Strategic Implementation Plan: Self-Bootstrapping JSON Repair System
Phase 1: Foundation Infrastructure (Weeks 1-2)
1.1 Core Data Structures and Types
# Week 1: Define the foundational types
defmodule JsonRemedy.Core.Types do
@type json_violation :: %{
type: atom(),
position: non_neg_integer(),
severity: 1..10,
context: map(),
suggested_fixes: [repair_hypothesis()]
}
@type repair_hypothesis :: %{
action: atom(),
position: non_neg_integer(),
replacement: String.t() | nil,
simplicity_score: float(),
confidence: float(),
reasoning: String.t()
}
@type transformation_rule :: %{
pattern: Regex.t() | binary(),
conditions: [condition()],
transform: function(),
confidence: float(),
examples: [example()],
usage_count: non_neg_integer(),
success_rate: float()
}
end
1.2 JSON Structure Analysis Engine
# Week 1-2: Build the structural analyzer
defmodule JsonRemedy.StructuralAnalyzer do
@doc "Analyze intended JSON structure without parsing"
def analyze_structure(input) do
%{
bracket_analysis: analyze_brackets(input),
delimiter_analysis: analyze_delimiters(input),
quote_analysis: analyze_quotes(input),
nesting_analysis: analyze_nesting(input),
token_analysis: analyze_tokens(input)
}
end
# Tactic: Start with simple, reliable detection
defp analyze_brackets(input) do
# Step-by-step bracket matching with position tracking
# Track: opening position, expected closing, actual closing
end
defp analyze_delimiters(input) do
# Comma and colon placement analysis
# Detect: missing commas, trailing commas, misplaced colons
end
defp analyze_quotes(input) do
# Quote pairing and string boundary detection
# Handle: escaped quotes, mixed quote types, unclosed strings
end
end
1.3 Violation Detection System
# Week 2: Build violation detectors
defmodule JsonRemedy.ViolationDetector do
@detectors [
{JsonRemedy.Detectors.BracketMismatch, priority: 1},
{JsonRemedy.Detectors.QuoteMismatch, priority: 2},
{JsonRemedy.Detectors.CommaIssues, priority: 3},
{JsonRemedy.Detectors.InvalidLiterals, priority: 4},
{JsonRemedy.Detectors.ContextMismatch, priority: 5}
]
def detect_all_violations(input) do
@detectors
|> Enum.flat_map(fn {detector, priority} ->
detector.detect(input)
|> Enum.map(&Map.put(&1, :detector_priority, priority))
end)
|> Enum.sort_by(&{&1.detector_priority, &1.severity})
end
end
Phase 2: Core Repair Logic (Weeks 3-4)
2.1 Hypothesis Generation Engine
# Week 3: Build hypothesis generators
defmodule JsonRemedy.HypothesisGenerator do
def generate_for_violation(violation) do
case violation.type do
:missing_comma -> generate_comma_hypotheses(violation)
:unmatched_quote -> generate_quote_hypotheses(violation)
:invalid_literal -> generate_literal_hypotheses(violation)
:bracket_mismatch -> generate_bracket_hypotheses(violation)
end
end
# Tactic: Start with simplest, most reliable hypotheses
defp generate_comma_hypotheses(violation) do
[
%Hypothesis{
action: :insert_comma,
position: violation.position,
simplicity_score: 1.0,
confidence: calculate_comma_confidence(violation),
reasoning: "Missing comma between values"
},
# Add more sophisticated hypotheses
]
end
end
2.2 Hypothesis Testing Framework
# Week 3-4: Build hypothesis testing
defmodule JsonRemedy.HypothesisTester do
def test_hypothesis(input, hypothesis) do
case apply_hypothesis(input, hypothesis) do
{:ok, repaired_input} ->
validation_result = validate_json(repaired_input)
confidence_score = calculate_confidence(hypothesis, validation_result)
{:ok, repaired_input, confidence_score}
{:error, reason} ->
{:error, reason}
end
end
defp apply_hypothesis(input, hypothesis) do
case hypothesis.action do
:insert_comma -> insert_at_position(input, hypothesis.position, ",")
:close_quote -> insert_at_position(input, hypothesis.position, "\"")
:normalize_literal -> replace_at_position(input, hypothesis.position, hypothesis.replacement)
end
end
# Tactic: Fast validation without full JSON parsing
defp validate_json(input) do
case Jason.decode(input) do
{:ok, _} -> {:valid, 1.0}
{:error, %Jason.DecodeError{} = error} ->
{:invalid, analyze_parse_error(error)}
end
end
end
2.3 Compositional Repair Engine
# Week 4: Build compositional repair system
defmodule JsonRemedy.CompositionEngine do
def repair_compositionally(input, max_iterations \\ 5) do
repair_compositionally(input, [], 1.0, 0, max_iterations)
end
defp repair_compositionally(input, applied_repairs, confidence, iteration, max_iter)
when iteration >= max_iter do
{:max_iterations, input, applied_repairs, confidence}
end
defp repair_compositionally(input, applied_repairs, confidence, iteration, max_iter) do
case validate_json(input) do
{:valid, _} ->
{:ok, input, applied_repairs, confidence}
{:invalid, _} ->
case find_and_apply_best_repair(input) do
{:ok, new_input, repair, new_confidence} ->
repair_compositionally(
new_input,
[repair | applied_repairs],
confidence * new_confidence,
iteration + 1,
max_iter
)
{:no_repair_found} ->
{:error, input, applied_repairs, confidence}
end
end
end
end
Phase 3: Learning and Adaptation (Weeks 5-6)
3.1 Pattern Learning System
# Week 5: Build pattern learning
defmodule JsonRemedy.PatternLearner do
def learn_from_successful_repair(original_input, repaired_input, applied_repairs) do
# Extract generalizable patterns from successful repairs
transformation_pattern = extract_transformation_pattern(
original_input,
repaired_input,
applied_repairs
)
# Test if pattern generalizes
generalization_score = test_generalization(transformation_pattern)
if generalization_score > 0.7 do
PatternDatabase.add_pattern(transformation_pattern, generalization_score)
end
end
defp extract_transformation_pattern(original, repaired, repairs) do
# Find the minimal edit sequence
edits = compute_edit_sequence(original, repaired)
# Abstract specific characters to pattern variables
abstract_pattern = abstract_edits_to_pattern(edits)
# Generate applicability conditions
conditions = infer_conditions_from_context(original, repairs)
%TransformationRule{
pattern: abstract_pattern,
conditions: conditions,
confidence: calculate_pattern_confidence(edits, repairs),
examples: [{original, repaired, repairs}]
}
end
end
3.2 Real-Time Pattern Discovery
# Week 5-6: Build discovery system
defmodule JsonRemedy.PatternDiscovery do
def discover_patterns_in_real_time(input) do
# Analyze input for structural patterns
structural_analysis = analyze_structural_patterns(input)
# Generate repair hypotheses based on patterns
pattern_based_hypotheses = generate_pattern_hypotheses(structural_analysis)
# Test hypotheses and learn from results
tested_hypotheses = test_and_learn_from_hypotheses(input, pattern_based_hypotheses)
select_best_hypothesis(tested_hypotheses)
end
defp analyze_structural_patterns(input) do
%{
repeating_patterns: find_repeating_patterns(input),
symmetry_violations: find_symmetry_violations(input),
context_switches: find_context_switches(input),
boundary_patterns: find_boundary_patterns(input)
}
end
end
3.3 Knowledge Base Management
# Week 6: Build knowledge management
defmodule JsonRemedy.KnowledgeBase do
use GenServer
# Tactic: In-memory knowledge base with persistence
def start_link(opts \\ []) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def add_pattern(pattern, confidence) do
GenServer.call(__MODULE__, {:add_pattern, pattern, confidence})
end
def get_applicable_patterns(input_context) do
GenServer.call(__MODULE__, {:get_patterns, input_context})
end
def update_pattern_success(pattern_id, success) do
GenServer.cast(__MODULE__, {:update_success, pattern_id, success})
end
# Handle state with automatic cleanup of low-performing patterns
def handle_call({:add_pattern, pattern, confidence}, _from, state) do
updated_patterns = add_pattern_to_state(state.patterns, pattern, confidence)
cleaned_patterns = cleanup_low_performers(updated_patterns)
{:reply, :ok, %{state | patterns: cleaned_patterns}}
end
end
Phase 4: Zero-Shot Capabilities (Weeks 7-8)
4.1 Structural Reasoning Engine
# Week 7: Build structural reasoning
defmodule JsonRemedy.StructuralReasoner do
@doc "Reason about JSON structure without training examples"
def reason_about_structure(input) do
# Analyze what JSON structure this could be
possible_structures = enumerate_possible_structures(input)
# Score each structure by likelihood
scored_structures = score_structural_likelihood(possible_structures, input)
# Generate repair plans for most likely structures
repair_plans = generate_structural_repair_plans(scored_structures)
select_optimal_repair_plan(repair_plans)
end
defp enumerate_possible_structures(input) do
# Tactic: Use bracket/quote patterns to infer possible structures
bracket_patterns = extract_bracket_patterns(input)
quote_patterns = extract_quote_patterns(input)
# Generate structural hypotheses
generate_structural_hypotheses(bracket_patterns, quote_patterns)
end
defp score_structural_likelihood(structures, input) do
Enum.map(structures, fn structure ->
score = calculate_structure_score(structure, input)
{structure, score}
end)
|> Enum.sort_by(&elem(&1, 1), :desc)
end
end
4.2 Novel Pattern Handler
# Week 7-8: Build novel pattern handling
defmodule JsonRemedy.NovelPatternHandler do
def handle_novel_pattern(input, failed_repairs \\ []) do
# Step 1: Identify why existing patterns failed
failure_analysis = analyze_repair_failures(input, failed_repairs)
# Step 2: Generate novel hypotheses based on failure analysis
novel_hypotheses = generate_novel_hypotheses(input, failure_analysis)
# Step 3: Test novel hypotheses with careful validation
test_novel_hypotheses(input, novel_hypotheses)
end
defp generate_novel_hypotheses(input, failure_analysis) do
# Tactic: Use failure modes to guide novel hypothesis generation
failure_analysis.failure_modes
|> Enum.flat_map(&generate_hypotheses_for_failure_mode(&1, input))
|> Enum.sort_by(& &1.novelty_score)
end
defp test_novel_hypotheses(input, hypotheses) do
# Careful testing with multiple validation steps
Enum.find_value(hypotheses, fn hypothesis ->
case test_hypothesis_thoroughly(input, hypothesis) do
{:ok, result, confidence} when confidence > 0.6 ->
# Learn from this novel pattern
learn_novel_pattern(input, result, hypothesis)
{:ok, result, confidence}
_ ->
nil
end
end)
end
end
Phase 5: Integration and Optimization (Weeks 9-10)
5.1 Performance Optimization Layer
# Week 9: Build performance optimizations
defmodule JsonRemedy.PerformanceLayer do
@doc "Fast path for common patterns"
def fast_path_repair(input) do
# Tactic: Use Elixir's binary pattern matching for O(1) common cases
case input do
# Pattern 1: Simple quote fixes
<<prefix::binary, "'", content::binary, "'", suffix::binary>>
when not String.contains?(content, "'") ->
{:fast_repair, prefix <> "\"" <> content <> "\"" <> suffix}
# Pattern 2: Python literal fixes
input when binary_contains_python_literals(input) ->
{:fast_repair, normalize_python_literals(input)}
# Pattern 3: Trailing comma fixes
input when has_trailing_commas(input) ->
{:fast_repair, remove_trailing_commas(input)}
# Fall back to full analysis
_ ->
{:needs_analysis, input}
end
end
defp binary_contains_python_literals(input) do
String.contains?(input, "True") or
String.contains?(input, "False") or
String.contains?(input, "None")
end
end
5.2 Integration with Existing JsonRemedy
# Week 9-10: Integrate with existing system
defmodule JsonRemedy.EnhancedLayer3 do
@behaviour JsonRemedy.LayerBehaviour
def process(input, context) do
# Try fast path first
case PerformanceLayer.fast_path_repair(input) do
{:fast_repair, repaired} ->
{:ok, repaired, update_context(context, :fast_path)}
{:needs_analysis, input} ->
# Use full compositional repair system
case CompositionEngine.repair_compositionally(input) do
{:ok, repaired, repairs, confidence} ->
# Learn from this repair
PatternLearner.learn_from_successful_repair(input, repaired, repairs)
{:ok, repaired, update_context(context, {:compositional, repairs, confidence})}
{:error, _, _, _} ->
# Try novel pattern handling
NovelPatternHandler.handle_novel_pattern(input)
end
end
end
end
5.3 Monitoring and Metrics
# Week 10: Build monitoring system
defmodule JsonRemedy.Metrics do
def track_repair_attempt(input, result, method, duration) do
:telemetry.execute(
[:json_remedy, :repair_attempt],
%{duration: duration, input_size: byte_size(input)},
%{method: method, success: success?(result)}
)
# Update pattern performance metrics
update_pattern_metrics(method, result)
end
def get_performance_summary do
%{
fast_path_hit_rate: calculate_fast_path_hit_rate(),
average_repair_time: calculate_average_repair_time(),
pattern_success_rates: get_pattern_success_rates(),
novel_pattern_discovery_rate: get_discovery_rate()
}
end
end
Implementation Tactics Summary
Week 1-2: Foundation
- ✅ Define core types and data structures
- ✅ Build structural analysis engine
- ✅ Create violation detection framework
- ✅ Test with simple malformed JSON examples
Week 3-4: Core Logic
- ✅ Implement hypothesis generation
- ✅ Build hypothesis testing framework
- ✅ Create compositional repair engine
- ✅ Test with moderately complex examples
Week 5-6: Learning
- ✅ Implement pattern learning system
- ✅ Build real-time pattern discovery
- ✅ Create knowledge base management
- ✅ Test learning with diverse examples
Week 7-8: Zero-Shot
- ✅ Build structural reasoning engine
- ✅ Implement novel pattern handler
- ✅ Create failure analysis system
- ✅ Test with completely novel patterns
Week 9-10: Integration
- ✅ Add performance optimization layer
- ✅ Integrate with existing JsonRemedy
- ✅ Build monitoring and metrics
- ✅ Performance testing and optimization
Success Metrics
- Performance: 10x faster than Python for common cases
- Accuracy: 95%+ success rate on diverse malformed JSON
- Learning: Measurable improvement over time
- Zero-shot: Handle novel patterns without training
- Integration: Seamless drop-in replacement for Layer 3
This systematic approach builds a self-improving JSON repair system that learns from its successes while maintaining mathematical rigor and performance advantages.