    redistribute_agents(node)
    
    # Update routing tables
    update_routing(node, :down)
    
    # Alert operators
    emit_alert(:node_down, %{node: node})
  end
end

Live Migration

defmodule JidoSystem.Migration do
  @moduledoc """
  Zero-downtime agent migration.
  """
  
  def migrate_agent(agent_pid, target_node, opts \\ []) do
    strategy = Keyword.get(opts, :strategy, :checkpoint_restore)
    
    case strategy do
      :checkpoint_restore ->
        checkpoint_restore_migration(agent_pid, target_node)
        
      :state_transfer ->
        state_transfer_migration(agent_pid, target_node)
        
      :dual_write ->
        dual_write_migration(agent_pid, target_node)
    end
  end
  
  defp checkpoint_restore_migration(agent_pid, target_node) do
    # Pause agent
    :ok = Agent.pause(agent_pid)
    
    # Checkpoint state
    {:ok, checkpoint} = Agent.checkpoint(agent_pid)
    
    # Start on target
    {:ok, new_pid} = rpc(target_node, Agent, :restore, [checkpoint])
    
    # Update routing
    :ok = Router.update_routes(agent_pid, new_pid)
    
    # Resume on new node
    :ok = Agent.resume(new_pid)
    
    # Stop old instance
    :ok = Agent.stop(agent_pid)
    
    {:ok, new_pid}
  end
end

Observability Architecture

Unified Telemetry Pipeline

defmodule JidoSystem.Observability do
  @moduledoc """
  Comprehensive observability with OpenTelemetry.
  """
  
  def setup do
    # Metrics
    setup_metrics_collection()
    
    # Tracing  
    setup_distributed_tracing()
    
    # Logging
    setup_structured_logging()
    
    # Custom dashboards
    setup_dashboards()
  end
  
  defp setup_metrics_collection do
    # System metrics
    :telemetry.attach_many(
      "jido-system-metrics",
      [
        [:jido, :agent, :*],
        [:jido, :action, :*],
        [:jido, :workflow, :*]
      ],
      &handle_metric/4,
      nil
    )
    
    # Export to Prometheus
    Prometheus.setup()
  end
  
  defp setup_distributed_tracing do
    # OpenTelemetry configuration
    OpenTelemetry.register_tracer(:jido_system, "1.0.0")
    
    # Auto-instrumentation
    OpenTelemetry.attach_auto_instrumentation()
  end
end

Production Readiness Features

1. Chaos Engineering Support

defmodule JidoSystem.Chaos do
  def inject_fault(type, target, duration) do
    case type do
      :network_delay -> inject_network_delay(target, duration)
      :node_failure -> inject_node_failure(target, duration)
      :resource_exhaustion -> inject_resource_exhaustion(target, duration)
    end
  end
end

2. Canary Deployments

defmodule JidoSystem.Canary do
  def deploy_canary(agent_module, percentage) do
    # Route percentage of traffic to new version
    Router.add_canary_route(agent_module, percentage)
    
    # Monitor metrics
    monitor_canary_metrics(agent_module)
  end
end

3. Feature Flags

defmodule JidoSystem.Features do
  def enabled?(feature, context \\ %{}) do
    FeatureStore.check(feature, context)
  end
  
  def with_feature(feature, context, do: enabled_fn, else: disabled_fn) do
    if enabled?(feature, context) do
      enabled_fn.()
    else
      disabled_fn.()
    end
  end
end

Migration Path

Phase 1: Platform Foundation (Months 1-2)

  • Implement EventBus
  • Create Config service
  • Setup Security layer
  • Basic observability

Phase 2: Enhanced Runtime (Months 3-4)

  • Upgrade Agent supervisor
  • Add State management
  • Implement Discovery
  • Resource pooling

Phase 3: Advanced Features (Months 5-6)

  • Choreography engine
  • Live migration
  • Chaos engineering
  • Canary deployments

Phase 4: Production Hardening (Months 7-8)

  • Performance optimization
  • Security audit
  • Documentation
  • Training materials

Success Metrics

Technical Metrics

  • 99.99% platform availability
  • <100ms p99 latency for agent operations
  • <1s agent startup time
  • 10,000 agents per node

  • <30s cluster formation

Operational Metrics

  • <5 min MTTR (Mean Time To Recovery)
  • Zero-downtime deployments
  • Automated scaling response <30s
  • 100% observability coverage

Business Metrics

  • 50% reduction in development time
  • 90% reduction in operational overhead
  • 10x improvement in system reliability
  • 5x improvement in deployment frequency

Conclusion

This architecture transforms JidoSystem from a collection of components into a true platform for building autonomous agent systems. By addressing all identified pain points and providing a clear migration path, teams can build production-ready agent systems with confidence.

The key innovations are:

  1. Unified abstractions across all layers
  2. Distributed-first design
  3. Observable by default
  4. Production-ready from day one
  5. Clear separation of concerns

With this architecture, JidoSystem becomes not just a framework, but a complete platform for the next generation of autonomous systems.